Affordable System Preventing Deaths Of Children When Accidentally Left In Parked Vehicles.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

AFFORDABLE SYSTEM PREVENTING DEATHS OF
CHILDREN WHEN ACCIDENTALLY LEFT
IN PARKED VEHICLES

This report is submitted in accordance with the requirement of the Universiti
Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Electronic
Engineering Technology (Industrial Electronics) with Honours

by

ERIN RABIATUL CHARMEIN BINTI NOOR CHAMAN
B071210037
930916-14-7258

FACULTY OF ENGINEERING TECHNOLOGY
2015

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: SYSTEM PREVENTING DEATHS OF CHILDREN WHEN ACCIDENTALLY
LEFT IN PARKED VEHICLES
SESI PENGAJIAN: 2015 / 2016 SEMESTER 1
Saya ERIN RABIATUL CHARMEIN BINTI NOOR CHAMAN
mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti
Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:
1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan
untuk tujuan pengajian sahaja dengan izin penulis.
3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan
pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan ( )

SULIT

(Mengandungi maklumat TERHAD yang telah ditentukan
oleh organisasi/badan di mana penyelidikan dijalankan)

TERHAD


(Mengandungi maklumat yang berdarjah keselamatan
atau kepentingan Malaysia sebagaimana yang termaktub
dalam AKTA RAHSIA RASMI 1972)

TIDAK TERHAD

(

Disahkan oleh:
)

(

)

Alamat Tetap:
B2-01, CHANCELLOR CONDOMINIUM,

Cop Rasmi:


JALAN KOSAS 2/4, TAMAN KOSAS
68000 AMPANG, SELANGOR

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi
berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai
SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled “Affordable System Preventing Deaths Of
Children When Accidentally Left In Parked Vehicles” is the results of my own
research except as cited in the references.

Signature

:………………………

Name

: ERIN RABIATUL CHARMEIN

BINTI NOOR CHAMAN

Date

: ………………………

iv

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a
partial fulfilment of the requirements for the degree of Bachelor of Engineering
Technology (Department of Electronics & Computer Engineering Technology)
(Hons.). The member of the supervisory is as follows:

……………………………….
(Mr. Shahrizal bin Saat)

v


ABSTRACT

Latterly, news regarding child’s death due to the heatstroke after being
trapped inside a motor vehicle is going viral despite the efforts of private and public
organizations or institutions, car productions and punter group to prevent the issue.
Even perfect parents can unknowingly forget about their child in the back seat. This
project is basically to prevent deaths of children due to heatstroke when accidentally
left in parked vehicles. This paper describes the design of an affordable module that
interfaces between PIC 18F4550 and a PIR sensor together with a sound sensor
module. The system allows the windows to be automatically rolled down when both
PIR sensor and microphone sensor are in active state. Active state means the PIR
sensor has detected a form of movement while microphone sensor has detected noise
produced. Apart from that, two relays are used to allow the direction of the DC motor
to rotate either clockwise or anti – clockwise. By installing this module, it can reduce
the potential of a child to get heatstroke.

vi

ABSTRAK


Sejak kebelakangan ini, jumlah kematian kanak – kanak akibat strok haba
selepas terperangkap di dalam kenderaan bermotor makin meningkat walaupun
dengan usaha pelbagai pihak organisasi dan institusi kerajaan mahupun swasta,
pengeluar kereta dan pengguna untuk membanteras masalah tersebut. Malah ibubapa
yang sempurna tanpa disedari boleh melupakan anak – anak mereka di tempat duduk
belakang. Pada dasarnya projek ini direka untuk mencegah kematian kanak – kanak
akibat strok haba jika ditinggal secara tidak sengaja di dalam kenderaan bermotor.
Kertas kerja ini menghuraikan reka bentuk mampu pilik produk antara PIC 18F4550
dan sensor PIR berserta modul sensor bunyi. Sistem ini membolehkan penurunan
tingkap kereta secara automatic apabila PIR sensor dan mikrofon sensor berada
dalam keadaan aktif. Keadaan aktif bermakna PIR sensor telah mengesan satu bentuk
pergerakan manakala mikrofon sensor telah mengesan bunyi yang telah dihasilkan.
Selain itu, dua relay digunakan untuk membolehkan DC motor untuk berputar sama
ada mengikut arah jam atau arah lawan jam. Dengan memasang produk ini, ia boleh
mengurangkan risiko seorang kanak – kanak untuk mendapat strok haba.

