Extraction Procedure

14.3 Extraction Procedure

14.3.1Extraction Requirements

One large size device and two sets of smaller-sized devices are needed to extract parameters, as shown in Figure 13-1.

Large W and L

Orthogonal Set of W and L

W min L

L min

Figure 13-1. Device geometries used for parameter extraction

The large-sized device (W ≥ 10 µ m, L ≥ 10 µ m) is used to extract parameters which are independent of short/narrow channel effects and parasitic resistance. Specifically, these are: mobility, the large-sized device The large-sized device (W ≥ 10 µ m, L ≥ 10 µ m) is used to extract parameters which are independent of short/narrow channel effects and parasitic resistance. Specifically, these are: mobility, the large-sized device

(1) I ds vs. V gs @V ds = 0.05V with different V bs . (2) I ds vs. V ds @V bs = 0V with different V gs .

(3) I ds vs. V gs @V ds =V dd with different V bs .

(4) I ds vs. V ds @V bs =V bb with different V gs . (|V bb | is the maximum body bias).

14.3.2Optimization

The optimization process recommended is a combination of Newton- Raphson's iteration and linear-squares fit of either one, two, or three variables. A flow chart of this optimization process is shown in Figure 13-

2. The model equation is first arranged in a form suitable for Newton- Raphson's iteration as shown in (14.3.1):

The variable f sim () is the objective function to be optimized. The variable

f exp () stands for the experimental data. P 10 , P 20 , and P 30 represent the f exp () stands for the experimental data. P 10 , P 20 , and P 30 represent the

1 , P 2 and P 3 represent parameter values after the mth iteration.

(m)

(m)

Initial Guess of Parameters P i

Model Equations

Linear Least Squsre

Measured Data

Fit Routine

P =P + (m+1) (m) i i

no

(m)

yes STOP

Figure 13-2. Optimization flow.

To change (14.3.1) into a form that a linear least-squares fit routine can be used (i.e. in a form of y = a + bx 1 + cx 2 ), both sides of (14.3.1) are divided To change (14.3.1) into a form that a linear least-squares fit routine can be used (i.e. in a form of y = a + bx 1 + cx 2 ), both sides of (14.3.1) are divided

where i=1, 2, 3 for this example. The (m+1) parameter values for P 2 and P 3 are obtained in an identical fashion. This process is repeated until the

( incremental parameter change in parameter values m) ∆ P

are smaller than

a pre-determined value. At this point, the parameters P 1 ,P 2 , and P 3 have been extracted.

14.3.3Extraction Routine

Before any model parameters can be extracted, some process parameters have to be provided. They are listed below in Table 13-1:

Input Parameters Names Physical Meaning TOXE, TOXP, DTOX, or

Gate oxide thickness and dielectric con-

Doping concentration in the channel

TNOM

Temperature at which the data is taken

L drawn

Mask level channel length

W drawn

Mask level channel width

XJ

Junction depth

Table 13-1. Prerequisite input parameters prior to extraction process.

The parameters are extracted in the following procedure. These procedures are based on a physical understanding of the model and based on local optimization. (Note: Fitting Target Data refers to measurement data used for model extraction.)

Step 1

Extracted Parameters & Fitting Target Device & Experimental Data Data

VTH0, K1, K2 Large Size Device (Large W & L).

I ds vs. V gs @V ds = 0.05V at Different V bs Fitting Target Exp. Data: V th (V bs )

Extracted Experimental Data V th (V bs )

Step 2

Extracted Parameters & Fitting Target Devices & Experimental Data Data

UA, UB, UC, EU Large Size Device (Large W & L).

I ds vs. V gs @V ds = 0.05V at Different V bs Fitting Target Exp. Data: Strong Inver- sion region I ds (V gs ,V bs )

Step 3

Extracted Parameters & Fitting Target Devices & Experimental Data Data

LINT, R ds (RDSW, W, V bs ) One Set of Devices (Large and Fixed W & Different L).

Fitting Target Exp. Data: Strong Inver-

I ds vs. V gs @V ds = 0.05V at Different V bs sion region I ds (V gs ,V bs )

Step 4

Extracted Parameters & Fitting Target Devices & Experimental Data

Data

WINT, R ds (RDSW, W, V bs ) One Set of Devices (Large and Fixed L & Different W).

