INPUT-OUTPUT Applied Numerical Methods with MATLAB fo
3.2.1 Creating and Accessing Files
MATLAB has the capability to both read and write data files. The simplest approach in- volves a special type of binary file, called a MAT-file, which is expressly designed for implementation within MATLAB. Such files are created and accessed with the save and load commands. The save command can be used to generate a MAT-file holding either the entire work- space or a few selected variables. A simple representation of its syntax is save filename var1 var2 ... varn This command creates a MAT-file named filename .mat that holds the variables var1 through varn . If the variables are omitted, all the workspace variables are saved. The load command can subsequently be used to retrieve the file: load filename var1 var2 ... varn which retrieves the variables var1 through varn from filename. mat . As was the case with save , if the variables are omitted, all the variables are retrieved. For example, suppose that you use Eq. 1.9 to generate velocities for a set of drag coefficients: g=9.81;m=80;t=5; cd=[.25 .267 .245 .28 .273]; v=sqrtgm .cd.tanhsqrtgcdmt; You can then create a file holding the values of the drag coefficients and the velocities with save veldrag v cd To illustrate how the values can be retrieved at a later time, remove all variables from the workspace with the clear command, clear At this point, if you tried to display the velocities you would get the result: v ??? Undefined function or variable v. However, you can recover them by entering load veldrag Now, the velocities are available as can be verified by typing who Your variables are: cd v Although MAT-files are quite useful when working exclusively within the MATLAB environment, a somewhat different approach is required when interfacing MATLAB with other programs. In such cases, a simple approach is to create text files written in ASCII format. ASCII files can be generated in MATLAB by appending –ascii to the save com- mand. In contrast to MAT-files where you might want to save the entire workspace, you would typically save a single rectangular matrix of values. For example, A=[5 7 9 2;3 6 3 9]; save simpmatrix.txt –ascii In this case, the save command stores the values in A in 8-digit ASCII form. If you want to store the numbers in double precision, just append –ascii –double . In either case, the file can be accessed by other programs such as spreadsheets or word processors. For example, if you open this file with a text editor, you will see 5.0000000e+000 7.0000000e+000 9.0000000e+000 2.0000000e+000 3.0000000e+000 6.0000000e+000 3.0000000e+000 9.0000000e+000 Alternatively, you can read the values back into MATLAB with the load command, load simpmatrix.txt Because simpmatrix.txt is not a MAT-file, MATLAB creates a double precision array named after the filename : simpmatrix simpmatrix = 5 7 9 2 3 6 3 9 Alternatively, you could use the load command as a function and assign its values to a variable as in A = loadsimpmatrix.txt The foregoing material covers but a small portion of MATLAB’s file management ca- pabilities. For example, a handy import wizard can be invoked with the menu selections: File, Import Data. As an exercise, you can demonstrate the import wizards convenience by using it to open simpmatrix.txt . In addition, you can always consult help to learn more about this and other features.3.3 STRUCTURED PROGRAMMING
The simplest of all M-files perform instructions sequentially. That is, the program state- ments are executed line by line starting at the top of the function and moving down to the end. Because a strict sequence is highly limiting, all computer languages include state- ments allowing programs to take nonsequential paths. These can be classified as • Decisions or Selection. The branching of flow based on a decision. • Loops or Repetition. The looping of flow to allow statements to be repeated.3.3.1 Decisions
The if Structure. This structure allows you to execute a set of statements if a logical condition is true. Its general syntax is if condition statements end 3.3 STRUCTURED PROGRAMMING 57 where condition is a logical expression that is either true or false. For example, here is a simple M-file to evaluate whether a grade is passing: function gradergrade gradergrade: determines whether grade is passing input: grade = numerical value of grade 0-100 output: displayed message if grade = 60 disppassing grade end The following illustrates the result grader95.6 passing grade For cases where only one statement is executed, it is often convenient to implement the if structure as a single line, if grade 60, disppassing grade, end This structure is called a single-line if. For cases where more than one statement is implemented, the multiline if structure is usually preferable because it is easier to read. Error Function. A nice example of the utility of a single-line if is to employ it for rudi- mentary error trapping. This involves using the error function which has the syntax, errormsg When this function is encountered, it displays the text message msg , indicates where the error occurred, and causes the M-file to terminate and return to the command window. An example of its use would be where we might want to terminate an M-file to avoid a division by zero. The following M-file illustrates how this could be done: function f = errortestx if x == 0, errorzero value encountered, end f = 1x; If a nonzero argument is used, the division would be implemented successfully as in errortest10 ans = 0.1000 However, for a zero argument, the function would terminate prior to the division and the error message would be displayed in red typeface: errortest0 ??? Error using == errortest at 2 zero value encounteredParts
