Valuasi ekonomi sumberdaya wilayah pesisir dan lautan

Prosiding Pelatihan untuk Pelatih, Pefrgeiokn Mayah Pesisir Terpadu

W U A S I EKONONLI SU
PESllSIR DAN LAUTm
DR. IR. TRIDOYO KUSURaASTANTO, MS
Pusat G j i a n Surnberdaya Pesisir dan Lautan
Fakultas Pefikanan dan Ilrnu Kelautan
InsGht Pertanian Bogor

'2
/i

tersebut. Sebagai ilustrasi Barbier (1 993)
zone) mengemukakan kegunaan 6'Coastal Wetland" di
~ght" Nicaragua seperti tercantum dalam Tabel 1.
di wilayah tersebut di kelola oleh publik atau tidak (terlampir). Dari nilai ekonomi tersebut dapat
terdapat kejelasm kepernilkamya. Pada negara- dinyatakan bahwa tingkat
negara berkembmg maupun maju aktivitasekonorni penilaim e k o n o akan
~ selalu
pengelolm sumberdayatvilayah pesisir, sehingga
di wday

- pendekatan antar disiplin (interdisciplinauy appsatnya
berdaya pesisir termcm k e l e m L m 2 .
Interhi antaratanahdanlautm
gori peklaian ekonomi pang
hidrologi di t~iilayahpesisir mempuny&
stik digunakan dalam rnernecahkan mas&&-masdah
yang spesifik sehingga pembmgunan/pembahan kebijakan vvilayah pesisir @=bier, 1993)y a k 6 :
pada wilayah tersebut dapat mengakibatkan 1. Pmgact analysis pakni kerusakan yang
diakibatkan oleh suatu kegiatan pada sistem
'. Perilaku
pengafuh (impact)ymg sangat"si
tdm
pesisir, khususnya berupa damp& Lingkungan.
dari produsen yang mem
Msal: penilaian kemsakm lingkungan pesisir
an utilitas d a l m
konsumen ymg memaksi
memanfaatkan sumberdaya pesisir dapat
karena-pahanminyak.
mengakibatkanalokasi

erdayadarmlin-gan
2. P a ~ I v a l u a b tyt a h i suatupenilaian atternatif
ymgtidakefisiense~araekonorni.Dengandedan alokasi sumberdaya atau proyek yang
campur tangan pemerintah diperlukan untuk
lneng
sistem pesisirlsumberdaya,dengan
mengatur sumberdaya yang langka sehingga
tuju
atkm pilihm yang terbak pada
an (susp e m d a a m sistern sumberdayapesisir.
Contoh :pemilihan altematif antara pernanfaatan
Namm usaha-usaha tersebut sering menemrri
sistem/sumber&ya pesisir untuk usaha perikanan
omi dm p e m e ~ t a h karang vs pariwisata bawah laut/karmg.
I;ionyakni penilaian ekonomi secara
tentangd a i ekonomiJ 3.
dari sistern pesisir. Pendekatm ini
d a y a h pesisir. Kesulitanpenilaim
&l
dalam menentukan nilai ekonomi total

ekonomi tersebut lebihnyata karena sutnberdayadi
m dalam akuntansi sumberdaya
laya ah tersebut tidak diperdagmgkm di "pasar"
nasional.
sehingga aplikasi dari pe~laiansumberdayayang
Lid& dipasarkan (non market valuation) perlu
agar ' W e ofl" antarapembangunan $ari Wilingness to Pay WTP) dan WIZE'ngness to
barang dan jasa yang disediakm oleh lingkungan Accept W A )
Total kesejahteraan sosial (TotalSocial Weldapat menjadi pertimbangan dalam pengmbilan
keputusan untuk pengelolaan wilayah pesisir fare) dari konsumsi barang dan jasa adalah sama
daxi setiap individu yakni area
(coastal zone managemenf/CZM) secara lestari. denganjurnlah
pengeluaran (OXPb) dan consumer surplus (Pba).
KONSEP DASAR PI%NILAIANEKONOMI Dengan menggunakan harga (P) dan konsumsi (X)
maka didapatkan minimum dugaan utilitas
SMBERDAUA
Nilai sumberdayapesisir tropis e.q mangrove (kegmaan) dari pemmfaatan faktor lingkungan.
dan coral reef ditentukan oleh fimgsi surnberdaya Consumer surplus perlu dimasukkan untuk
1


Tabel 1. Uses of coastal wetland characteristics: North Pacific coast mangroves, Nicaragua

Forest resources
Wildlife resources
Fisheries
Forage resources
Agricultural resources
Water supply

