ISSN: 1693-6930
TELKOMNIKA Vol. 14, No. 3, September 2016 : 963 – 973
968
des x
ref t
f x
errorx x
u u
y
θ θ
θ
+
+
= 1
1 1
1
22
And then it is converted back into continuous-time state space form.
⎣ ⎢
⎢ ⎢
⎢ ⎡ �
̇ �̈
�̇ �̈
�̇ ����� �
̇ ⎦
⎥ ⎥
⎥ ⎥
⎤ =
⎣ ⎢
⎢ ⎢
⎢ ⎡
0.0006546 1
−28.37 −1.984
−0.002709 −0.00452
−0.03731 0.958
−1.191 −0.09954
−3.892 −5.36
−0.003059 0.0001403
0.9915 −0.1128
0.003059 −0.0001403 −0.9915
0.1128 −80.59 −80.59⎦
⎥ ⎥
⎥ ⎥
⎤
⎣ ⎢
⎢ ⎢
⎢ ⎡
� �̇
� �̇
� ����� �⎦
⎥ ⎥
⎥ ⎥
⎤ +
⎣ ⎢
⎢ ⎢
⎢ ⎡
80.59 0⎦
⎥ ⎥
⎥ ⎥
⎤ �
�
���
�� � +
⎣ ⎢
⎢ ⎢
⎢ ⎡
−0.001305 55.65
−0.02015 −0.1318
0.0008007 −0.0008007⎦
⎥ ⎥
⎥ ⎥
⎤ �
���
23
des x
ref
f x
errorx x
u u
y θ
θ θ
+
+
= 1
1 1
1
24
2.3. Roll Model
In a similar way, the roll model is obtained in the form of transfer function and state space as follows:
30 235
. 3
28 .
68 2
2 2
2 2
+ +
= +
+ =
s s
s s
k s
s
n n
n des
ω ζω
ω ϕ
ϕ
25 Where
� : actual roll degree
�
���
: roll input value to the drone degree Furthermore, it is converted into continuous-time state space form 26, 27 and
discrete-time state space with sampling time ∆t
0.2 s 28, 29.
des
ϕ ϕ
ϕ ϕ
ϕ
+
− −
=
28
. 68
235 .
3 30
1
26
[ ]
=
ϕ ϕ
1
y 27
TELKOMNIKA ISSN: 1693-6930
H-INFINITY Control for Pitch-Roll AR.DRONE Agung Prayitno 969
des t
t
ϕ ϕ
ϕ ϕ
ϕ
+
− =
+
174 .
8 011
. 1
1686 .
591 .
3 1197
. 558
.
1
28
[ ]
t
y
=
ϕ ϕ
1
29 Where
� : actual roll degree
�̇ : sideward speed degreesecond
And it will be obtained the state space sideward velocity and sideward acceleration as follows:
1 1
1082 .
0245 .
5123 .
394 .
0814 .
9195 .
+ +
+
−
=
t t
t
v v
v v
ϕ
30
[ ]
t
v v
y
=
1
1
31 Where
� : sideward velocity metresecond
�̇ : sideward acceleration metresecond
2
Equation for y-position and error y based on data from the AR.Drone.
t v
y y
t t
t
∆ +
=
+1
32
t ref
y y
errory −
=
33 Furthermore, equations 28, 29, 30, 31, 32, and 33 are combined to form a
state space which represents a model of the AR.Drone roll system.
des y
ref
t t
f y
errory y
v v
errory y
v v
ϕ ϕ
ϕ ϕ
ϕ
+
+
− −
− −
=
+
1094 .
0248 .
174 .
8 011
. 1
1 1
2 .
1 2
. 5123
. 394
. 013
. 0601
. 0814
. 9195
. 0029
. 0136
. 1686
. 591
. 3
1197 .
5558 .
1
34
des y
ref
t
f y
errory y
v v
y ϕ
ϕ ϕ
+
+
= 1
1 1
1
35
And then it is converted back into continuous-time state space form.
ISSN: 1693-6930
TELKOMNIKA Vol. 14, No. 3, September 2016 : 963 – 973
970
⎣ ⎢
⎢ ⎢
⎢ ⎡
�̇ �̈
�̇ �̈
�̇ ����� �
̇ ⎦
⎥ ⎥
⎥ ⎥
⎤ =
⎣ ⎢
⎢ ⎢
⎢ ⎡
−0.0005242 0.9999
−30 −3.235
0.07753 0.008759
−0.2865 0.572
0.7104 0.06255
−2.769 −3.148
−0.007378 −0.0005951 1.024
−0.06372 0.007378
0.0005951 −1.024
0.06372 −80.59 −80.59⎦
⎥ ⎥
⎥ ⎥
⎤
⎣ ⎢
⎢ ⎢
⎢ ⎡
� �̇
� �̇
� ����� �⎦
⎥ ⎥
⎥ ⎥
⎤ +
⎣ ⎢
⎢ ⎢
⎢ ⎡
80.59 0⎦
⎥ ⎥
⎥ ⎥
⎤ �
�
���
�� � +
⎣ ⎢
⎢ ⎢
⎢ ⎡
0.0007055 68.28
0.03046 0.1214
−0.0008061 0.0008061 ⎦
⎥ ⎥
⎥ ⎥
⎤ �
���
36
des y
ref
f y
errory y
v v
y
ϕ ϕ
ϕ
+
+
= 1
1 1
1
37
2.4. Calculating K value