Simulasi Model Matematik Rol Penggulung pada Industri Metallizing Berbasis Metode Diskritisasi Tustin

(1)

30

SIMULASI MODEL MATEMATIK ROL PENGGULUNG

PADA INDUSTRI METALLIZING BERBASIS METODE DISKRITISASI TUSTIN Yaya Finayani, Sudarno, Muhammad Alhan

Jurusan Teknik Elektronika Politeknik Pratama Mulia Surakarta

email: yyfinayani@yahoo.com ABSTRAKSI

Mesin metallizing merupakan salah satu jenis mesin produksi PT. Tomoko Daya Perkasa Metallizing Industry yang dengan fungsi melakukan proses pelapisan aluminium pada plastik yang memiliki kontruksi system rol guna melakukan proses transportasi web material untuk pelapisan aluminium pada plastic. Sistem transportasi web material pada Mesin Metallizing terdapat 4 jenis rol yaitu unwinder roll (rol pengumpan), main drum roll (rol pengendali kecepatan), tension roll (rol pengendali ketegangan material) serta rewinder roll (rol penggulung) dengan masing-masing rol menggunakan penggerak motor DC. Model matematik system transportasi web material mesin metalizing terbentuk dari dua persamaan yaitu persamaan dinamik gaya tegang dan persamaan dinamik kecepatan.

Persamaan matematik bagian rol pengumpan, tension roll dan rol penggulung dirumuskan menggunakan persamaan dinamik gaya tegang sedangkan bagian main drum roll menggunakan persamaan dinamik kecepatan. Model matematik hasil pemodelan system transportasi web material mesin metalizing diperoleh persamaan matematik bentuk ruang keadaan (state space) 4x4/ orde 4. Persamaan matematik system rol mesin metalizing merupakan system MIMO (multi input multi output) dengan jumlah input sebanyak 4 input yaitu gaya putar rol penggulung, gaya putar tension roll, gaya putar rol penggulung, kecepatan sudut main drum roll, serta 4 output yaitu gaya tegang antara rol penggumpan dengan main drum roll, gaya tegang antara main drum roll dengan tension roll, gaya tegang antara tension roll dengan rol penggulung, kecepatan main drum roll.Dari 4 model matematik fungsi alih pada bagian sistem rol pengggulung mesin metallizing diperoleh 2 persamaan fungsi alih yang tidak berubah waktu (time invarying) � dan � , sedangkan 2 persamaan fungsi alih berubah waktu (time varying)� dan � .

Hasil simulasi keempat model fungsi alih bagian rol penggulung dengan uji masukan unit step diperoleh letak pole -0,83; -0.50; -0,25; -0,24 sedangkan letak zero � pada -0,25; � di -0.25 dan 0,00; � pada 0,00; -0,83; -0,25 � di -0,83; -0,50. -0,25. Dengan diskritisasi tustin waktu sampling 0,5 diperoleh bentuk model fungsi alih diskrit kawasan z fungsi alih bagian rol penggulung dalam orde 4.

Kata kunci: mesin metallizing, transportasi web, pemodelan sistem, model matematik, rol penggulung

1. PENDAHULUAN

Industri metallizing merupakan industri yang produksinya melakukan proses pelapisan aluminium foil pada plastik untuk pembungkus makanan, salah satu industri metallizing tersebut yaitu PT. Tomoko Daya Perkasa Metallizing Industri Surakarta. Dalam melaksanakan proses produksinya PT. Tomoko Daya Perkasa menggunakan mesin-mesin produksi diantaranya mesin-mesin metallizing dan mesin rewinder (Finayani, dkk, 2012-2013), mesin-mesin tersebut terdiri dari beberapa rol diantaranya rol pengumpan, main drum rol, tension rol dan rol penggulung sedangkan tiap-tiap rol terhubung dengan motor listrik, untuk mesin metallizing

menggunakan motor dc sedangkan mesin rewinder menggunakan motor induksi 3 fasa. Untuk mengetahui karakteristik suatu sistem dalam hal ini sistem rol dalam mesin metallizing atau mesin rewinder atau akan melakukan analisis teknik pengendalian lebih lanjut dari sistem tersebut dibutuhkan model matematis.

PT. Tomoko Daya Perkasa Metallizing Industry merupakan salah satu industry plastik melakukan system transfortasi web, web adalah sebidang material yang diproses dan dihasilkan secara kontinu dalam suatu proses di industry. Sistem transportasi web terdiri dari rol yang digerakkan oleh rangkaian penggerak motor DC. Web harus melalui beberapa bagian


(2)

31 pengolahan dari proses yang berkelanjutan

secara kontinu yaitu rol penggulung. Penanganan web meliputi hubungan yang berkaitan dengan transportasi dan dan pengendalian material web.. Contoh system transportasi web yaitu pada proses aluminum foil di PT. Tomoko Daya Perkasa, untuk mendapatkan kualitas produksi sesuai yang diharapkan selama proses transportasi web diperlukan teknik pengendalian lebih lanjut seperti teknik pengendalian ketegangan web dan kecepatan penggerak rol.