vii

DEDICATIONS


To my beloved family
NOOR CHAMAN BIN GUL MOHAMED
SERI RAHAYU BINTI ISMAIL
SABREENA CHARMEIN BINTI NOOR CHAMAN
CHIARA CHARMEIN BINTI NOOR CHAMAN
“Thank you for the support, encouragement and affection that able me to complete
this report”

viii

ACKNOWLEDGMENTS

First and foremost, praise to Allah the Almighty for blessing me with strength,
health and knowledge in making this report a successful one. It is with His blessing
this project is completed. I would like to express my deepest appreciation and sincere
thanks to my supervisor, Mr. Shahrizal bin Saat for his advices, comments and
guidance from the beginning until I completed this report. My heartiest gratitude and
gratefulness to my parents and siblings for their endless love, moral support and
encouragement that made it possible for me to complete my report. My grandfather,
late grandmothers and other family members deserve my wholehearted thanks as

well. Apart from that, I would like to thank my friends who have helped and
supported me throughout the process. Last but not least, thank you to everyone that
directly and indirectly involved helping me finishing this report.

ix

TABLE OF CONTENTS

DECLARATION ................................................................................................................. iv
APPROVAL...........................................................................................................................v
ABSTRACT ......................................................................................................................... vi
ABSTRAK .......................................................................................................................... vii
DEDICATIONS ................................................................................................................. viii
ACKNOWLEDGMENTS ................................................................................................... ix
TABLE OF CONTENTS .......................................................................................................x
LIST OF FIGURES ........................................................................................................... xiv
LIST OF TABLE ............................................................................................................... xvi
LIST OF SYMBOLS AND ABBREVIATIONS ............................................................. xvii
CHAPTER 1 ..........................................................................................................................1
1.0


Introduction .............................................................................................................1

1.1

Background .............................................................................................................1

1.2

Problem Statements .................................................................................................3

1.3

Objectives ................................................................................................................3

1.4

Project Scopes .........................................................................................................3

1.5


Thesis Overview ......................................................................................................4

CHAPTER 2 ..........................................................................................................................5
2.0

Introduction .............................................................................................................5

2.1

System On Preventing Heatstroke For Young Children Accidentally Left In

Parked Vehicles ..................................................................................................................5
x

2.2

Embedded System ...................................................................................................9

2.3


PIR Sensor .............................................................................................................10

2.4

Microphone Sensor................................................................................................10

2.5

PIC Microcontroller ..............................................................................................11

CHAPTER 3 ........................................................................................................................12
3.0

Introduction ...........................................................................................................12

3.1

Hardware Architecture ..........................................................................................14

3.1.1

Hardware Requirement ..................................................................................14

3.1.1.1

PIR Sensor ..............................................................................................15

3.1.1.2

Sound Sensor Module .............................................................................16

3.1.1.3

PIC 18F4550 ...........................................................................................17

3.1.1.4

Relay .......................................................................................................17

3.1.2

Hardware Testing ...........................................................................................18

3.1.3

Hardware Assembles ......................................................................................21

3.1.4

Hardware Performance...................................................................................22

3.2

Software Implementation ......................................................................................23

3.2.1

Software Requirement ....................................................................................23

3.2.2

Constructed Language....................................................................................24

3.2.3

Execution Time ..............................................................................................24

CHAPTER 4 ........................................................................................................................25
4.0

Introduction ...........................................................................................................25

4.1

DC Motor Without Load .......................................................................................25

4.1.1

Speed Versus Voltage ....................................................................................26
xi

4.1.2

Speed Versus Current.....................................................................................26

4.1.3

Speed Versus Power.......................................................................................27

4.2

DC Motor With Load ............................................................................................28

4.2.1

Speed Versus Voltage ....................................................................................29

4.2.2

Speed Versus Current.....................................................................................30

4.2.3

Speed Versus Power.......................................................................................31

4.3

Programming Language ........................................................................................32

4.4

Experimental Results .............................................................................................36

4.4.1

DC Motor .......................................................................................................37

4.4.2

Execution Time ..............................................................................................38

4.5

Discussion .............................................................................................................39

CHAPTER 5 ........................................................................................................................41
5.0

