3.4.4. Chart based Intersection approach and results
In the chart based intersection approach, the potential material sets with the same curvature value for the Vickers and spherical indenters were identify separately through a
chart C vs. N for different yield stress Figure 3.10 a b. The property data was then plotted onto another chart for yield stress vs. Work hardening coefficient Figure 3.10
c. The properties were determined at the intersection point between the data for the Vickers and Spherical indenters. As illustrated in Figure 3.10 a, b, c with a known Cv
or Cs value, the properties can be determined by drawing a straight line along the curvature value, the intersection point represents data with the same curvature value.
These data was then plotted onto the yield stress-work hardening n chart. The intersection point will represent the predicted material properties. The two cases represents two
examples for
6
1= 150, n1=0.15 and
6
2= 300, n2=0.28, both are very close to the true material properties. Prediction carry out by determining the value of n work
hardening coefficient based on analysis of trend equations at each curvature Through chat fitting and mapping knowable predicted value n1 = 0.174 , n2 =0.209 as described on
accuracy study results of inverse FE modeling on Vickers and spherical indentation plotting and mapping data result. Evaluation of accuracy on the approach using Plotting
and mapping carry out by taking input data which is characterized by randomize and represent the sample space. The selected input data with 2 variations in the value n,
namely n=0.15 and n=0.28 range 0.01 0.30 and
6
= 100, 140, 190 and 300. Accuracy study Plotting and mapping Table.3.4, known that on average value of different
predictive of n into n-input as n=0.24 and average accuracy error ∆n n
⁄ is 0.07 both the prediction n on Vickers Indentation and on Spherical Indentation. This shows
the selected predictors significantly acceptable within the limit of level confidence less than 0.5 .Accuracy studies results were done for some input value, the results were listed
in Table 3.4. The average accuracy, which is much better than the accuracy for the 3D mapping approach.
Figure 3.1 Flow chart showing the Research work
.
Development of FE indentation models of Vickers and Spherical
indenters
Validation of the FE model and the effect of materials properties on
the loading and unloading curves.
Theoretical development of the inverse FE modelling program based on
indentation curves with different indenter shapes: Curve fitting; 3-D
Mapping, Chart method. Evolution of accuracy of each approach
with known material properties Tensile shear tests of
spot welded joints Impact tests of spot
welded joints Development of analysis
procedures for drop weight impact testing of
spot welded joints
Develop a practical approach based conventional hardness testing measurement after unloading
Development of FE models of spot welded joints with realistic structures under tensile shear
Prediction of the behaviour of spot welded joint with realistic materials properties
a
b Figure 3.2 a FE model of the Vickers Indentation test; b Typical force- Indentation
depth P-h curve during loading and unloading of the Vickers indentation
6
= 100 MPa, n= 0.01
0.00 1.00
2.00 3.00
4.00 5.00
6.00 7.00
0.005 0.01
0.015
P N
h mm
A B
136 between
opposite faces
a Effect of the yielding strength
b Effect of work hardening coefficient. Figure 3.3 Effect of work hardening and yield strength on the P-h curves of the Vickers
indentation.
1 2
3 4
5 6
7
0.005 0.01
0.015
P
h
Sy=100, n=0.2 Sy=120, n=0.2
Sy=150, n=0.2 Sy=190, n=0.2
Sy=300, n=0.2 Sy=390, n=0.2
0.000E+00 1.000E+00
2.000E+00 3.000E+00
4.000E+00 5.000E+00
6.000E+00 7.000E+00
0.000E+00 5.000E-03
1.000E-02
P
h
Sy 300, n=0.01 Sy 300, n=0.1
Sy 300, n=0.2 Sy 300, n=0.3
a FE model of the Spherical b.Close-up view showing the Indentation test the mesh underneath the indenter
Figure.3.4a, b FE models of the Spherical Indentation test R=0.5mm.
c Figure.3.4.c. Typical force-indentation depth p-h curve during loading and unloading
for Spherical Indentation
6
= 500 MPa, n=0.024.
20 40
60 80
100 120
140
0.005 0.01
0.015 0.02
0.025
P N
h mm
Figure 3.5 a Effect of yield stress
6
as plastic parameter on the p-h curves of the spherical Indentation.
