Epoxidized Natural Rubber ENR 15

vi 2.1.2.8 Reclaimed Rubber RR 16 2.1.3 Current Development of Thermoplastic Elastomer 20 2.1.3.1 Polypropylene Nitrile Butadiene Rubber PPNBR 20 2.1.3.2 Polypropylene Natural Rubber PPNR 20 2.2 Compounding process 21 2.2.1 Melt Mixing 21 2.2.1.1 Internal Mixer 22 2.2.1.2 Twin-Screw Extruder 24 2.2.1.3 Two Roll Mill 25 2.2.2 Solution Blending 26 2.2.3 Latex Blending 27 2.2.4 Compression Molding 27 2.3 VulcanizationCuring Process 28 2.3.1 Peroxide Vulcanization 28 2.3.2 Sulphur Vulcanization 29 2.3.3 Mixed Vulcanization 30 2.4 Fabrication 30 2.4.1 Hot Press 30 2.4.2 Isostatic Press 31 2.5 Testing and Analysis 32 2.5.2 Mechanical Test 32 2.5.1.1 Tensile Test 32 2.5.2.2 Flexural Test 34 2.5.2.3 Hardness Test 35 2.5.1.4 Impact test 36 2.5.2 Fourier Transform Infrared 37 2.5.3 Thermal Analysis 38 vii 2.5.3.1 Differential Scanning Calorimetry 38 2.5.4 Physical testing 39 2.5.4.1 Density test 39 2.5.4.2 Melt Flow Indexer 40 2.5.5 Morphological Study 41 2.5.5.1 Scanning Electron Microscopy SEM 41

3. METHODOLOGY 42

3.1 Characterization of Raw Material 44 3.3.1 Polypropylene 44 3.3.2 Epoxidized Natural Rubber 45 3.3.3 Reclaimed Rubber 46 3.2 Preparation of the samples and process. 47 3.2.1 Blending of PPENR Blends in Internal Mixer 48 3.2.2 Pelletizing 49 3.3 Hot Pressing 50 3.3.1 Compression Molding Process 50 3.4 Testing and Analysis 52 3.4.1 Tensile Test 52 3.4.2 Hardness Test 54 3.4.3 Impact test 55 3.5 Physical Test 56 3.5.1 Melt Flow Index MFI 56 3.5.2 Density Test 57 3.5.3 Morphological analysis 58 3.5.3.1 Scanning Electron Microscopy SEM 58 3.7.4 Thermal Analysis 59 3.7.5.1 Differential Scanning Calorimetry 59 viii

4. RESULT AND DISCUSSION 62

4.1 Introduction 62 4.1.1 Testing and Optimization of Mixing Parameter via RSM 63 4.2 Properties Analysis 64 4.2.1 Tensile Properties 64 4.2.2 Elongation at Break 70 4.2.3 Hardness test 74 4.2.5 Impact test 79 4.2.6 Melt Flow Index 84 4.2.7 Density Analysis 88 ` 4.2.8 Young’s Modulus 92 4.2.9 DSC test 95 4.3 Optimization of Mixing Parameter via Response Surface Methodology 96 4.4 Microstructure 99 4.4.1 Fracture Surface Morphology of Tensile specimen 95

5. CONCLUSION AND RECOMMENDATION 104

5.1 Conclusion

104 5.2 Recommendation 105 REFERENCES 106