Dalam melakukan analisis dan desain sistem kendali, sistem fisis harus dibuat model fisisnya. Model fisis harus dapat menggambarkan karakteristik dinamis sistem tersebut secara memadai. Model matematis diturunkan dari hukum-hukum fisis sistem tersebut, dinamika sistem mekanis dimodelkan dengan hukum Newton, hukum Hooke dan hukum Konservasi Massa. Sedangkan dinamika sistem elektrik dimodelkan dengan hukum Kirchoff, hukum Ohm. Model matematis merupakan suatu sistem dari kumpulan persamaan yang menggambarkan dinamika suatu sistem secara memadai serta harus dimodelkan secara lengkap.

Penelitian tentang pemodelan

matematik, metode diskritisasi tustin serta sistem rol pada industri, telah dilakukan oleh beberapa peneliti. Model sistem transportasi web material yang terdiri dari tiga bagian rol yaitu rol pengumpan, master speed dan rol penggulung (Knittel, dll 2002). Pemodelan sistem transportasi web material berupa persamaan dinamik gaya tegang dan persamaan dinamik kecepatan (Pagilla dkk 2007). Pada industri metallizing terdapat mesin metallizing dan mesin rewinder untuk menjalankan proses produksinya, dengan motor penggerak motor dc untuk mesin metallizing, sedangkan motor induksi 3 fasa penggerak mesin rewinder (Finayani, dkk 2013). Pemodelan dan simulasi sistem control magnetic levitation ball, penelitian ini melihat fenomena pelayangan benda melalui pengontrol kuat medan magnet elektrik serta rentang kestabilan tinggi benda yang ditayangkan. (Wibowo, dkk 2011). Pemodelan

matematik pada kontrol umpan balik kecepatan motor dc yang disimulasikan dalam bentuk pemodelan analog dan digital ( Petras, 2009). Pemodelan waktu diskrit MCS (minimal control synthesis) menggunakan metode MRAC (model reference adaptive control) (Bernardo, dkk 2013).

2. METODE PENELITIAN

Metode penelitian dijelaskan melalui diagram alir berikut ini,

Gambar 1. Diagram Alir Metode Penelitian Mulai

Pengamatan cara kerja mesin

metallizing di PT.Tomoko Daya

Pengamatan kontruksi rol pada mesin metallizing

Pengamatan motor penggerak tiap-tiap rol dari mesin metallizing

Pengambilan data model rol penggulung pada mesin metallizing yang selanjutnya dijadikan

plant pada penelitian ini Melakukan perhitungan pemodelan rol penggulung menggunakan hukum-hukum fisika

dan hukum-hukum rangkaian listrik serta teori pemodelan dalam sistem kendali

Hasil pemodelan disimulasikan menggunakan MATLAB 7.04

Analisis hasil simulasi dan Pembahasan, Pembuatan Bahan Ajar

Kesimpulan


(3)

32 2.1 Mesin Metallizing

Mesin metallizing merupakan salah satu jenis mesin produksi PT. Tomoko Daya Perkasa Metallizing Industry yang dengan fungsi melakukan proses pelapisan aluminium pada plastik. Adapun bentuk Mesin Metallizing tersebut dapat ditunjukkan beberapa gambar di bawah ini:

Gambar 2. Mesin Metallizing (depan)

Gambar 3. Mesin Metallizing (belakang)

Gambar 4. Mesin Metallizing (samping) Gambar 2 menunjukkan dokumentasi mesin metalizing, terlihat panel operator untuk mengoperasikan mesin tersebut.

Sedangkan Gambar 3 terlihat bagian belakang mesin metalizing, tampak kontruksi rol mesin tersebut juga motor penggerak mesin yang merupakan jenis motor DC. Motor DC yang digunakan salah satunya tipe 1GF5 dengan spesifikasi tegangan 400V – 600V, koneksi delta, frekuensi 50 – 60 Hz, daya keluaran 2,45 – 76 kW arus keluaran 14 – 14,5 A, daya motor DC yang digunakan di PT.

Tomoko mencapai 33 kW. Teknik

pengendalian urutan proses secara digital

menggunakan Programmable Logic

Controller (PLC) pada mesin metallizing. Salah satu urutan proses yang dikontrol yaitu pengaturan kecepatan motor DC yang

merupakan salah satu komponen

penggerakmesin metallizing. PLC yang digunakan PT. Tomoko Daya Perkasa tipe PLC SIMOREG. (Finayani, 2012).

Gambar 4 menunjukkan bagian pompa vakum mesin metalizing yang berfungsi untuk mengeluarkan molekul-molekul gas dari dalam sebuah ruangan tertutup untuk mencapai tekanan vakum

,

sehingga proses pelapisan aluminium foil dapat merekat dan mengkilap pada plastic, ba gian ini digerakkan oleh motor induksi 3 fasa.

