Results shown in Dual Port WDM Analyzer Eye Diagram and BER of each wavelength

LIST OF FIGURES FIGURE TITLE PAGE

2.1 Basic configuration for the incorporation of an EDFA in an

optical fiber link 9

2.2 Amplification in an erbium-doped fiber amplifier

10 2.3 Energy levels of Er3+ ions in EDFA 11

2.4 Erbium doped fiber amplifier

13 2.5 Gain and absorption in typical erbium-doped fiber 14

2.6 Variation of gain with EDFA length for different values of

pump powers. For a given pump power there is an optimum length for achieving maximum gain 15

2.7 Variation of gain with pump power for different lengths of

erbium doped fiber 15

2.8 Calculated gain for C- band and L- band amplifier

17 2.9 Hybrid Series configuration 17

2.10 Hybrid parallel configurations

18 2.11 Amplified Spontaneous Emission Noise 19

2.12 Simulation and Experimental characteristic of ASE versus

wavelength EDFA 20

3.1 The Flow Chart

26 3.2 The hybrid EDFAs will be used in this project 28

3.3 The inherent gain flatness for each wavelength graph

30 4.1 Sweep mode 32

4.2 The spacing length between booster amplifier and the in-line

amplifier 32

4.3 Simulation of the wavelength input signal from 1530nm to

1565nm 34

4.4 Wavelengths versus gain nominal

35 4.5 Dual Port WDM analyzer and Nominal gain 35

4.6 EDFA for frequency range from 1550nm to 1557nm

37 4.7 EDFA for frequency range from 1558nm to 1565nm 37

4.8 Input power versus gain 1550nm to 1557nm Graph

38 4.9 Input power versus gain 1558nm to 1565nm Graph 39

4.10 WDM Multiplxer losses=2.7dBm

40 4.11 Length of Erbium Doped Fiber versus Gain Graph 41

4.12 Pump Power versus Gain Graph

42 4.13 Pump Power versus Gain Graph 43

4.14 Ratio of maximum and minimum gain Graph

44 4.15 EDFA for frequency range from 1550nm to 1557nm 45

4.16 The gain flatness varies with gain Graph

46 4.17 EDFA for frequency range from 1558nm to 1565nm 47

4.18 The gain flatness varies with gain Graph

48 4.19 Hybrid EDFA 49

4.20 Nominal gain, gain ratio maxmin and Maximum NF

52

Dokumen yang terkait

Modeling and Simulation of Erbium doped Photonic Crystal Fiber

0 2 7

Design And Analysis Of Quality Enhancement By Using Erbium Doped Fiber Amplifier (EDFA) In Optical Communication Link.

0 5 24

Wideband Optical Amplifier Using High Concentration Erbium Doped Fiber In Single-Pass Configuration.

0 3 24

Performance Evaluation Of Hybrid Raman And Erbium Doped Fiber Amplifiers (HFAs).

0 2 24

PERANCANGAN JARINGAN FIBER TO THE HOME (FTTH) MENGGUNAKAN TEKNOLOGI COARSE WAVELENGTH DIVISION MULTIPLEXING (CWDM) UNTUK PERUMAHAN PESONA CIWASTRA VILLAGE BANDUNG DESIGN OF FIBER TO THE HOME (FTTH) NETWORK USING COARSE WAVELENGTH DIVISION MULTIPLEXING (CW

0 0 10

ANALISIS SISTEM KOMUNIKASI RoF (RADIO OVER FIBER) BERBASIS WDM (WAVELENGTH DIVISION MULTIPLEXING) DENGAN OADM (OPTICAL ADD DROP MULTIPLEXING) UNTUK JARAK JAUH ANALYSIS OF ROF (RADIO OVER FIBER )COMMUNICATION SYSTEM BASED ON WDM (WAVELENGTH DIVISION MULTIP

0 0 8

PENGARUH KABEL DISPERSION COMPENSATING FIBER (DCF) PADA LINK SITEM KOMUNIKASI OPTIK LONG HAUL DENGAN SKEMA BERBEDA PERFORMANCE OF DIFFERENT SCHEME DISPERSION COMPENSATING FIBER (DCF) IN LONG HAUL OPTICAL FIBER LINK

0 0 6

Analysis Comparison Performance Position Optical Amplifier Hybrid SOA – EDFA (Semiconductor Optical Amplifier - Erbium Doped Fiber Amplifier) in A System DWDM (Dense Wavelength Division Multiplexing) Based Soliton

0 1 8

ANALISIS PERFORMANSI HYBRID OPTICAL AMPLIFIER PADA SISTEM LONG HAUL ULTRA-DENSE WAVELENGTH DIVISION MULTIPLEXING Performance Analysis of Hybrid Optical Amplifier in long Laul Ultra-Dense Wavelength Division Multiplexing System

0 1 8

ANALISIS KARAKTERISTIK HYBRID OPTICAL AMPLIFIER (Fiber Raman Amplifier- Erbium Doped Fiber Amplifier) DENGAN KONFIGURASI PARALLEL IN-LINE PADA SISTEM LONG HAUL ULTRA-DENSE WAVELENGTH DIVISION MULTIPLEXING Analysis of Hybrid Optical Amplifier (Fiber Raman

0 0 8