Groundwater discharge
Flood and flow control
Shoreline stabilization
Sediment retention
Nutrient retention
Water quality maintenance
Storm protectionhind break
External suppoFt
Micro-climatic stabilization
Recreation/tourism
Water Transport


Biological diversity
Uniqueness to culturelheritage
cy:

X = low
XX = medium
XXX = high

menmgkap nil& kesel
an bagi individu. Bila
f i o r Iingkungmdini
(P=O) maka consumer
surpEus meliputi area yang besar. Bila lhgkungm
rusak maka utilitas yang hilang besar juga. Con&an wilingness t o p v di atas
lwan konsumsi. Sedang total WTP merupakan penjmlahan consumer sur-

plus d m pengelu
onsumsi pada pasar. Benefit sosial dapat d
elalui fungsi pemintaan

pasar. W P menggmbarkankemauan pasar untuk
membayar konsurnsi b
danjasa. SecarauMuM
konsep WTP dipakai
situasi konsumeduser
tidak merniliki "property right" dari sumberdaya/
lingkungm (publicgoo&).

Maksh&asi Kesejalateraara Sosial (Social
Wrenfare)
Barmg dan jasa yang dipasarkan dalam
kondisi pasar yang tidak terdistorsi akan
rnendapatkan harga yang mggarnbarkan harga
Ymg se
a untuk masyarakat. Nilhya sama
dengm nilai pilihan t e r b d (best alternatza atau
disebut sebagai "social" opportunity cost (shadw

Marginal Soc. Bent


price). Dithjau dari produsen maka marjinal cost
rneningkat bila output
cost yang menggm
rneningkat dengan bertmbahnya supply. Harga
ditetapkan di atas biaya maka daerah di atas
supply dan di bawah harga disebut se
Produser surplus PS).
Kesejahteraan sosial total diukur dengan
menjmlahkan PS d m CS d m nilalnya a k a
i d sosiaI beneJit WSB)
dengan marjinal sosial cost (MSC). Seperti
digambarkan sebagai berikut :

Valuasi ekonomi surnberdava.......(1

- 34)

Nilai Ekonorni dam Metoda Pennaian
D d m pendekatanpedlaian secara ekonomi


e

Total Economic Value = Total Use Value -INon Use Value
=TDV + TIV + OV

TDV - Total Direct Use Value : - Extractive
- Non exkacfive
d a l m penggunaan smberdaya klayah pesisir. e TEV - Total Indirect Use Value
CBA bertujuan untuk memaksimumkan e OV - @tiom Value - Potensial untuk digunakan
di masa depan.
kesejahteraan sosial dengan cara mengalokas&an
surnberdayaseefisienmunKriteria yang digunakan dalam evaluasi
k e b i j h adalah sebagai berikut :
estruction yang ir
reversible.
1. Net Present Value
b. BV - Bequest Value
- preservasi natural heritage (warism darn)
(tidak didiskon).
c. EV - Existence ialue

- nilai dari ilmu pengetahurn tentang ekosistem.
wV=Bd+Be-Cd-Ce-Cp
e

Bd

= Benefit langsung dari proyek

Cp =Biaya proteksi lingkungan
2. Internal Rate of Return (IRTig)

-

3.' Benefit Cost Ratio

4. Least Cost

Dalarn Total ValuationApproach dil
sistem sumberdaya
penilaian ekonomi dari se

pesisir. Tabel 2 menmjukkan konsep yang
digunakan dalarn Total EGonomic Value.
TEV = TUV + NUV

N2ai Ekolaomi dal*irPenggunaan Ekosistem
Pesisir
Tabel 3. men
ekonorrzibervariasiyang
penggunaan yang multiple dan sering terjadi
penggunaan tersebut non compatible.
Metoda Evaluasflenilaian Ekanomi
Beberapa metoda penilaian ekonofi disajikan
pada tabel 4 berikut :
Sebslgian darimetodayangdisajihpadatabel
tersebut berdasarkan "'coast based & approach".

sebagian dari total economic value. Narnun
demikian masih sangat berguna sebagai alat
pengmbil keputusan.
1. COB (Chrmge o ~ Productivty)

z
Pembahan kualitas lingkungan berpengaruh
terhadap produktivitas dan biaya produksi.
Diukur net and effect dari produksi pada saat
dengan proyek dan tanpa proyek.
2. Haman Capital OfC)
- Identifikasi pollutan yang menyebabkan sakit
- Tentukan hubungan dosis-responsedankejadian
jumlah populasi yang terkena resiko
- Hitung kehilangan waktu produktif dan
pengobatan