2.2 Pemodelan Matematik Sistem Rol Pada Mesin Metallizing

Hasil pengamatan serta diskusi yang dilakukan di PT. Tomoko Daya Perkasa Metallizing Industry diperoleh informasi bahwa kontruksi system rol pada Mesin Metallizing ditunjukkan pada monitor mesin tersebut yang diperlihatkan Gambar 5. Yang menunjukkan bahwa Mesin Metallizing memiliki 4 jenis rol utama yaitu unwinder roll

(rol Pengumpan), Main Drum roll (rol pengendali kecepatan, master speed(Pagilla, 2007)), Tension roll (mengatur ketegangan


(4)

33 material, identik dengan rol proses (Paggilla,

2007), rewinder roll (rol penggulung) dengan tiap-tiap rol digerakkan oleh Motor DC.

Gambar 5. Tampilan Layar Monitor Mesin Metallizing

Gambar 6. Kontruksi Rol Mesin Metallizing

Gambar 7 Sistem Transportasi Web Material Dari Gambar 5 dan Gambar 6 dapat dirumuskan model system rol Mesin Metallizing PT. Tomoko Daya Perkasa identik dengan Model Transportasi Web Material (Pagilla, 2007) yang diperlihatkan Gambar 7 d terdapat perbedaan nama jenis rol Main Drum dan Tension Roll.

Model Matematik dari Mesin Metallizing dirumuskan sebagai berikut:

Bagian rol pengumpan (unwinder),

� ̇ = − + − (1)

Bagian Main Drum

� ̇ = − � + � −

� (2) Bagian Tension Roll:

� ̇ = − + − (3)

Bagian rol penggulung (rewinder)

� ̇ = − + − (4)

Persamaan ??? yang merupakan model matematik system transportasi web material yang terdiri dari persamaan dinamik gaya tegang dan persamaan dinamik kecepatan (Pagilla, 2007) digunakan untuk merumuskan model matematik system rol Mesin Metallizing adalah:

Bagian Rol Pengumpan, persamaan dinamik gaya tegang

̇ = �

�� − �

�� −

� , (5) dengan = ��

� , ,.

Bagian Rol Main Drum, persamaan dinamik kecepatan

�̇ =� −� +� − �

� � (6) Bagian Tension Roll, persamaan dinamik gaya tegang

̇ = �

�� − � �� +

� −

� (7) dengan, = ��

Bagian Rol Penggulung, persamaan dinamik gaya tegang

̇ = �

�� −

� �� +

� −

� (8)

dengan, =��

Rol pengumpan Rol penggulung

Tension roll

Main Drum roll

LC LC LC

control control control

control

V0 V1 V2 V3

T1 T2 T3

M0 M1 M2 M3

U0

U1 U

2 U

3

V0 V


(5)

34 Keterangan rumus

U0 : masukan gaya putar bagian rol pengumpan,

T1 : gaya tegang keluaran antara bagian rol pengumpan (unwind) dan main drum.

L1 : jarak antara rol pengumpan dan main drum roll

U1 : masukan gaya putar bagian main drum

J1 : inersia main drum roll

R0 : radius dari rol pengumpan

R1 : radius dari rol main drum

n1 : ratio gear

bf1 : koefisien friksi

T2 : gaya tegang keluaran web antara bagian main drum roll dengan tension roll,

U2 : gaya putar masukan bagian tension roll

L2 : jarak antara rol main drum dengan bagian tension roll

R2 : radius dari tension roll

U3 : masukan gaya putar bagian rol penggulung

T3 : gaya tegang keluaran antara bagian tension roll dengan rol penggulung (rewind)

L3 : jarak antara rol bagian tension roll dengan rol penggulung.

R3 : radius dari rol rol Penggulung

A : luas permukaan web, E : modulus elastisitas dari web  : kecepatan sudut,

kt : konstanta gaya putar,

Dari persamaan 6 - 8 dirumuskan model matematik system transportasi web material mesin metalizing dalam bentuk variable ruang keadaan (state space) diperoleh model sebagai berikut:

[

̇

̇

̇

�̇ ] =

[ −

� −�

� −�

−� � − ]

[ �

] + [ − ��

� �� − �

� �� − �

� �

�� �

]

[ ] (9)

Jika dihubungkan bentuk baku persamaan keadaan persamaan (9) diperoleh bentuk model matematik:

�̇ =

[

̇

̇

̇

�̇ ] , =

[ −

� −�

� −�

−� � − ]

, � = [ �

],

= [ − ��

� �� − � �

� �� − �

� �� �

]


(6)

35 2.2 Model Matematik Rol Penggulung Mesin Metallizing

Pemodelan Matematik Rol Penggulung Mesin Metallizing diperoleh dengan menggunakan persamaan (9) dan (10) di atas, dilanjutkan dengan menentukan determinan ∆ = | − | sebagai berikut:

 Menentukan − :

| | − [ −�� � � − � � � � − � � −� − � � ] = [ +�� −� +�� +� � � − � � + � � ] (11)

 Menentukan | − |: + | � � + � � + � � + � � | + | � � � � + � � � � + � � � � + � � � � + � � � � + � � � � | + |� � � + � � � � � � + � � � � � � + � � � � � � | + | � � � � � � �

� | (12)

 Menentukan matriks adjoint − +

[ +�� −� +� −� +� � � − � � + � � ] + (13) = + | � � + � � + � � | + | � � � � + � � � � + � � � � | + | � � � � �

� | (14)

= � + |� � � + � � � � | + � � � � �

� (15)

= |� � | +�

� (16)

= −� + |� −� � −� �| + |� −� | (17)

= (18) = + | � � + � � + � � | + | � � � � + � � � � + � � � � | + � � � � � � (19) =� + |� � � + � � � � | + � � � � � � (20)

=� + |� � +� � | +� (21)

= (22) = (23) = + | � � + � � + � � | + | � � � � + � � � � + � � � � | + � � � � � � (24) = (25) = (26) = (27) = (28)


(7)

36 selanjutnya diperoleh persamaan keluaran G(s)

� =

| �

� �

� � �

� � �

|

∆ .