» Applied Numerical Methods with MATLAB fo
» Motivation 1 1.2 Part Organization 2 Overview 123 2.2 Part Organization 124
» Overview 205 3.2 Part Organization 207 Overview 321 4.2 Part Organization 323
» Overview 459 5.2 Part Organization 460 Applied Numerical Methods with MATLAB fo
» New Chapters. Overview 547 6.2 Part Organization 551
» New Content. Overview 547 6.2 Part Organization 551
» New Homework Problems. Overview 547 6.2 Part Organization 551
» Numerical methods greatly expand the
» Numerical methods allow you to use
» PART ORGANIZATION Applied Numerical Methods with MATLAB fo
» CONSERVATION LAWS IN ENGINEERING AND SCIENCE
» NUMERICAL METHODS COVERED IN THIS BOOK
» CASE STUDY IT’S A REAL DRAG CASE STUDY continued
» CASE STUDY continued Applied Numerical Methods with MATLAB fo
» Use calculus to verify that Eq. 1.9 is a solution of
» Use calculus to solve Eq. 1 for the case where the ini-
» The following information is available for a bank account:
» Rather than the nonlinear relationship of Eq. 1.7, you
» For the free-falling bungee jumper with linear drag
» For the second-order drag model Eq. 1.8, compute the
» The amount of a uniformly distributed radioactive con-
» A storage tank Fig. P contains a liquid at depth y
» For the same storage tank described in Prob. 1.9, sup-
» Apply the conservation of volume see Prob. 1.9 to sim-
» THE MATLAB ENVIRONMENT ASSIGNMENT
» MATHEMATICAL OPERATIONS Applied Numerical Methods with MATLAB fo
» GRAPHICS Applied Numerical Methods with MATLAB fo
» OTHER RESOURCES Applied Numerical Methods with MATLAB fo
» CASE STUDY EXPLORATORY DATA ANALYSIS CASE STUDY continued
» Manning’s equation can be used to compute the veloc-
» It is general practice in engineering and science that
» You contact the jumpers used to generate the data in
» Figure Pa shows a uniform beam subject to a lin-
» M-FILES Applied Numerical Methods with MATLAB fo
» INPUT-OUTPUT Applied Numerical Methods with MATLAB fo
» STRUCTURED PROGRAMMING Applied Numerical Methods with MATLAB fo
» NESTING AND INDENTATION Applied Numerical Methods with MATLAB fo
» PASSING FUNCTIONS TO M-FILES
» CASE STUDY BUNGEE JUMPER VELOCITY CASE STUDY continued
» Economic formulas are available to compute annual
» Two distances are required to specify the location of a
» Develop an M-file to determine polar coordinates as
» Develop an M-file function that is passed a numeric
» Manning’s equation can be used to compute the velocity
» The volume V of liquid in a hollow horizontal cylinder of
» Develop a vectorized version of the following code:
» Based on Example 3.6, develop a script to produce an
» ERRORS Applied Numerical Methods with MATLAB fo
» Digital computers have magnitude and precision limits on their ability to represent
» Arithmetic Manipulations of Computer Numbers
» TRUNCATION ERRORS Applied Numerical Methods with MATLAB fo
» TOTAL NUMERICAL ERROR Applied Numerical Methods with MATLAB fo
» BLUNDERS, MODEL ERRORS, AND DATA UNCERTAINTY
» a Applied Numerical Methods with MATLAB fo
» OVERVIEW Applied Numerical Methods with MATLAB fo
» ROOTS IN ENGINEERING AND SCIENCE
» GRAPHICAL METHODS Applied Numerical Methods with MATLAB fo
» BRACKETING METHODS AND INITIAL GUESSES
» BISECTION Applied Numerical Methods with MATLAB fo
» FALSE POSITION Applied Numerical Methods with MATLAB fo
» CASE STUDY GREENHOUSE GASES AND RAINWATER CASE STUDY continued
» Locate the first nontrivial root of sinx = x
» Determine the positive real root of lnx
» A total charge Q is uniformly distributed around a ring-
» For fluid flow in pipes, friction is described by a di-
» Perform the same computation as in Prob. 5.22, but for
» SIMPLE FIXED-POINT ITERATION Applied Numerical Methods with MATLAB fo
» NEWTON-RAPHSON Applied Numerical Methods with MATLAB fo
» SECANT METHODS Applied Numerical Methods with MATLAB fo
» BRENT’S METHOD Applied Numerical Methods with MATLAB fo
» MATLAB FUNCTION: Applied Numerical Methods with MATLAB fo
» POLYNOMIALS Applied Numerical Methods with MATLAB fo
» CASE STUDY PIPE FRICTION CASE STUDY continued
» CASE STUDY continued CASE STUDY continued
» Use a fixed-point iteration and b the Newton-
» Use a the Newton-Raphson method and b the modi-
» Develop an M-file for the secant method. Along with
» Develop an M-file for the modified secant method.