Figure 3.5 bEffect of Work hardening coefficient n as a plastic parameter on the P-h curves of the spherical indentation
20 40
60 80
100
0.005 0.01
0.015 0.02
0.025
P N
h mm
SY=100 n= 0.01 SY=200 n=0.01
SY=300 n=0.01 SY=400 n=0.01
SY=500 n=0.01
0.000E+00 5.000E+00
1.000E+01 1.500E+01
2.000E+01 2.500E+01
3.000E+01 3.500E+01
4.000E+01 4.500E+01
5.000E+01
0.000E+00 5.000E-03
1.000E-02
P
h
Sy 200, n=0.01 Sy 200, n=0.1
Sy 200, n=0.2 Sy 200, n=0.3
Input experimental Force Vs depth data
Simulation Space
Figure 3.6. Flow chart showing the inverse FE modelling approach based on the Vickers and Spherical Indentation tests.
50 100
0.01 0.02 0.03 P
N
h mm
20 40
60 80
100
0.02 0.04
P N
h mm
1000 2000
3000 4000
1 2
3
S tr
e ss
, M
p a
Strain Three inverse properties
prediction methods: •
Dimensional analysis approach
•
3D mapping approach
•
Dual indenter Chart based
+
and n
Cv and Cs
Figure 3.7 a.Surface mapping linear fitting plot of loading curvature vs material properties.
Figure 3.7 b. Typical materials parameter prediction process based on linear 3-D mapping method
-3.00E-01 -2.00E-01
-1.00E-01 0.00E+00
1.00E-01 2.00E-01
3.00E-01 4.00E-01
5.00E-01 6.00E-01
7.00E-01
50 100
150 200
250 300
350
n
Yield Stress, Mpa
Cv 150 Cs 150
Cv 300 Cs 300
0.0 2.0e+5
4.0e+5 6.0e+5
8.0e+5 1.0e+6
1.2e+6
100 120
140 160
180
0.1 0.2
0.3 0.4
C s
Sy n
3D Linear mapping
2e+4 4e+4
6e+4 8e+4
1e+5
100 120
140 160
180 0.1
0.2 0.3
0.4
C v
SY n
34
Accuracy study Input data
Vickers Indentation + Spherical indentation Material properties
Value curvature Predicted
value Different with
input value Accuracy
error Predicted
value Different
with input value
Accuracy error
n
+
Cv Cs
n ∆n
∆nn n
∆n ∆nn
0.15 100
26008 466275
2.052E-01 5.523E-02
3.682E-01 2.477E-01
9.770E-02 6.513E-01
0.15 140
26008 466275
1.538E-01 3.786E-03
2.524E-02 1.639E-01
1.388E-02 9.253E-02
0.15 190
26008 466275
8.949E-02 -6.051E-02
-4.034E-01 5.911E-02
-9.089E-02 -6.059E-01
0.15 300
26008 466275
-5.198E-02 -2.020E-01
-1.347E+00 -1.714E-01
-3.214E-01 -2.143E+00
0.28 100
61940 925826
5.749E-01 2.949E-01
1.053E+00 6.391E-01
3.591E-01 1.283E+00
0.28 140
61940 925826
5.235E-01 2.435E-01
8.695E-01 5.553E-01
2.753E-01 9.833E-01
0.28 190
61940 925826
4.592E-01 1.792E-01
6.398E-01 4.506E-01
1.706E-01 6.091E-01
0.28 300
61940 925826
3.177E-01 3.770E-02
1.346E-01 2.201E-01
-5.994E-02 -2.141E-01
Table 3.1. Accuracy study results of inverse FE modelling on Vickers and Spherical indentation by 3D Linier Predicted chart mapping
And Plotting data result from Cv and Cs chart to used predicted materials
Figure 3.8 a.Surface mapping nonlinear fitting plot of loading curvature vs material properties.
Figure 3.8 b Typical materials parameter prediction process based on nonlinear 3-D mapping method.