[

− ���

� �� − �

� �� − �

� �� �

� ]

(30)

Sehingga diperoleh bentuk model matematis fungsi alih �

� = |

� � � �

� � � �

� � � �

� � � �

| = |

� �

� � �

� � � �

� � �

| (31)

Dari proses pemodelan system rol mesin metalizing diperoleh 4 (empat) buah model persamaan matematis bagian Rol Penggulung yaitu

1.

=

{|− ���||� |} +{|− ���||� �� |}

∆ (32)

2.

=

{|− �|| |} +{| � ||� � |+|− �|| +� � |}+{| � ||� � |+|− � ||� � |}

∆ (33)

3. � =

{− ���} +{| ���||� |+|− ���||�� +� +� |} +{| ���||� �� +� |+|− ���||� �� +� �+� �� |} +{| ���||� �� |+|− ���||� �� |} ∆

(34) 4. � ={

��} +{| ���||��� +�� +�� |} +{| ���||�� ��� +�� �� +�� ��� |} +{| ���||�� �� ��� |}

∆ (35)

Dengan nilai ∆ adalah + | �

� + � � +

� � +

� | + |

� �

� +

� �

� � +

� �

� � +

� �

� � +

� �

� � +

� �

� | + |

� �

� �

� � + �

� � �

� � +

� �

� �

� � +

� �

� �

� � | + |

� �

� �

� �

� | (36)

Empat model matematis fungsi alih bagian Rol Penggulung Mesin Metallizing diperoleh 2 (dua) buah fungsi alih yang berubah waktu (time varying) yaitu � dan � dikarenakan terdapat variable � (radius rol pengumpan yang time varying) dan � (radius rol penggulung yang time varying) dengan keempat model matematis ber-orde 4.

3. HASIL DAN ANALISA

Empat model matematik dalam fungsi alih bagian Rol Penggulung Mesin Metallizing disimulasikan dengan pemrograman Matlab menggunakan parameter hasil penelitian Pagilla, 2007 terlihat Tabel 1. Simulasi juga dilakukan dengan memberikan masukan unit step untuk keempat fungsi alih untuk melihat karakteristik respon, hasil simulasi fungsi alih dalam kawasan bidang s dan kawasan bidang z dengan metode tustin waktu sampling 0,5 detik.


(8)

37

3.1 Hasil Simulasi Fungsi Alih

Dengan menggunakan parameter Tabel 1 diperoleh bentuk fungsi alih bidang s sebagai berikut:

� = + , + ,− , − ,+ , + , (37)

Tabel 1. Parameter Simulasi Fungsi Alih

Paramater Nilai Satuan

V , V , V , V 1000 fpm

L 20 ft

L 33 ft

L 67 ft

J 2 lb − ft

AE 2000 lbf

R 1,25 ft

R 0,339 ft

R 0,339 ft

R 0,67 ft

n 1

bf 0,5 lbf − ft − s

h 0,000656 ft

kt 1

Fungsi alih G31(s) dalam orde 4 memiliki

letak zero di 0,25 letak pole 0,83; 0,50; -0,25; -0,24. Fungsi alih dalam bentuk diskrit kawasan z dengan waktu sampling 0,5 detik,

� � =− , � − , � − , � − , � + ,� − , � + , � − , � + , Fungsi alih G31(z) ini pada kondisi radius rol

pengulung penuh material yaitu perbandingan gaya tegang tension rol-rol penggulung dengan torsi motor rol pengumpan merupakan fungsi alih berubah waktu tergantung besarnya radius rol pengumpan

= + ,− , + ,− , + ,+ . −+ ,

G32(s) memiliki letak zero di dua titik yaitu

-0,25 dan 0,0 sedangkan letak pole sama dengan pole G31(s) merupakan fungsi alih

antara gaya tegang gaya tegang tension rol-rol penggulung dengan torsi motor main drum. Sedangkan fungsi alih kawasan z adalah: � �

=− , � − ,� − , � + , � − ,� − , � − ,� + ,� + , Fungsi alih antara gaya tegang tension rol- torsi motor tension rol G33(s) adalah

= − , − , − ,

+ , + , + , + ,

Dengan letak zero di tiga titik 0,0; -0,83; -0,25 dan letak pole sama dengan fungsi alih G31(s)

dan G32(s) adapun fungsi alih kawasan z, � �

= − ,� − , � + , � − ,� + , � + , � − , � + ,� + , Fungsi alih selanjutnya antara gaya tegang tension rol- torsi motor rol penggulung G34(s)

merupakan fungsi alih time varying yang berubah tergantung besarnya radius rol penggulung, memiliki 3 letak zero pada titik -0,83; -0,505; -0,25 dengan pole yang sama G31(s); G32(s) dan G34(s).