Valuasi ekonomi sumberdaya.......(1

- 34)

IS
$26
$4

m 1

yrs

$I*
$10
$212
%7
$11
175
05

18

$21
$374

199

$122

tin
IQ

Iha

tm
ria
$223

1113

LQ
$138

l
s
M
$52
$43
$32
W n X a

&id*
CS

6dim

US.

w

$1
$112
%

IO
%7

$214

1548

P

$12
$21

18

st
5251

159
$14
$19
110

128

CYM
CMI

rn

9a&x

8%
$4

$1

Temperate Forest (2955million ha)

GrasslandslRangelands(3898m~lltonha)
'OornguePm
1
W2

2 Nol
3 CW

S.$idRNcbflOas)
euhealr(1eee)
F-lW(tea4)
S.$iSRNcb(1sSs)
-dd.(tWl)
F n i ; * u a r 6 Porss (1994)
5ab6RNcb(lW
una*d.(lB1)
-F

2--w=Lweiapulhn

-

6 P(1994)
kwkddd.(hpes)
(IS1
Jwd.1(1%5)
w e d (1osa)
owhsaaL(isq
er?a*(1831)

Dppxhadyma
&

BB)d

w&wdtfma
B B ) s J r t

Natnni

5ab&-(lsss)
%a S l ( L = d - . e J
7Sd(Cls3mlan)

-F
9W.sb.sai
15-

I t ~ o n a o i
1

3

-

5abhPneir(lPq
krtedd (1sq
rmaa(1Pq
6 ma (1994)
-*d
(1996)
RnarsrdaL(lpas)
W d d . ( l P q

Ndnn

USDddCamtlliBn

m

Tidal MushMangroves (165 million ha)

-*
Td* arrh

HisCmn(1OOJ)
F-b-&z:;

-dd(i9B4

MNahw=l
Lymh=;2

EEP

-ad

WTp

-*

m*

z,

E g

U(19B4
ua;**
(1-q
L ~ ~ l l ( ~ ~ I ,

-*

Tdd

UY

USA

us%
UY:

USA
USA

us4
VY

USA

U32

W

S232

Prosiding Pelatihan untuk Pelatih, Pengelolean Wileyah Pesisir Terpadu

USA
USA
USA
USA
USA
T W
TQm
USA
Fil

SwampslFloodplains(165 million ha)

USA

1-

16. -R

z2z(-l

ThBr)au*DBo(lPO~)
KVii.ri(lP95)
G+4=6Fc&s(tS?Sj

W + W P
T & d

WWtPmsM

Fbms=m

cms;nnsan

GRnSS%kqdd(l%a,
wrr)
ra&nOb.t.(18901
wIPh.mnr
GRnbSc6sWlt1%a,
TCIBLvq
G R n S ~ l o i r )T&W

Uhag

---s
T d e#.!sd

a p h ~ F o a a ( IMPmr&tlo
~ ~

p t n r y m

-(190()
Odm(1971)

FWohbn

IMP
r
*
m
y
w

USA
la*

m
USA

m

*ubtl
1
-(
USA

0-34

USA

LakeslRivers(200millionha)

Total

$Po

tZY1

s3.w

S~S*J

me

Table 3. Uses of coral reefs and economic use zoning
This illustrates the different proportions of each use and non-use value which could be added together in
different reef use zones to give the Total Economic value of a reef system. The relevant proportionsfor each
value are indicated here as multiplierswhich are further explained in the text

FinancialBenefits
Direct Uses
Fisheries
Aquarium trade
Curio trade
Pharmaceutical
Other lndustial
Genetic material
Construction
Tourism
Research
Sociaa Betliefits
indirect Uses
Biologicalsupport
Coastal zone ext.
Physical protection
Global life support
Social services

Indirect costs
Navigational
Other economic value
Uses
Product consumer surplus
Tourism consumer surplus
Social value
Researchvalue
Educa~onal
value
Non-Uses
Option value
Existencevalue
Intrinsicvalue
Proportion of value can be summed for each zone:
> 1 - increased value
m - most of t h e value (0.51 - 0.99)
1 full sustainable value
-I- negative value
Source: Spurgeon (1992)

s - some of value (0.04 - 0.50)
0 some of t h e value

-

Valuasi ekonomi sumberdaya....... (1

- 34)

-

Figure 2. Economicvalues attributed to environment a coral reef

Total economic value
Non-Use value

Outputs/
i
that can be
consumed
directly

Functional
enoyed indirectly

a

Future direct
and indirect

Expected new
infomation fFom

Value of leaving Value
from
use and no"- kmowledge of

use

avoiding imversible loss of :

usevalues to off- continued existspring :
ence based on
e.g. moral con-

a

species
habitats

Extractive :
capture fisheries
mariculture
aquarium trade
curio trade
pharmaceutical
other industrial
construction
genetic material
Non-extractive :
tourism
recreation
research
education
aesthetic

.