Introduction ...........................................................................................................41

5.1

Summary Of Research...........................................................................................41

5.2

Significance Of Research ......................................................................................42

5.3

Achievement Of Research Objective ....................................................................42

5.4

Problems Faced During Research .........................................................................44

5.5

How To Overcome The Problems .........................................................................44

5.6

Suggestion for Future Work ..................................................................................44

APPENDIX A ......................................................................................................................47
APPENDIX B ......................................................................................................................51
APPENDIX C ......................................................................................................................54
APPENDIX D ......................................................................................................................56
xii

APPENDIX E ......................................................................................................................59
REFERENCES.....................................................................................................................61

xiii

LIST OF FIGURES

Figure 1.1: Causes Of Motor Vehicles Heatstroke Death (Factors n.d.) ..................... 1
Figure 1.2: Ages of Motor Vehicle Heatstroke Victims (Factors n.d.) ........................ 2
Figure 2.1: Hardware Setup (Vinoth 2014) ................................................................. 6
Figure 2.2: Block Diagram (Sasidharan 2015) ............................................................ 7
Figure 2.3: Graph Of Number Of Children Deaths Left In Cars In US
(Garethiya et al. 2015).................................................................................................. 8
Figure 3.1: Flowchart ................................................................................................. 13
Figure 3.2: PIR Sensor ............................................................................................... 15
Figure 3.3: Sound Sensor Module.............................................................................. 16
Figure 3.4: PIC 18F4550 ............................................................................................ 17
Figure 3.5: Relay ........................................................................................................ 17
Figure 3.6: Testing Circuit For The PIR Sensor ........................................................ 18
Figure 3.7: Testing Circuit For The Sound Sensor Module ....................................... 19
Figure 3.8: Testing Circuit For Relays ....................................................................... 19
Figure 3.9: Extended Circuit ...................................................................................... 20
Figure 3.10: Soldered Circuit ..................................................................................... 20
Figure 3.11: Hardware Assembles (Front View) ....................................................... 21
Figure 3.12: Hardware Assembles (Back View)........................................................ 21
Figure 3.13: DC Power Supply .................................................................................. 22
Figure 3.14: Tachometer ............................................................................................ 22
Figure 3.15: USB ICSP Programmer UIC00B .......................................................... 23
Figure 4.1: Graph Of Speed (RPM) Versus Voltage (V) ........................................... 26
Figure 4.2: Graph Of Speed (RPM) Versus Current (A) ........................................... 26
Figure 4.3: Graph Of Speed (RPM) Versus Power (W) ............................................ 27
Figure 4.4: Graph Of Speed (RPM) Versus Voltage (V) For Upward Direction ...... 29
Figure 4.5: Graph Of Speed (RPM) Versus Voltage (V) For Downward Direction . 29
Figure 4.6: Graph Of Speed (RPM) Versus Current (A) For Upward Direction....... 30
Figure 4.7: Graph Of Speed (RPM) Versus Current (A) For Downward Direction .. 30
Figure 4.8: Graph Of Speed (RPM) Versus Power (W) For Upward Direction ........ 31
Figure 4.9: Graph Of Speed (RPM) Versus Power (W) For Downward Direction ... 31
xiv

Figure 4.10: Flowchart ............................................................................................... 36
Figure 5.1: Window Rolled Down ............................................................................. 43
Figure 5.2: Window Rolled Up .................................................................................. 43
Figure 5.3: Block Diagram For Future Development ................................................ 45

xv

LIST OF TABLE

Table 2.1: Difference Between PIC 16F family and PIC 18F ................................... 11
Table 3.1: PIR Sensor Specifications ......................................................................... 15
Table 3.2: Sound Sensor Module Specifications ....................................................... 16
Table 3.3: PIC 18F4550 Specifications ..................................................................... 17
Table 3.4: Formula For Execution Time .................................................................... 24
Table 4.1: Figures For DC Motor Without Load ....................................................... 25
Table 4.2: Figures For DC Motor With A Load (Upward Direction)........................ 28
Table 4.3: Figures For DC Motor With A Load (Downward Direction) ................... 28
Table 4.4: Coding ....................................................................................................... 32
Table 4.5: Relay Condition ........................................................................................ 37
Table 4.6: Execution Time For If – Else Structure and Switch Structure.................. 38
Table 4.7: Cost Comparison ....................................................................................... 40