-6.00E-01 -4.00E-01
-2.00E-01 0.00E+00
2.00E-01 4.00E-01
6.00E-01 8.00E-01
100 200
300 400
n
Yield Stress, Mpa
Cv 150 Cv 300
Cs 150 Cs 300
Cs 180
2e+4 4e+4
6e+4 8e+4
1e+5
100 120
140 160
180 0.1
0.2 0.3
0.4
C v
Sy n
0.0 2.0e+5
4.0e+5 6.0e+5
8.0e+5 1.0e+6
1.2e+6
120 140
160 180
0.1 0.2
0.3 0.4
C s
Sy n
3D Non linear chart mapping
36
Table 3.2. Accuracy study results of inverse FE modelling on Vickers and Spherical indentation by 3D Non Linier Parabolic Predicted chart
mapping Accuracy study
Input data Vickers Indentation- Spherical indentation
Material properties Value curvature
Predicted value
Different with input value
Accuracy error
Predicted value
Different with input
value Accuracy error
Sy n
+
Cv Cs
n ∆n
∆nn n
∆n ∆nn
150 0.15
100 26008
466275 0.230977
8.098E-02 5.398E-01
0.270383 1.204E-01
8.026E-01 150
0.15 140
26008 466275
0.166904 1.690E-02
1.127E-01 0.175556
2.556E-02 1.704E-01
150 0.15
190 26008
466275 0.077722
-7.228E-02 -4.819E-01
0.034696 -1.153E-01
-7.687E-01 150
0.15 300
26008 466275
- -
- -
- -
300 0.28
100 61940
925826 0.490031
2.100E-01 7.501E-01
0.562677 2.827E-01
1.010E+00 300
0.28 140
61940 925826
0.454171 1.742E-01
6.220E-01 0.505893
2.259E-01 8.068E-01
300 0.28
190 61940
925826 0.412688
1.327E-01 4.739E-01
0.43741 1.574E-01
5.622E-01 300
0.28 300
61940 925826
0.33883 5.883E-02
2.101E-01 0.301386
2.139E-02 7.638E-02
180 0.25
100 61940
925826 0.354054
1.041E-01 4.162E-01
0.399732 1.497E-01
5.989E-01 180
0.25 140
61940 925826
0.30762 5.762E-02
2.305E-01 0.326902
7.690E-02 3.076E-01
180 0.25
190 61940
925826 0.251198
1.198E-03 4.792E-03
0.233276 -1.672E-02
-6.689E-02 180
0.25 300
61940 925826
0.138376 -1.116E-01
-4.465E-01 0.001922
-2.481E-01 -9.923E-01
Figure 3.9a Effects of Yield strength
6
on the value loading curvature Cv and work hardening coefficient n on Vickers Indentation.
Figure 3.9 b Effects of Yield strength
6
on the value loading curvature Cs and work hardening coefficient n on Spherical Indentation
y = 374.1e
3.196x
200 400
600 800
1000 1200
1400 1600
0.000 0.100
0.200 0.300
0.400 0.500
C v
s y
3 4
n
Sy=100 Sy=120
Sy=150 Sy=190
Sy=300 Prediction Cv
Expon. Prediction Cv
y = 8011.e
1.983x
5000 10000
15000 20000
25000 30000
35000
0.2 0.4
0.6 0.8
C s
S y
3 4
n
Sy=100 Sy=120
Sy=140 Sy=190
Sy=300 prediction Cs
Expon. prediction Cs
Figure 3.9c. Typical materials parameter prediction process based on the intersection between properties line for the Vickers and Spherical indentation
6
= 120 Mpa, n=0.2.