Fungsi alih bidang z dari G34(s), � �

= , � − , � − , � + , � − ,

� − , � + , � − , � + ,

3.2 Hasil Simulasi Step Respon

Untuk mengetahui karakteristik ke-4 fungsi alih bagian rol penggulung mesin Metallizing digunakan uji masukan unit step dengan hasil sebagai berikut, G31(s) dengan

masukan unit step terlihat Gambar 8, 9,10,11 dengan data-data ditunjukkan Tabel 2

Tabel 2. Data Step Respon

Fungsi Alih

trise

(detik)

tsettling

(detik) tpeak

(detik) Mp

G31(s) 10,9 19,9 46,4 0

G32(s) NaN 23,0 4,3 0

G33(s) 0 21,2 2,6 Inf


(9)

38 Gambar 8. Step Respon G31(s)

Gambar 9. Step Respon G32(s)

Gambar 10. Step Respon G33(s)

Gambar 11. Step Respon G34(s)

Tabel 2 menunjukkan informasi step respon dari keempat karakteristik G31(s), G32(s),

G33(s), G34(s) pada kondisi radius rol

pengumpan penuh material dan radius rol penggulung kosong material. Diperoleh informasi waktu naik terbesar pada fungsi alih G31(s) yaitu gaya tegang antara tension rol-rol

penggulung/torsi motor rol pengumpan 10,9 detik, waktu penetapan terbesar G32(s) fungsi

alih gaya tegang tension rol-rol penggulung/torsi motor main drum sebesar 23 detik, waktu puncak fungsi alih G31(s) 46,4

detik, tidak terjadi overshoot.

4. KESIMPULAN

Kesimpulan penelitian ini adalah:

1. Mesin Metallizing terdapat 4 jenis rol yaitu unwinder roll (rol pengumpan), main drum roll (rol pengendali kecepatan), tension roll (rol pengendali ketegangan material) serta rewinder roll (rol penggulung) dengan

masing-masing rol menggunakan

penggerak motor DC.

2. Model matematik system transportasi web material mesin metalizing terbentuk dari dua persamaan yaitu persamaan dinamik gaya tegang dan persamaan dinamik kecepatan.

3. Persamaan matematik system rol mesin metalizing merupakan system MIMO (multi input multi output) dengan jumlah input sebanyak 4 input yaitu gaya putar rol penggulung, gaya putar tension roll, gaya


(10)

39 putar rol penggulung, kecepatan sudut main

drum roll, serta 4 output yaitu gaya tegang antara rol penggumpan dengan main drum roll, gaya tegang antara main drum roll dengan tension roll, gaya tegang antara tension roll dengan rol penggulung, kecepatan main drum roll.

4. Model matematik fungsi alih pada bagian sistem rol pengggulung mesin metallizing diperoleh 2 persamaan fungsi alih yang tidak berubah waktu (time invarying) G s dan G s , sedangkan 2 persamaan fungsi alih berubah waktu (time varying) G s dan G s .

5. Hasil simulasi keempat model fungsi alih bagian rol penggulung dengan uji masukan unit step diperoleh letak pole 0,83; 0.50; -0,25; -0,24 sedangkan letak zero G s pada -0,25; G s di -0.25 dan 0,00; G s pada 0,00; -0,83; -0,25 G s di -0,83; -0,50. -0,25.

6. Dengan diskritisasi tustin waktu sampling 0,5 diperoleh bentuk model fungsi alih diskrit kawasan z fungsi alih bagian rol penggulung dalam orde 4.

5. DAFTAR PUSTAKA

Ashry, M., Abou-Zayed, U., Breikin,Tim., 2005, Design and Implementation of a Time Varying Local Optimal Controller Based on RLS Algorithm for Multivariable System, Control Systems Centre, The University of Manchester, PO BOX 88, M60 IQD UK.

Bernardo d.M., Gaeta d.A., Montanaro.U., Olm.M.J., Santini.S., 2013., Experimental Validation of The Discrete-Time MCS Adaptive Strategy, Control Engineering Practice: 21(2013) 847-859.

Finayani. Y, Alhan M., Salechan., Suharyanto, Firmansyah. E., 2012., Studi Pengendalian Motor Listrik di Industri sebagai Upaya Peningkatan Kualitas Materi dan Strategi Pembelajaran, Penelitian Hibah Pekerti Tahun 2012 – 2013, Teknik Elektro Politeknik Pratama Mulia Surakarta. Gopal, M., 2003, Control Systems Principles

And Design, Second Edition, McGraw-Hill Education (Asia).

Koc H., Knittel D., Mathelin de M., Abba. G., 2002 Modeling and Robust Control of Winding Systems for Elastic Webs, IEEE Transactions On Control Systems Technology, Vol 10, No 2, March 2002. Kuo, B.C, 1995, Automatic Control Systems,

Seventh Edition, ISBN 0-13-304759-8, Prentice-Hall, Inc., Upper Saddle River, NJ 07458.

