Gain Flattening 29 Measurement of the result 30 Spacing of EDFA 31 Conclusion 55 Recommendation 56

4.2.3 Length of Erbium Doped Fiber 40

4.2.4 Pump Power 42

4.3 Gain Flatness Optimization 44

4.3.1 Simulation for EDFA of frequency range from 1550nm to 1557nm. 45

4.3.2 Simulation for EDFA of frequency range from 1558nm to 1565nm.

47 4.4 Final Simulation of The Hybrid EDFA 49 V CONCLUSION RECOMMENDATION

5.1 Conclusion 55

5.2 Recommendation 56

REFERENCES 57 BIBLIOGRAPHY 59 LIST OF TABLES TABLE TITLE PAGE

2.1 Transmission windows wavelength bands

9 2.2 Typical Specifications of Commercially Available EDFAs 23

4.1 Length of Optical Fiber versus output signal with 5dB gain

of Booster amplifier 33

4.2 Wavelength versus gain nominal

34 4.3 Input power versus gain 1550nm to 1557nm 38

4.4 Input power versus gain 1558nm to 1565nm

39 4.5 Length of Erbium Doped Fiber versus Gain 41

4.6 Pump Power versus Gain

42 4.7 Pump Power versus Gain 43

4.8 The gain flatness varies with gain1550nm to 1557nm

46 4.9 The gain flatness varies with gain1558nm to 1565nm 48

4.10 Results shown in Dual Port WDM Analyzer

50 4.11 Nominal gain, gain ratio maxmin and Maximum NF 50

4.12 Eye Diagram and BER of each wavelength

51 LIST OF FIGURES FIGURE TITLE PAGE

2.1 Basic configuration for the incorporation of an EDFA in an

optical fiber link 9

2.2 Amplification in an erbium-doped fiber amplifier

10 2.3 Energy levels of Er3+ ions in EDFA 11

2.4 Erbium doped fiber amplifier

13 2.5 Gain and absorption in typical erbium-doped fiber 14

2.6 Variation of gain with EDFA length for different values of

pump powers. For a given pump power there is an optimum length for achieving maximum gain 15

2.7 Variation of gain with pump power for different lengths of

erbium doped fiber 15

2.8 Calculated gain for C- band and L- band amplifier

17 2.9 Hybrid Series configuration 17

2.10 Hybrid parallel configurations

18 2.11 Amplified Spontaneous Emission Noise 19

2.12 Simulation and Experimental characteristic of ASE versus

wavelength EDFA 20

3.1 The Flow Chart

26 3.2 The hybrid EDFAs will be used in this project 28

3.3 The inherent gain flatness for each wavelength graph

30 4.1 Sweep mode 32

Dokumen yang terkait

Modeling and Simulation of Erbium doped Photonic Crystal Fiber

0 2 7

Design And Analysis Of Quality Enhancement By Using Erbium Doped Fiber Amplifier (EDFA) In Optical Communication Link.

0 5 24

Wideband Optical Amplifier Using High Concentration Erbium Doped Fiber In Single-Pass Configuration.

0 3 24

Performance Evaluation Of Hybrid Raman And Erbium Doped Fiber Amplifiers (HFAs).

0 2 24

PERANCANGAN JARINGAN FIBER TO THE HOME (FTTH) MENGGUNAKAN TEKNOLOGI COARSE WAVELENGTH DIVISION MULTIPLEXING (CWDM) UNTUK PERUMAHAN PESONA CIWASTRA VILLAGE BANDUNG DESIGN OF FIBER TO THE HOME (FTTH) NETWORK USING COARSE WAVELENGTH DIVISION MULTIPLEXING (CW

0 0 10

ANALISIS SISTEM KOMUNIKASI RoF (RADIO OVER FIBER) BERBASIS WDM (WAVELENGTH DIVISION MULTIPLEXING) DENGAN OADM (OPTICAL ADD DROP MULTIPLEXING) UNTUK JARAK JAUH ANALYSIS OF ROF (RADIO OVER FIBER )COMMUNICATION SYSTEM BASED ON WDM (WAVELENGTH DIVISION MULTIP

0 0 8

PENGARUH KABEL DISPERSION COMPENSATING FIBER (DCF) PADA LINK SITEM KOMUNIKASI OPTIK LONG HAUL DENGAN SKEMA BERBEDA PERFORMANCE OF DIFFERENT SCHEME DISPERSION COMPENSATING FIBER (DCF) IN LONG HAUL OPTICAL FIBER LINK

0 0 6

Analysis Comparison Performance Position Optical Amplifier Hybrid SOA – EDFA (Semiconductor Optical Amplifier - Erbium Doped Fiber Amplifier) in A System DWDM (Dense Wavelength Division Multiplexing) Based Soliton

0 1 8

ANALISIS PERFORMANSI HYBRID OPTICAL AMPLIFIER PADA SISTEM LONG HAUL ULTRA-DENSE WAVELENGTH DIVISION MULTIPLEXING Performance Analysis of Hybrid Optical Amplifier in long Laul Ultra-Dense Wavelength Division Multiplexing System

0 1 8

ANALISIS KARAKTERISTIK HYBRID OPTICAL AMPLIFIER (Fiber Raman Amplifier- Erbium Doped Fiber Amplifier) DENGAN KONFIGURASI PARALLEL IN-LINE PADA SISTEM LONG HAUL ULTRA-DENSE WAVELENGTH DIVISION MULTIPLEXING Analysis of Hybrid Optical Amplifier (Fiber Raman

0 0 8