» Differentiate Eq. E6.4.1 to get Eq. E6.4.2. a
» Perform the identical MATLAB operations as those
» In control systems analysis, transfer functions are
» Use the Newton-Raphson method to find the root of Given a
» INTRODUCTION AND BACKGROUND Applied Numerical Methods with MATLAB fo
» MULTIDIMENSIONAL OPTIMIZATION Applied Numerical Methods with MATLAB fo
» CASE STUDY EQUILIBRIUM AND MINIMUM POTENTIAL ENERGY
» Employ the following methods to find the minimum of
» Consider the following function:
» Develop a single script to a generate contour and
» The head of a groundwater aquifer is described in
» Recent interest in competitive and recreational cycling
» The normal distribution is a bell-shaped curve defined by
» Use the Applied Numerical Methods with MATLAB fo
» Given the following function:
» The specific growth rate of a yeast that produces an
» A compound A will be converted into B in a stirred
» Develop an M-file to locate a minimum with the
» Develop an M-file to implement parabolic interpola-
» Pressure measurements are taken at certain points
» The trajectory of a ball can be computed with
» The deflection of a uniform beam subject to a linearly
» The torque transmitted to an induction motor is a func-
» The length of the longest ladder that can negotiate
» MATRIX ALGEBRA OVERVIEW Applied Numerical Methods with MATLAB fo
» SOLVING LINEAR ALGEBRAIC EQUATIONS WITH MATLAB
» CASE STUDY CURRENTS AND VOLTAGES IN CIRCUITS CASE STUDY continued
» Five reactors linked by pipes are shown in Fig. P.
» SOLVING SMALL NUMBERS OF EQUATIONS
» MATLAB M-file: Operation Counting
» PIVOTING Applied Numerical Methods with MATLAB fo
» TRIDIAGONAL SYSTEMS Applied Numerical Methods with MATLAB fo
» CASE STUDY MODEL OF A HEATED ROD CASE STUDY continued
» Given the system of equations
» Given the equations Applied Numerical Methods with MATLAB fo
» An electrical engineer supervises the production of three
» Develop an M-file function based on Fig. 9.5 to im-
» GAUSS ELIMINATION AS LU FACTORIZATION
» CHOLESKY FACTORIZATION Applied Numerical Methods with MATLAB fo
» MATLAB LEFT DIVISION Applied Numerical Methods with MATLAB fo
» Use Cholesky factorization to determine [U] so that THE MATRIX INVERSE
» Norms and Condition Number in MATLAB
» CASE STUDY INDOOR AIR POLLUTION CASE STUDY continued
» Determine the matrix inverse for the system described
» Determine A Applied Numerical Methods with MATLAB fo
» Determine the Frobenius and row-sum norms for the
» Use MATLAB to determine the spectral condition num-
» Besides the Hilbert matrix, there are other matrices
» Use MATLAB to determine the spectral condition
» Repeat Prob. 11.10, but for the case of a six-
» The Lower Colorado River consists of a series of four a
» A chemical constituent flows between three reactors a
» LINEAR SYSTEMS: GAUSS-SEIDEL Applied Numerical Methods with MATLAB fo
» NONLINEAR SYSTEMS Applied Numerical Methods with MATLAB fo
» CASE STUDY CHEMICAL REACTIONS
» Use the Gauss-Seidel method to solve the following
» Repeat Prob. 12.3 but use Jacobi iteration.