Ogata, K., Leksono, E.,1995, Teknik Kontrol Automatik (Sistem Pengaturan) Jilid 1, Erlangga, Jakarta.

Pagilla R. P, Siraskar. B.N, Dwivedula.V.R., 2007, Decentralized Control of Web Processing Lines, IEEE Transactions On Control Systems Technology, Vol.15 No.1, January 2007.

Petras I., 2009, Fractional Order Feedback Control of A DC Motor,Journal of Electrical Engineering, Vol. 60, No.3, 2009, 117-128.

Phillips, C., Harbor, R.D., Widodo, R.J., 1996,

Sistem Kontrol Dasar-Dasar,

R. Prabhakar., Pagilla, Dwivedula.V.R., Siraskar. B. N., 2007, Adecentralized Model Reference Adaptive Controller for

Large-Scale Systems, IEEE/ASME

Transactions On Mechatronics, Vol. 12, No. 2 April 2007.

Wibowo B.D., Sutomo.S., 2011.,Pemodelan dan Simulasi Sistem Control Magnetic Levitation Ball, Jurnal Tenik Mesin ROTASI Vol.13, No.2, April 2011: 1-7. Prenhallindo, Jakarta


(1)

34 Keterangan rumus

U0 : masukan gaya putar bagian rol pengumpan,

T1 : gaya tegang keluaran antara bagian rol pengumpan (unwind) dan main drum. L1 : jarak antara rol pengumpan dan main drum roll

U1 : masukan gaya putar bagian main drum J1 : inersia main drum roll

R0 : radius dari rol pengumpan R1 : radius dari rol main drum n1 : ratio gear

bf1 : koefisien friksi

T2 : gaya tegang keluaran web antara bagian main drum roll dengan tension roll, U2 : gaya putar masukan bagian tension roll

L2 : jarak antara rol main drum dengan bagian tension roll R2 : radius dari tension roll

U3 : masukan gaya putar bagian rol penggulung

T3 : gaya tegang keluaran antara bagian tension roll dengan rol penggulung (rewind) L3 : jarak antara rol bagian tension roll dengan rol penggulung.

R3 : radius dari rol rol Penggulung A : luas permukaan web, E : modulus elastisitas dari web  : kecepatan sudut,

kt : konstanta gaya putar,

Dari persamaan 6 - 8 dirumuskan model matematik system transportasi web material mesin metalizing dalam bentuk variable ruang keadaan (state space) diperoleh model sebagai berikut:

[

̇

̇

̇

�̇ ] =

[ −

� −�

� −�

−� � − ]

[ �

] + [ − ��

� �� − �

� �� − �

� �

�� �

]

[ ] (9)

Jika dihubungkan bentuk baku persamaan keadaan persamaan (9) diperoleh bentuk model matematik:

�̇ = [

̇

̇

̇

�̇ ] , =

[ −

� −�

� −�

−� � − ]

, � = [ �

],

= [ − ��

� �� − � �

� �� − �

� �� �

]


(2)

35 2.2 Model Matematik Rol Penggulung Mesin Metallizing

Pemodelan Matematik Rol Penggulung Mesin Metallizing diperoleh dengan menggunakan persamaan (9) dan (10) di atas, dilanjutkan dengan menentukan determinan ∆ = | − | sebagai berikut:

 Menentukan − :

| | − [ −�� � � − � � � � − � � −� − � � ] = [ +�� −� +�� +� � � − � � + � � ] (11)

 Menentukan | − |: + | � � + � � + � � + � � | + | � � � � + � � � � + � � � � + � � � � + � � � � + � � � � | + |� � � + � � � � � � + � � � � � � + � � � � � � | + | � � � � � � �

� | (12)

 Menentukan matriks adjoint − +

[ +�� −� +� −� +� � � − � � + � � ] + (13) = + | � � + � � + � � | + | � � � � + � � � � + � � � � | + | � � � � �

� | (14)

= � + |� � � + � � � � | + � � � � �

� (15)

= |� � | +�

� (16)

= −� + |� −� � −� �| + |� −� | (17)

= (18) = + | � � + � � + � � | + | � � � � + � � � � + � � � � | + � � � � � � (19) =� + |� � � + � � � � | + � � � � � � (20)

=� + |� � +� � | +� (21)

= (22) = (23) = + | � � + � � + � � | + | � � � � + � � � � + � � � � | + � � � � � � (24) = (25) = (26) = (27) = (28)


(3)

36 selanjutnya diperoleh persamaan keluaran G(s)

� =

| �

� �

� � �

� � �

|

∆ .

[

− ���

� �� − �

� �� − �

� �� �

� ]

(30)

Sehingga diperoleh bentuk model matematis fungsi alih �

� = |

� � � �

� � � �

� � � �

� � � �

| = |

� �

� � �

� � � �

� � �

| (31)

Dari proses pemodelan system rol mesin metalizing diperoleh 4 (empat) buah model persamaan matematis bagian Rol Penggulung yaitu

1.

=

{|− ���||� |} +{|− ���||� �� |}

∆ (32)

2.