xvi

LIST OF SYMBOLS AND ABBREVIATIONS

PIR

=

Passive Infra – Red

PIC

=

Programmable Intelligent Computer

DC

=

Direct Current

DO

=

Digital Out

LED

=

Light Emitting Diode

VDD

=

Voltage Drain Drain

GND

=

Ground

VCC

=

Voltage Collector Constant

VIN

=

Voltage In

PC

=

Personal Computer

CCS C

=

Custom Computer Services Compiler

I/O

=

Input / Output

SK

=

Start – Up Kit

US

=

United State

AC

=

Alternating Current

xvii

CHAPTER 1
INTRODUCTION

1.0

Introduction
This chapter is reviewed about the project background, project condition,

project objectives and the project scopes.

1.1

Background
In the recent past, the number of children that die from heatstroke after being

left alone in a motor vehicle has increased. According to KidsandCars.org, the
average number of children that dies due to motor vehicle heatstroke per year since
1998 is 38 which is equivalent to one every nine days.
Almost half of these cases, the individual responsible for the child’s death
accidentally left them in the motor vehicle. This incident can happen to anyone,
including the most caring, loving, affectionate, protective parents. It has happened to
a teacher, dentist, social worker, police officer, nurse and even a soldier (Factors
n.d.). Figure 1.1 shows the causes of motor vehicle heatstroke death.

Figure 1.1: Causes Of Motor Vehicles Heatstroke Death (Factors n.d.)

1

Heatstroke is the leading cause of a non – crash motor vehicle fatalities in
children aged below fourteen (Soto et al. 2014). Heatstroke occurs when the body
becomes dehydrated and is unable to cool itself enough to maintain a healthy
temperature. Heatstroke normally occurs when the core body temperature rises above
40.5̊ Celsius and the body’s internal systems start to shut down.
Children have the highest potential because a child’s body overheats three to
five times faster than an adult body. It can take as little as 15 minutes in an
overheated car for a child to suffer life – threatening brain or kidney injuries
(Garethiya et al. 2015).
A motor vehicle when can be heated up strenuously because of the window on
the vehicle is translucent towards the sun’s short – wave radiation. The temperature
level could be hazardous, even be disastrous because of sunlight, exterior
temperature, color and type of the vehicle (Sasidharan 2015). Also upon windy days,
vehicle’s temperature may rise to a dangerous level quickly.
According to the heatstroke data sheet by KidsandCars.org 87 percent of
children who died from a motor vehicle heatstroke are aged three and younger while
54 percent of this tragic case involves children age one and younger. Since they are
small in size, this can lead parents to think that their child is no longer in the car with
them. Figure 1.2 shows the ages of the motor vehicle heatstroke victims.

Figure 1.2: Ages of Motor Vehicle Heatstroke Victims (Factors n.d.)

2

1.2

Problem Statements

On average, thirty – eight children die in hot cars each year from heat – related
deaths after being trapped inside a motor vehicle (Arbogast et al. 2012). Babies and
young kids can sometimes sleep so peacefully that parents forget they are even there.
It can also be tempting to leave a baby alone in a car while we quickly run into the
store. The problem is that leaving a child alone in a car can lead to serious injury or
death from heatstroke. Young children are particularly at risk, as their body heat up
three to five times faster than adults. With this affordable system, number of
casualties of children due to heatstroke when accidentally left in parked vehicle can
be lessened.

1.3

Objectives

The objectives of this project are to:
i.

To construct an affordable system that can prevent children’s casualties
when accidentally left in parked vehicles

1.4

ii.

To ensure the PIR sensor can detect movement

iii.

To ensure the sound sensor module can detect the sound produced

Project Scopes
This project has two scopes:
i.

Using PIR sensor and sound sensor module for this system

ii.