» The following system of equations is designed to de-
» Solve the following system using three iterations with a
» MATHEMATICAL BACKGROUND Applied Numerical Methods with MATLAB fo
» PHYSICAL BACKGROUND Applied Numerical Methods with MATLAB fo
» THE POWER METHOD Applied Numerical Methods with MATLAB fo
» CASE STUDY EIGENVALUES AND EARTHQUAKES CASE STUDY continued
» Repeat Example but for three masses with the m’s =
» Use the power method to determine the highest eigen-
» Use the power method to determine the lowest eigen-
» Derive the set of differential equations for a three
» Consider the mass-spring system in Fig. P. The fre-
» STATISTICS REVIEW Applied Numerical Methods with MATLAB fo
» RANDOM NUMBERS AND SIMULATION
» LINEAR LEAST-SQUARES REGRESSION Applied Numerical Methods with MATLAB fo
» LINEARIZATION OF NONLINEAR RELATIONSHIPS
» COMPUTER APPLICATIONS Applied Numerical Methods with MATLAB fo
» CASE STUDY continued CASE STUDY continued CASE STUDY continued
» Using the same approach as was employed to derive
» Beyond the examples in Fig. 14.13, there are other
» The concentration of E. coli bacteria in a swimming
» Rather than using the base-e exponential model
» Determine an equation to predict metabolism rate as a
» On average, the surface area A of human beings is
» 2.12 2.15 2.20 2.22 2.23 2.26 2.30 Applied Numerical Methods with MATLAB fo
» An investigator has reported the data tabulated below
» Develop an M-file function to compute descriptive
» Modify the Applied Numerical Methods with MATLAB fo
» Develop an M-file function to fit a power model.
» Below are data taken from a batch reactor of bacterial
» A transportation engineering study was conducted to
» In water-resources engineering, the sizing of reser-
» Perform the same computation as in Example 14.3,
» POLYNOMIAL REGRESSION Applied Numerical Methods with MATLAB fo
» MULTIPLE LINEAR REGRESSION Applied Numerical Methods with MATLAB fo
» GENERAL LINEAR LEAST SQUARES
» QR FACTORIZATION AND THE BACKSLASH OPERATOR
» NONLINEAR REGRESSION Applied Numerical Methods with MATLAB fo
» CASE STUDY FITTING EXPERIMENTAL DATA CASE STUDY continued
» Fit a parabola to the data from Table 14.1. Determine
» Fit a cubic polynomial to the following data:
» Use multiple linear regression to derive a predictive
» As compared with the models from Probs. 15.5 and
» Use multiple linear regression to fit
» The following data were collected for the steady flow
» In Prob. 14.8 we used transformations to linearize
» Enzymatic reactions are used extensively to charac-
» The following data represent the bacterial growth in a
» Dynamic viscosity of water μ10
» Use the following set of pressure-volume data to find
» Environmental scientists and engineers dealing with
» It is known that the data tabulated below can be mod-
» hr Applied Numerical Methods with MATLAB fo
» CURVE FITTING WITH SINUSOIDAL FUNCTIONS
» CONTINUOUS FOURIER SERIES Applied Numerical Methods with MATLAB fo
» FOURIER INTEGRAL AND TRANSFORM
» DISCRETE FOURIER TRANSFORM DFT
» THE POWER SPECTRUM Applied Numerical Methods with MATLAB fo
» CASE STUDY SUNSPOTS Applied Numerical Methods with MATLAB fo
» The pH in a reactor varies sinusoidally over the course
» The solar radiation for Tucson, Arizona, has been tab-
» Use MATLAB to generate 64 points from the function
» INTRODUCTION TO INTERPOLATION Applied Numerical Methods with MATLAB fo
» NEWTON INTERPOLATING POLYNOMIAL Applied Numerical Methods with MATLAB fo
» LAGRANGE INTERPOLATING POLYNOMIAL Applied Numerical Methods with MATLAB fo
» INVERSE INTERPOLATION Applied Numerical Methods with MATLAB fo
» EXTRAPOLATION AND OSCILLATIONS Applied Numerical Methods with MATLAB fo
» Given the data Applied Numerical Methods with MATLAB fo
» Use the portion of the given steam table for super-
» The following data for the density of nitrogen gas ver-