=

{|− �|| |} +{| � ||� � |+|− �|| +� � |}+{| � ||� � |+|− � ||� � |}

∆ (33)

3. � =

{− ���} +{| ���||� |+|− ���||�� +� +� |} +{| ���||� �� +� |+|− ���||� �� +� �+� �� |} +{| ���||� �� |+|− ���||� �� |} ∆

(34) 4. � ={

��} +{| ���||��� +�� +�� |} +{| ���||�� ��� +�� �� +�� ��� |} +{| ���||�� �� ��� |}

∆ (35)

Dengan nilai ∆ adalah + | �

� +

� +

� +

� | + | � �

� +

� �

� +

� �

� +

� �

� +

� �

� +

� �

� | + | � �

� �

� +

� �

� �

� +

� �

� �

� +

� �

� �

� � | + |

� �

� �

� �

� | (36)

Empat model matematis fungsi alih bagian Rol Penggulung Mesin Metallizing diperoleh 2 (dua) buah fungsi alih yang berubah waktu (time varying) yaitu � dan � dikarenakan terdapat variable � (radius rol pengumpan yang time varying) dan � (radius rol penggulung yang time varying) dengan keempat model matematis ber-orde 4.

3. HASIL DAN ANALISA

Empat model matematik dalam fungsi alih bagian Rol Penggulung Mesin Metallizing disimulasikan dengan pemrograman Matlab menggunakan parameter hasil penelitian Pagilla, 2007 terlihat Tabel 1. Simulasi juga dilakukan dengan memberikan masukan unit step untuk keempat fungsi alih untuk melihat karakteristik respon, hasil simulasi fungsi alih dalam kawasan bidang s dan kawasan bidang z dengan metode tustin waktu sampling 0,5 detik.


(4)

37 3.1 Hasil Simulasi Fungsi Alih

Dengan menggunakan parameter Tabel 1 diperoleh bentuk fungsi alih bidang s sebagai berikut:

� = + , + ,− , − ,+ , + , (37)

Tabel 1. Parameter Simulasi Fungsi Alih

Paramater Nilai Satuan

V , V , V , V 1000 fpm

L 20 ft

L 33 ft

L 67 ft

J 2 lb − ft

AE 2000 lbf

R 1,25 ft

R 0,339 ft

R 0,339 ft

R 0,67 ft

n 1

bf 0,5 lbf − ft − s

h 0,000656 ft

kt 1

Fungsi alih G31(s) dalam orde 4 memiliki

letak zero di 0,25 letak pole 0,83; 0,50; -0,25; -0,24. Fungsi alih dalam bentuk diskrit kawasan z dengan waktu sampling 0,5 detik,

� � =− , � − , � − , � − , � + ,� − , � + , � − , � + , Fungsi alih G31(z) ini pada kondisi radius rol

pengulung penuh material yaitu perbandingan gaya tegang tension rol-rol penggulung dengan torsi motor rol pengumpan merupakan fungsi alih berubah waktu tergantung besarnya radius rol pengumpan

= + ,− , + ,− , + ,+ . −+ ,

G32(s) memiliki letak zero di dua titik yaitu

-0,25 dan 0,0 sedangkan letak pole sama dengan pole G31(s) merupakan fungsi alih

antara gaya tegang gaya tegang tension rol-rol penggulung dengan torsi motor main drum. Sedangkan fungsi alih kawasan z adalah:

� �

=− , � − ,� − , � + , � − ,� − , � − ,� + ,� + ,

Fungsi alih antara gaya tegang tension rol- torsi motor tension rol G33(s) adalah

= − , − , − ,

+ , + , + , + ,

Dengan letak zero di tiga titik 0,0; -0,83; -0,25 dan letak pole sama dengan fungsi alih G31(s)

dan G32(s) adapun fungsi alih kawasan z,

� �

= − ,� − , � + , � − ,� + , � + , � − , � + ,� + , Fungsi alih selanjutnya antara gaya tegang tension rol- torsi motor rol penggulung G34(s)

merupakan fungsi alih time varying yang berubah tergantung besarnya radius rol penggulung, memiliki 3 letak zero pada titik -0,83; -0,505; -0,25 dengan pole yang sama G31(s); G32(s) dan G34(s).

Fungsi alih bidang z dari G34(s),

� �

= , � − , � − , � + , � − ,

� − , � + , � − , � + , 3.2 Hasil Simulasi Step Respon

Untuk mengetahui karakteristik ke-4 fungsi alih bagian rol penggulung mesin Metallizing digunakan uji masukan unit step dengan hasil sebagai berikut, G31(s) dengan

masukan unit step terlihat Gambar 8, 9,10,11 dengan data-data ditunjukkan Tabel 2

Tabel 2. Data Step Respon

Fungsi Alih

trise (detik)

tsettling (detik)

tpeak (detik)

Mp

G31(s) 10,9 19,9 46,4 0

G32(s) NaN 23,0 4,3 0

G33(s) 0 21,2 2,6 Inf


(5)

38 Gambar 8. Step Respon G31(s)

Gambar 9. Step Respon G32(s)

Gambar 10. Step Respon G33(s)

Gambar 11. Step Respon G34(s)

Tabel 2 menunjukkan informasi step respon dari keempat karakteristik G31(s), G32(s),

G33(s), G34(s) pada kondisi radius rol

pengumpan penuh material dan radius rol penggulung kosong material. Diperoleh informasi waktu naik terbesar pada fungsi alih G31(s) yaitu gaya tegang antara tension rol-rol

penggulung/torsi motor rol pengumpan 10,9 detik, waktu penetapan terbesar G32(s) fungsi

alih gaya tegang tension rol-rol penggulung/torsi motor main drum sebesar 23 detik, waktu puncak fungsi alih G31(s) 46,4

detik, tidak terjadi overshoot.