Bioloaical
s u ~ ~ otor :t
sea birds
turtles
fisheries
other

0

species
habitats
"way of life"
connected to

.

traditional uses
threatened reef habitats
endangered species
charismatic species
.aesthetic reefscapes
6

Phvsical protection to :

- other coastal

- ecosystems
- coastline
- navigation

Global life-support :
Carbon store

Decreasing ""tngibiliQn ' o f value to individual

Valuation methods :
EQP
PE
PV
WD
Rep. C

OC
HC
CP
TC
CV

EOP
PE
PV
V\ID
Rep. C
Rep. C
SPC
CEA
CV

CV

Source : Adapted from Munasinghe and L u t . (1993) and Spurgeon (1992)
Note : see table 3 3 for abbreviations

-

viction : -

GV

CV

Prosicfino Pelafihan untuk Pefatih. PenaefoIaan WIayah Pesisir Terpadu

- Nilai net contribu~onhuman capital terhadap
produlrtivitas
3.Oppclrtami& Cost Amproach (06)
- Dengan CBA t e n a m net benefit dariproyek
bila positif selmjutnya
- Nilai benefit &xipresenasi
- Bandinkeduanya

Barton,D.N. 1994. Economic factors and valuation of tropical coastal resources. University of Bergen.
spurge&, J.P.G. 1992. The economic valuation of coral
reefs. Marine Pollution Bulletin 24.
Munasinghe, M. and E. Lutz. 1992. Envifonmental economics and valuation in development decision making. World Bank Emironmental Working Paper 51.

Dixon, J.A. and 6.Hodgson. 1988. Economic valuation of
coastal resource. El Nido Study. Tropical CoatalArea
D
PUS
Management
5-7.
Barbier, E.B. 1993. Sustainable use of wetlands-valuing
tropical wetland benefits. The Geographical
Journal 159.

Tabel 4. Proiect Level Valuation Methods (adapted from Dixon (1988))

1. Using conventional market value of goods
and services directly affected
( i ) Change-in-productivity approacEflect on
production (EOP)
( i i ) Loss-of eamingWuman capital approach
(HC)
(iii) Opportunify cost approach (OC)
2. Using the value of direct expenditures (cost
based)
(i) Cost-effectiveness analysis (CEA)
( i i ) Preventive expenditure (PE)
(iii) Compensationpayments (CP)

1. Using implicit or surrogate-market valuesindirecf approaches
(i) Property-value and other land-value ap
proaches (PV)
(ii) Wags-differentialapproaches (WD)
(iii)Travel-cost approaches (TC)
(iv) Marketed goods as environmental surro
gates (ES)
2. Using the magnitude of potential expendi
tures (cost based)
(ij Replacement costs (Rep. C )
(ii) Relocation costs (Rel. C)
(iii) Shadow-product costs (SPC)

Contingent Valuation (CY-hypothetical markets
and situations
(i) Bidding games
( i i ) Take-if or leave-it experiments
(iii)Trade-of games
(iv) Costless choice
(v) Delphi technique

1. Energy theory of value-energy-analysis (€A)

Tabel 5. Integrated quantitativeanalysis and informationflows

ECONOMIC and ECOLOGICAL SYSTEMS interaction
Policy evaluation
methwriteda

lndicato~s(I-VI) and linkages (1-8)

fl

1. Coastal management options/lnstruments
lnlage

Cost benefit analysis
Economic valuation
methods

1

Quantitative analysis examples

I!. Resource user lncentivedndicators (2)
Institutional/manets (iii)
(vi) technology
distributional(iv)
others (v-vii)

Social economic :
Multi sectoral CGE IlO
padial equilibium linear
programming

Relative pnceslrates of return (i-iij

i l l . lmpact on flow indicators

$ (4)
IV. lmpact on non-biological stock and
ambical quality indicators

>

Bioe~~nomic
models ?

Ecoloaical :
dispersionltranspolt

3

$

I

V. Biological exposure indicator
(5b)

Dosage-response

lnlage
VI, lmpact on biological stock indicators
(receptors)

?