Program PIC microcontroller to interface with PIR sensor, sound sensor
module, two relays and a DC motor

3

1.5

Thesis Overview
This thesis is a combination of 6 chapters that contains and elaborates specific

topics such as Introduction, Literature review, Methodology, Result and Analysis,
Conclusion and Further Development that can be applied in this project.
Chapter 1:

Introduction of the project

Chapter 2:

Literature review of the project

Chapter 3:

Methodology regarding the project’s architecture that consists of
hardware and software implementation

Chapter 4:

Result obtained regarding the project system’s performance and
overall discussion about the project

Chapter 5:

Conclusion and future recommendation of the project

4

CHAPTER 2
LITERATURE REVIEW

2.0

Introduction
This chapter will cover on the review from previous research that is related to

this project. There are previous researches on systems that are used to prevent
heatstroke for young children left in a vehicle. Apart from that, previous study on
embedded system, PIR sensor, sound sensor module and PIC 18F450 are also
included in this chapter.

2.1

System On Preventing Heatstroke For Young Children Accidentally Left
In Parked Vehicles

By using the latest technology, multi – agent architecture has been developed
to detect young children that are left in a child safety seat in a motor vehicle.
INGENIAS methodology is used to develop this multi – agent system (Soto et al.
2014). This system has two major sections which are monitoring section and user
section. The monitoring system is responsible of monitoring conditions regarding
young children left mistakenly in a baby seat in a vehicle motor. This unit consists of
coordinator module, the temperature module, GPS, sound module and motion
module. Meanwhile, user unit is formed by interface module which is a mediator
between users and modules. It is used to send heatstroke risk alert to the user’s
smartphone.

5

Children die of vehicular heat stroke because the surrounding air temperature is
scorching and results in an escalation of body temperature. This car safety seat uses
thermoelectric cooler to maintain the temperature of the body for a limited time.
Thermoelectric cooling device directed chilled air onto the occupant, providing
convective cooling on the occupant’s skin (Vinoth 2014). The alarm and cooling
systems will be activated when occupant sensor and thermistor detect an unsafe
temperature rise for small child. Thermoelectric coolers maintain the temperature
around only two hours below the actual tolerances in a parked vehicle. Figure 2.1
shows the hardware of the car safety seat uses thermoelectric cooler.

Figure 2.1: Hardware Setup (Vinoth 2014)

The existing technologies aimed at preventing children from being left alone
in a motor vehicular such as Deluxe Padded Safety Seat Alarm, Child Minder Smart
Clip System and Backseat Minder have many flaws such as malfunctioning devices
when it is not installed or used according to the manufacturer’s specification and
generate false alarms (Aiello et al. 2014). Therefore, a system which applied the
principle of cyber physical system is purposed. These devices are able to sense and
monitor the environment, integrate and process collected data and take action with no
or limited human supervision that will affect one or more physical variable, feasibly
correcting the risky situation.

6

The motor vehicle compartment is a tiny spot where by severe issues
including health – related difficulties can take place when passengers spend quite a
long time inside the encapsulated area. Examples of minor cases tend to occur are
exhaustion, headache, dizziness, nausea, heat exhaustion, asthma etc. and for most
detrimental circumstances are vision breathing, chest pain, heatstroke and lung
cancer which can results in loss of life when one is trapped for a long time in the
motor vehicle. Hence a system that composed of temperature sensor (to monitor
interior vehicle temperature), humidity sensor (to measure vehicle cabin humidity
level), oxygen sensor (to measure proportion of oxygen in ambient air), PIR sensor
(to detect presence of humans or pet animal), LPC1768 microcontroller and alarm
system (to alert user during any form of danger) are proposed (Sasidharan 2015). The
block diagram for the system is shown in Figure 2.2.

Figure 2.2: Block Diagram (Sasidharan 2015)

7

Of all non – crash related accidents, heatstroke is the main factor that
contributes in children deaths. Since the year 1998, total number of children that
have died in the United State of America (USA) from such reason in locked car is
556. Between year 2006 and 2010, heat stroke hits nearly 15 percent for children
under 15 years of age. Figure 2.3 represents the number of children deaths left in cars
in US. Thus, an advanced system model that are basically divided into three parts
which are monitoring unit, coordinate unit and real time control unit is introduced
(Garethiya et al. 2015). Monitoring unit consists of the sensing devices and controller
such as temperature sensing module, presence detection module, GPS module and
real time clock module to observe the person inside a car. Meanwhile, coordinator
system is in charge for recognizing critical circumstances which may cause a high
risk of heatstroke for the child. The last unit which is the real time provides proper
control actions in case the temperature rises at or above 104° Fahrenheit.

Figure 2.3: Graph Of Number Of Children Deaths Left In Cars In US
(Garethiya et al. 2015)

8