4. KESIMPULAN

Kesimpulan penelitian ini adalah:

1. Mesin Metallizing terdapat 4 jenis rol yaitu unwinder roll (rol pengumpan), main drum roll (rol pengendali kecepatan), tension roll (rol pengendali ketegangan material) serta rewinder roll (rol penggulung) dengan

masing-masing rol menggunakan

penggerak motor DC.

2. Model matematik system transportasi web material mesin metalizing terbentuk dari dua persamaan yaitu persamaan dinamik gaya tegang dan persamaan dinamik kecepatan.

3. Persamaan matematik system rol mesin metalizing merupakan system MIMO (multi input multi output) dengan jumlah input sebanyak 4 input yaitu gaya putar rol penggulung, gaya putar tension roll, gaya


(6)

39 putar rol penggulung, kecepatan sudut main

drum roll, serta 4 output yaitu gaya tegang antara rol penggumpan dengan main drum roll, gaya tegang antara main drum roll dengan tension roll, gaya tegang antara tension roll dengan rol penggulung, kecepatan main drum roll.

4. Model matematik fungsi alih pada bagian sistem rol pengggulung mesin metallizing diperoleh 2 persamaan fungsi alih yang tidak berubah waktu (time invarying) G s dan G s , sedangkan 2 persamaan fungsi alih berubah waktu (time varying) G s dan G s .

5. Hasil simulasi keempat model fungsi alih bagian rol penggulung dengan uji masukan unit step diperoleh letak pole 0,83; 0.50; -0,25; -0,24 sedangkan letak zero G s pada -0,25; G s di -0.25 dan 0,00; G s pada 0,00; -0,83; -0,25 G s di -0,83; -0,50. -0,25.

6. Dengan diskritisasi tustin waktu sampling 0,5 diperoleh bentuk model fungsi alih diskrit kawasan z fungsi alih bagian rol penggulung dalam orde 4.

5. DAFTAR PUSTAKA

Ashry, M., Abou-Zayed, U., Breikin,Tim., 2005, Design and Implementation of a Time Varying Local Optimal Controller Based on RLS Algorithm for Multivariable System, Control Systems Centre, The University of Manchester, PO BOX 88, M60 IQD UK.

Bernardo d.M., Gaeta d.A., Montanaro.U., Olm.M.J., Santini.S., 2013., Experimental Validation of The Discrete-Time MCS Adaptive Strategy, Control Engineering Practice: 21(2013) 847-859.

Finayani. Y, Alhan M., Salechan., Suharyanto, Firmansyah. E., 2012., Studi Pengendalian Motor Listrik di Industri sebagai Upaya Peningkatan Kualitas Materi dan Strategi Pembelajaran, Penelitian Hibah Pekerti Tahun 2012 – 2013, Teknik Elektro Politeknik Pratama Mulia Surakarta. Gopal, M., 2003, Control Systems Principles

And Design, Second Edition, McGraw-Hill Education (Asia).

Koc H., Knittel D., Mathelin de M., Abba. G., 2002 Modeling and Robust Control of Winding Systems for Elastic Webs, IEEE Transactions On Control Systems Technology, Vol 10, No 2, March 2002. Kuo, B.C, 1995, Automatic Control Systems,

Seventh Edition, ISBN 0-13-304759-8, Prentice-Hall, Inc., Upper Saddle River, NJ 07458.

Ogata, K., Leksono, E.,1995, Teknik Kontrol Automatik (Sistem Pengaturan) Jilid 1, Erlangga, Jakarta.

Pagilla R. P, Siraskar. B.N, Dwivedula.V.R., 2007, Decentralized Control of Web Processing Lines, IEEE Transactions On Control Systems Technology, Vol.15 No.1, January 2007.

Petras I., 2009, Fractional Order Feedback Control of A DC Motor,Journal of Electrical Engineering, Vol. 60, No.3, 2009, 117-128.

Phillips, C., Harbor, R.D., Widodo, R.J., 1996, Sistem Kontrol Dasar-Dasar,

R. Prabhakar., Pagilla, Dwivedula.V.R., Siraskar. B. N., 2007, Adecentralized Model Reference Adaptive Controller for Large-Scale Systems, IEEE/ASME Transactions On Mechatronics, Vol. 12, No. 2 April 2007.

Wibowo B.D., Sutomo.S., 2011.,Pemodelan dan Simulasi Sistem Control Magnetic Levitation Ball, Jurnal Tenik Mesin ROTASI Vol.13, No.2, April 2011: 1-7. Prenhallindo, Jakarta