» Ohm’s law states that the voltage drop V across an
» The acceleration due to gravity at an altitude y above
» INTRODUCTION TO SPLINES Applied Numerical Methods with MATLAB fo
» LINEAR SPLINES Applied Numerical Methods with MATLAB fo
» CUBIC SPLINES Applied Numerical Methods with MATLAB fo
» PIECEWISE INTERPOLATION IN MATLAB
» MULTIDIMENSIONAL INTERPOLATION Applied Numerical Methods with MATLAB fo
» CASE STUDY HEAT TRANSFER CASE STUDY continued
» A reactor is thermally stratified as in the following
» The following is the built-in
» Develop a plot of a cubic spline fit of the following
» The following data define the sea-level concentra- a
» NEWTON-COTES FORMULAS Applied Numerical Methods with MATLAB fo
» THE TRAPEZOIDAL RULE Applied Numerical Methods with MATLAB fo
» SIMPSON’S RULES Applied Numerical Methods with MATLAB fo
» HIGHER-ORDER NEWTON-COTES FORMULAS Applied Numerical Methods with MATLAB fo
» INTEGRATION WITH UNEQUAL SEGMENTS
» OPEN METHODS MULTIPLE INTEGRALS
» CASE STUDY COMPUTING WORK WITH NUMERICAL INTEGRATION CASE STUDY continued CASE STUDY continued
» Derive Eq. 19.4 by integrating Eq. 19.3. Evaluate the following integral:
» INTRODUCTION Applied Numerical Methods with MATLAB fo
» ROMBERG INTEGRATION Applied Numerical Methods with MATLAB fo
» GAUSS QUADRATURE Applied Numerical Methods with MATLAB fo
» MATLAB Functions: If the error is larger than the tolerance,
» CASE STUDY ROOT-MEAN-SQUARE CURRENT CASE STUDY continued
» Evaluate the following integral a analytically,
» Evaluate the following integral with a Romberg inte-
» Evaluate the double integral Compute work as described in Sec. 19.9, but use the
» Suppose that the current through a resistor is de-
» km 1100 1500 2450 3400 3630 4500 km 5380 6060 6280 6380 Applied Numerical Methods with MATLAB fo
» HIGH-ACCURACY DIFFERENTIATION FORMULAS Applied Numerical Methods with MATLAB fo
» RICHARDSON EXTRAPOLATION Applied Numerical Methods with MATLAB fo
» DERIVATIVES OF UNEQUALLY SPACED DATA
» DERIVATIVES AND INTEGRALS FOR DATA WITH ERRORS
» PARTIAL DERIVATIVES Applied Numerical Methods with MATLAB fo
» NUMERICAL DIFFERENTIATION WITH MATLAB
» CASE STUDY VISUALIZING FIELDS CASE STUDY continued
» Develop an M-file to obtain first-derivative estimates
» Develop an M-file function that computes first and
» A jet fighter’s position on an aircraft carrier’s runway
» Use the following data to find the velocity and accel-
» A plane is being tracked by radar, and data are taken
» Use regression to estimate the acceleration at each
» The normal distribution is defined as
» The following data were generated from the normal Use the
» The objective of this problem is to compare second-
» The pressure gradient for laminar flow through a con-
» The following data for the specific heat of benzene
» The specific heat at constant pressure c
» OVERVIEW IMPROVEMENTS OF EULER’S METHOD
» RUNGE-KUTTA METHODS Applied Numerical Methods with MATLAB fo
» SYSTEMS OF EQUATIONS Applied Numerical Methods with MATLAB fo
» CASE STUDY PREDATOR-PREY MODELS AND CHAOS
» Develop an M-file to solve a single ODE with Heun’s
» Develop an M-file to solve a single ODE with the
» Develop an M-file to solve a system of ODEs with
» Isle Royale National Park is a 210-square-mile archi-
» The motion of a damped spring-mass system
» Perform the same simulations as in Section 22.6 for ADAPTIVE RUNGE-KUTTA METHODS
» MULTISTEP METHODS Applied Numerical Methods with MATLAB fo
» STIFFNESS Applied Numerical Methods with MATLAB fo
» MATLAB APPLICATION: BUNGEE JUMPER WITH CORD
» CASE STUDY PLINY’S INTERMITTENT FOUNTAIN CASE STUDY continued
» Given Applied Numerical Methods with MATLAB fo
» THE SHOOTING METHOD Applied Numerical Methods with MATLAB fo
» FINITE-DIFFERENCE METHODS Applied Numerical Methods with MATLAB fo
» A cable is hanging from two supports at A and B
» In Prob. 24.16, the basic differential equation of the
Show more