Fitting Target Exp. Data: Strong Inver- I ds vs. V gs @V ds = 0.05V at Different sion region I ds (V gs ,V bs )

V bs

Step 5

Extracted Parameters & Fitting Target Devices & Experimental Data Data

RDSW, PRWG, PRWB, WR R ds (RDSW, W, V gs ,V bs ) Fitting Target Exp. Data: R ds (RDSW, W,

V gs ,V bs )

Step 6

Extracted Parameters & Fitting Target Devices & Experimental Data Data

DVT0, DVT1, DVT2, LPE0, LPEB One Set of Devices (Large and Fixed W & Different L).

Fitting Target Exp. Data: V th (V bs , L, W )

V th (V bs , L, W )

Step 7

Extracted Parameters & Fitting Target Devices & Experimental Data Data

DVT0W, DVT1W, DVT2W One Set of Devices (Large and Fixed L & Fitting Target Exp. Data: V th (V bs , L, W ) Different W).

V th (V bs , L, W )

Step 8

Extracted Parameters & Fitting Target Devices & Experimental Data Data

K3, K3B, W0 One Set of Devices (Large and Fixed L & Different W).

Fitting Target Exp. Data: V th (V bs , L, W )

V th (V bs , L, W )

Step 9

Extracted Parameters & Fitting Target Devices & Experimental Data Data

MINV, VOFF, VOFFL, NFACTOR, One Set of Devices (Large and Fixed W & CDSC, CDSCB

Different L).

Fitting Target Exp. Data: Subthreshold

I ds vs. V gs @V ds = 0.05V at Different V bs region I ds (V gs ,V bs )

Step 10

Extracted Parameters & Fitting Target Devices & Experimental Data Data

CDSCD One Set of Devices (Large and Fixed W & Fitting Target Exp. Data: Subthreshold

Different L).

region I ds (V gs ,V bs )

I ds vs. V gs @V bs =V bb at Different V ds

Step 11

Extracted Parameters & Fitting Target Devices & Experimental Data Data

DWB One Set of Devices (Large and Fixed W & Fitting Target Exp. Data: Strong Inver-

Different L).

sion region I ds (V gs ,V bs )

I ds vs. V gs @V ds = 0.05V at Different V bs

Step 12

Extracted Parameters & Fitting Target Devices & Experimental Data Data

VSAT, A0, AGS, LAMBDA, XN, VTL, One Set of Devices (Large and Fixed W &

LC

Different L).

Fitting Target Exp. Data: I sat (V gs ,V bs )/W I ds vs. V ds @V bs = 0V at Different V gs A1, A2 (PMOS Only)

Fitting Target Exp. Data V dsat (V gs )

Step 13

Extracted Parameters & Fitting Target Devices & Experimental Data Data

B0, B1 One Set of Devices (Large and Fixed L & Fitting Target Exp. Data: I sat (V gs ,V bs )/W Different W).

I ds vs. V ds @V bs = 0V at Different V gs

Step 14

Extracted Parameters & Fitting Target Devices & Experimental Data Data

DWG One Set of Devices (Large and Fixed L & Fitting Target Exp. Data: I sat (V gs ,V bs )/W Different W).

I ds vs. V ds @V bs = 0V at Different V gs

Step 15

Extracted Parameters & Fitting Target Devices & Experimental Data Data

PSCBE1, PSCBE2 One Set of Devices (Large and Fixed W & Different L).

Fitting Target Exp. Data: R out (V gs ,V ds ) I ds vs. V ds @V bs = 0V at Different V gs

Step 16

Extracted Parameters & Fitting Target Devices & Experimental Data Data

PCLM, θ (DROUT, PDIBLC1, One Set of Devices (Large and Fixed W & PDIBLC2, L), PVAG, FPROUT, DITS, Different L). DITSL, DITSD

I ds vs. V ds @V bs = 0V at Different V gs Fitting Target Exp. Data: R out (V gs ,V ds )

Step 17

Extracted Parameters & Fitting Target Devices & Experimental Data Data

DROUT, PDIBLC1, PDIBLC2 One Set of Devices (Large and Fixed W & Fitting Target Exp. Data: θ (DROUT,

Different L).

PDIBLC1, PDIBLC2, L) θ (DROUT, PDIBLC1, PDIBLC2, L)

Step 18

Extracted Parameters & Fitting Target Devices & Experimental Data Data

PDIBLCB One Set of Devices (Large and Fixed W & Different L).

Fitting Target Exp. Data: θ (DROUT,

I ds vs. V gs @ fixed V gs at Different V bs PDIBLC1, PDIBLC2, L, V bs )

Step 19

Extracted Parameters & Fitting Target Devices & Experimental Data Data

θ DIBL (ETA0, ETAB, DSUB, DVTP0, One Set of Devices (Large and Fixed W & DVTP1, L)

Different L).

