D D Manajemen | Fakultas Ekonomi Universitas Maritim Raja Ali Haji jbes%2E2010%2E08197

where etr· stands for exptrace·. It follows from 2 that − 1 t = − 1 t ′ , 5 where = Ŵ − 1′ is an upper unit triangular matrix. Denote B = b , B 1 and b = vecB. The likelihood func- tion of b, , 1 , . . . , T is then [ y|b, , 1 , . . . , T ] ∝ | | T T t= 1 | t | − 12 etr − 1 2 T t= 1 S t b − 1 t ′ , 6 where S t b = y t − b − B 1 x t y t − b − B 1 x t ′ . 7 Denote X = 1 1 · · · 1 x 1 x 2 · · · x T , = diag 1 , . . . , T = diagλ 11 , λ 21 , . . . , λ p 1 , λ 12 , . . . , λ pT . The likelihood of b, , is then Lb, , = [y|b, , ] ∝ | | T | | − 12 etr − 1 2 [ y − X ′ ⊗ I p b] ′ I T ⊗ × − 1 I T ⊗ ′ [y − X ′ ⊗ I p b] = | | T | | − 12 etr − 1 2 [I T ⊗ ′ y − X ′ ⊗ ′ b] ′ × − 1 [I T ⊗ ′ y − X ′ ⊗ ′ b] . 8 For a full Bayesian analysis, one needs to assign a prior to parameters. In the likelihood function 8 , b = vecb , B 1 and are parameters pertaining to the regression model 1 , in- volves parameters a , β, A 1 , δ in SV equation 3 . We now discuss the prior specification. 2.2 Priors of b , B 1 , We assume the priors of components of b, are indepen- dent. Here are the marginal priors. i Priors of b = b 10 , . . . , b p ′ . We assume that the inter- cept b i is always included in the model. We also assume inde- pendent priors for b i : b i indep ∼ Nb i , ξ 2 i , i = 1, . . . , p. 9 ii Priors of B 1 ={b ij } p×q . Each element b ij is associated with an indicator γ b,ij . If γ b,ij = 1, b ij is included; and if γ b,ij = 0, b ij is excluded. Then b ij has a two-stage prior: for fixed p b,ij ∈ 0, 1, Pγ b,ij = 1 = 1 − Pγ b,ij = = p b,ij , i = 1, . . . , p, j = 1, . . . , q. 10 For given γ b = γ b, 11 , γ b, 12 , . . . , γ b,pq ′ , we let b ij |γ b,ij indep ∼ 1 − γ b,ij N0, κ 2 b,ij + γ b,ij N0, c 2 b,ij κ 2 b,ij 11 for i = 1, . . . , p and j = 1, . . . , q, where κ b,ij are small and c b,ij are large constants. If we write η b,ij = c γ b,ij b,ij = 1, if γ b,ij = c b,ij , if γ b,ij = 1, and D b,j = diagη b, 1j κ b, 1j 2 , . . . , η b,pj κ b,pj 2 , then 11 is equivalent to b j | γ b,j indep ∼ N p

0, D

b,j for j = 1, . . . , q. 12 Combining the priors in i and ii, we can write the prior for b as b|γ b ∼ N ¯b, ¯ , 13 where ¯ b = b 10 , . . . , b p , 0, . . . , 0 ′ , ¯ = diagξ 2 10 , . . . , ξ 2 p , η b, 11 κ b, 11 2 , . . . , η b,pq κ b,pq 2 . iii Priors of . For j = 2, . . . , p, let ψ j be a vector contain- ing the non-redundant elements of the jth column of , that is, ψ j = ψ 1j , . . . , ψ j− 1,j ′ . Also, define a vector of indicators of length j − 1, γ ψ, j = γ ψ, 1j , . . . , γ ψ, j− 1,j ′ . We assume that ele- ments of ψ j may be included in the model γ ψ, ij = 1 or not γ ψ, ij = 0. Let the model index for ψ ij , γ ψ, ij , be independent Bernoullip ψ, ij random variables: for fixed p ψ, ij ∈ 0, 1, Pγ ψ, ij = 1 = 1 − Pγ ψ, ij = = p ψ, ij , i = 1, . . . , j − 1, j = 1, . . . , p. 14 For given γ ψ, j = γ ψ, 1j , . . . , γ ψ, j− 1,j ′ , we assume that ψ ij |γ ψ, ij indep ∼ 1 − γ ψ, ij N0, κ 2 ψ, ij + γ ψ, ij N0, c 2 ψ, ij κ 2 ψ, ij 15 for i = 1, . . . , j − 1 and j = 2, . . . , p, where κ ψ, ij are small and c ψ, ij are large constants. If we write η ψ, ij = c γ ψ, ij ψ, ij = 1, if γ ψ, ij = c ψ, ij , if γ ψ, ij = 1, and D ψ, j = diagη ψ, 1j κ ψ, 1j 2 , . . . , η ψ, j− 1,j κ ψ, j− 1,j 2 , then 15 is equivalent to ψ j | γ ψ, j indep ∼ N j− 1

0, D

ψ, j 16 for j = 2, . . . , p. Note that a slight modification of the setting allows for modeling whether some elements of are equal. Instead of centering the prior of these elements at 0, we can set them at a common mean in prior 15 . When the parameter index γ = 0 the corresponding element approximately equals to the common mean and when γ = 1 it is not restricted. But to simplify notation, throughout the article we only consider priors centered at 0. Downloaded by [Universitas Maritim Raja Ali Haji] at 23:11 11 January 2016 2.3 Priors of a , β, A 1 , δ We assume that a , β, A 1 , and δ have mutually independent priors. i Priors of a = a 10 , . . . , a p ′ . For fixed ¯a j , σ a , we as- sume that a j indep ∼ N¯a j , σ 2 a . 17 ii Priors of β = β 1 , . . . , β p ′ . For fixed ¯ β j , σ β , we assume that β j indep ∼ N ¯ β j , σ 2 β . 18 iii Priors of A 1 . Let the model index for a jk , γ a,jk be in- dependent Bernoullip a,jk random variables: for fixed p a,jk ∈ 0, 1, Pγ a,jk = 1 = 1 − Pγ a,jk = = p a,jk for j = 1 . . . , p, k = 1, . . . , r. 19 For given γ a,j = γ a,j 1 , γ a,j 2 , . . . , γ a,jr ′ , we assume that a jk |γ a,jk indep ∼ 1 − γ a,jk N0, κ 2 a,jk + γ a,jk N0, c 2 a,jk κ 2 a,jk , 20 where κ a,jk would be small and c a,jk would be large con- stants. Later, we also write A 1 in terms of its row vectors: A 1 = a ′ 1 , . . . , a ′ p ′ . Here a j = a j 1 , . . . , a jr ′ , j = 1, . . . , p. De- note