0.000000E+00 5.000000E+01
1.000000E+02 1.500000E+02
2.000000E+02 2.500000E+02
3.000000E+02
0.1 0.2
0.3 0.4
0.5 0.6
Y ie
ld t
re ss
M p
a
Work Hardening coefficient n
Syn,Cv Syn,Cs
1.200E+02
39
Input data Accuracy study
Material properties Value of Curvature
Predicted values Differences with input value
Accuracy error
σ
y
n Cs
Cv σ
y
n ∆
σ
y
∆ n
∆ σ
y
σ
y
∆ nn
100 0.1
303841.62 15725.77
102 0.09
-2 0.010
-0.020 0.10000
100 0.2
387159.42 22631.67
105 0.19
-5 0.010
-0.050 0.05000
100 0.3
495483.94 32535.09
111 0.29
-11 0.010
-0.110 0.03333
200 0.1
5.260E05 2.771E+04
202 0.09
-2 0.010
-0.010 0.10000
200 0.2
6.297E05 3.767E+04
195 0.21
5 -0.010
0.025 -0.05000
200 0.3
7.547E05 5.061E+04
195 0.31
5 -0.010
0.025 -0.03333
290 0.1
6.892E05 3.734E+04
275 0.12
15 -0.020
0.052 -0.20000
290 0.2
8.039E05 4.885E+04
265 0.22
25 -0.020
0.086 -0.10000
290 0.3
9.365E05 6.349E+04
255 0.31
35 -0.010
0.121 -0.03333
Table.3.3. Accuracy study results of inverse FE modelling on Vickers and Spherical indentation
Figure 3.10 a Typical curves of the Cv vs. n for Vickers indentation and the interception line to identified the material parameters with identical Cv
value.
b
Figure.3.10 b Typical curves of the Cs vs. n for Spherical indentation and the interception line to identified the material parameters with identical Cs
value.
y = 14834e
3.353x
y = 11002e
3.608x
y = 19655e
3.061x
y = 29685e
2.614x
10000 20000
30000 40000
50000 60000
70000
0.1 0.2
0.3 0.4
C v
n
Sy=140 Sy=100
sy=190 Sy=300
Expon. Sy=140 Expon. Sy=100
Expon. sy=190 Expon. Sy=300
26008
y = 23802e
2.447x
R² = 1 y = 42235e
1.818x
R² = 0.999 y = 32353e
2.098x
R² = 1 y = 61251e
1.448x
R² = 0.999
0.000000E+00 2.000000E+05
4.000000E+05 6.000000E+05
8.000000E+05 1.000000E+06
1.200000E+06 1.400000E+06
0.2 0.4
0.6 C
s
n
sy=100 sy=190
sy=140 sy=300
Expon. sy=100 Expon. sy=190
Expon. sy=140 Expon. sy=300
466275
Figure 3.10 c. Typical materials parameter prediction process based on dual indenter chart method.
-0.3 -0.2
-0.1 0.1
0.2 0.3
0.4 0.5
0.6
50 100
150 200
250 300
350 n
Yield Stress, Mpa
Cv150, 0.15 Cs150, 0.15
Cv300, 0.28 Cs300, 0.28
42
Table.3.4. Accuracy study results of inverse FE modelling on Vickers and Spherical indentation by Plotting and mapping data result from Cv and Cs chart to used predicted materials
Accuracy study Input data
Vickers Indentation Spherical indentation
Material properties Value curvature
Predicted value
Different with input value
Accuracy error
Predicted value
Different with input value
Accuracy error
n
+
Cv Cs
n ∆n
∆nn n
∆n ∆nn
0.15 100
26008 466275
0.23831 8.832E-02
5.888E-01 0.274451
1.245E-01 8.297E-01
0.15 140
26008 466275
0.167607 1.761E-02
1.174E-01 0.174204
2.420E-02 1.614E-01
0.15 190
26008 466275
0.091527 -5847E-02
-3.898E-01 0.083707
-6.629E-02 -44.420E-01
0.15 300
26008 466275
-0.05067 -2.007E-01
-1.338E+00 -0.18814
-3.381E-01 -2.254E+00
0.28 100
61940 925826
0.478695 1.987E+01
7.096E-01 0.554414
2.744E-01 9.801E-01
0.28 140
61940 925826
0.42664 1.466E-01
5.237E-01 0.50114
2.211E-01 7.898E-01
0.28 190
61940 925826
0.375109 9.511E-02
3.397E-01 0.45000
1.700E-01 6.071E-01
0.28 300
61940 925826
0.28181 1.810E-03
6.465E-01 0.284901
4.901E-03 1.750E-02
4. Mechanical testing and FE Modelling of spot