I ds vs. V gs @V ds =V dd at Different V bs Fitting Target Exp. Data: Subthreshold

region I ds (V gs ,V bs )

Step 20

Extracted Parameters & Fitting Target Devices & Experimental Data Data

ETA0, ETAB, DSUB One Set of Devices (Large and Fixed W & Different L).

Fitting Target Exp. Data: θ DIBL (ETA0,

I ds vs. V gs @V ds =V dd at Different V bs ETAB , L)

Step 21

Extracted Parameters & Fitting Target Devices & Experimental Data Data

KETA One Set of Devices (Large and Fixed W & Different L).

Fitting Target Exp. Data: I sat (V gs ,V bs )/W I ds vs. V ds @V bs =V bb at Different V gs

Step 22

Extracted Parameters & Fitting Target Devices & Experimental Data Data

ALPHA0, ALPHA1, BETA0 One Set of Devices (Large and Fixed W & Different L).

Fitting Target Exp. Data: I ii (V gs ,V bs )/W I ds vs. V ds @V bs =V bb at Different V ds

Step 23

Extracted Parameters & Fitting Target Devices & Experimental Data Data

ku0, kvsat, tku0, lku0, wku0, pku0, Set of Devices ( Different L, W, SA, SB). llodku0, wlodku0

I ds-linear @V gs =V dd, V ds = 0.05 Fitting Target Exp. Data: Mobility (SA, SB, L, W)

Step 24

Extracted Parameters & Fitting Target Devices & Experimental Data Data

kvth0, lkvth0, wkvth0, pvth0, llodvth, Set of Devices ( Different L, W, SA, SB). wlodvth

V th (SA, SB, L, W)

Fitting Target Exp. Data: V th (SA, SB, L, W )

Step 24

Extracted Parameters & Fitting Target Devices & Experimental Data Data Extracted Parameters & Fitting Target Devices & Experimental Data Data

k2 (SA, SB, L, W), eta0(SA, SB, L, W) W ), eta0(SA, SB, L, W)

Appendix A: Complete Parameter List

Dokumen yang terkait

View of Hasil Belajar Siswa Pada Materi Peluang Melalui Model Connected Mathematics Project Di Kelas VIII

0 2 10

GLOBALISASI DAN PEMETAAN KEKUATAN STRATEGIS PERTAHANAN MARITIM INDONESIA DALAM MENGHADAPI ANCAMAN TRANSNASIONAL: Berdasarkan Analisis Model Element of National Power: (Political, Military, Economic, Social, Infrastructure, and Information/PMESII)

0 0 18

Analisis Kebangkrutan Pada Perusahaan Perbankan Di Indonesia Periode 2001-2012 (Dengan Menggunakan Model Altman Z-Score)

0 0 13

View of Pengaruh Model Pembelajaran Inkuiri Terbimbing terhadap Keterampilan Proses Sains Siswa

0 0 10

View of Implementasi Model Kooperatif Tipe Stad Terhadap Hasil Belajar Kimia Siswa Ditinjau dari Keterampilan Berpikir Kreatif

0 0 8

View of Perbedaan Hasil Belajar IPA Biologi Menggunakan Model Pembelajaran Kooperatif Tipe Numbered Heads Together (NHT) Dengan Think Pair Share (TPS) Pada Siswa Kelas VIII SMPN 13 Mataram Tahun Ajaran 2015/2016

0 0 15

PENERAPAN MODEL PEMBELAJARAN KOOPERATIF TIPE TEAM GAMES TOURNAMENT (TGT) DI KELAS X SMAN 4 KOTA BENGKULU Application of Cooperative Learning Model Team Games Tournament (TGT) Type In Class X SMAN 4 Bengkulu City

0 0 15

View of Perbandingan Hasil Belajar Biologi Dengan Menggunakan Model Pembelajaran Kooperatif Script daN Model Pembelajaran Konvensional pada Pokok Bahasan Sistem Eskresi di Kelas VIII SMP Muhammadiyah 11 Tello Makassar

0 0 11

View of Upaya Peningkatan Motivasi dan Hasil Belajar Kognitif Mahasiswa Program Studi Biologi STKIP Pembangunan Indonesia Melalui Model Pembelajaran Grup Investigasi dan Model Pembelajaran Inkuiri Pada Matakuliah Anatomi dan Fisiologi Manusia

0 0 12

Laporan HB Tahun1 Perhitungan Transport Massa Air di Selat Malaka dengan Model Numerik Tiga-Dimensi.pdf

0 0 46