0
Biological stock models

~ damage fundions
Biogeophysicai processes (including humans as part of ecosystem)
Informationfeedback from natural system to resource users
information flow from system indicators to quantitative analyses/models
Source : adapted from BaFton (1993, unpublished)

I

i--.

7

d
7

Prosiding Pelatihan untuk Pelatih, Pewlolaan Wlayah Pesisir Terpadu

Table 6. Recent examples of economic values placed on tropical / sub-tropical wetland systems and wetland
ecosystem products

Q p e OFressurcebor
proGucti.md40cagon.

Comment

Vdues placed
on resources

Forestry fishery and other
prods.

Complete wetland ecosystem
Philippines

Study

I

Wodd Bank (1989)

Forestry products
Fiji

- Pelts

Costanza ef al(1989)

FisheryIAquaculture
Louisiana, USA

- Commercial

Costanza e f a1(1989)

Fiji

- Artisanal and comrnercial

Other wetlands products
Louisiana, USA

30

- Marginal productivity

-Value commercial
- Residual rent of oyster
mudflats from e.g. nutrient
flow from adjacent systems
including mangroves

Florida West, USA
Thailand
Recreation
Louisiana, USA

- Gross economic value
conts. Surpl. + expendi
tures)
- Marginal output of reer.
Sewices

Florida West. USA
Storm protection
Louisiana, USA
Louisiana, USA
Capturale biodiversity
Indonesia

Energy value
Louisiana, USA

Baker and Kaeonian
(19%)

Bergstrom (1990)

Farber (1987)
Costanza et a1 (1989)

7500

- lnputed from VVTP
-Surveys of international
donors for rainforestconservation

- Gross primary productivity
value in fossil fuel equivalents

Ruitenbeek (1992)

Costanza et a1(1989)

Note : Values as reported or calculated to per hectare per year; figure from information found in studies

GIS and the Value of Everything
scar Wilde wote that a cynic is " a man
who knows the price of
value of nothing. "S
scientists, econormists and even geographers have
attempted to put a price tag on the planet's ecosystem goods md sewices (Co
(1997) notes, these ac
selves. They realize thatthe true value ofecologieal
life-supprt systems is, in o
ply put, h m a n i v wou1dnY
However, the scientistsalso believe that it's
tive to list the replaceme
system servicesthatare
porting E d ' s flora and fauna. How did they attempt such a Herculean effort ?
PuQthga Price ora Natural Systems
ghowthese scientistswent about their
work provides GIS professionals a methsdoloa for
pricing the natural systems that might be damaged
by building a Gghway through a national park, for
exarnp1e. This wodd be vital informationin any costbenefit analysis.
The scientistsfirst step involved determining
which of the main ecosystem goods and services
they would evaluate (Daily, 1997). Tiley identified
17major categories including gas, climate and water regulation; disturbanceregulation (e.g., ameliorating the effects of floods and other extreme enviromental events); water supply; erosion control and
s e h e n t retention; soil formation; nutrient cycling;
waste treatment; p b t i o n ; bioIo@calcontpols (e.g.,
prey/predator dynamics); habitat rehgia for transient and other populations; food and raw material
production; genetic resources; recreation resources;
and cultural resources (the aesthetic, artistic, educational, spiritual and scientsc value of ecosystems).
Sixteen primary biomes or ecosystem types
were identified. These were thensplit into marine
and terrestrial ecosystems. In tum,the marine systems were divided into open ocean and four coastal
categories: estuaries, sea grasdalgae beds, coral
reefs and continental shelf areas. The terrestrial systems consisted of two forest systems tropical and
temperateboreal) grass or rangelands, two types
of wetlands (tidal marsh/mangroves and swamps1

), lakeslrivers, desert, tundra, icelrock,

Relvina on extensive previous research,

figme was expressed in U.S. dollars per hectare per
year. The only task that remained was to multiply
the value per hectare by the nurnber of hectares.
The dataset table in spreadsheet format and copious me tho dolor;^ notes may be downIoaded from
Nature i o u a l ' s World Wide Web site at http:11'
m~t:mture.com(users must registerto .gainaccess
to the site).
Pad Sutton, one of the article's co-authors an
a geogapher &om the National Center for Geographic infomationand
sis at the universiw of
C a o m i a at SmtaBarbara, ~ o m e me
d he used a
GIS to produce the article's world map of ecosystem services. GIS also might be used to deternine
the area of each biome, although it wasn't used in
this study.
Sutton told me even more accurate estimates
might be made if NASA's land cover dataset were
used. This dataset is being developed as part of the
International Geosphere Biosphere Program. It
appears that future ecosystem valuations will rely
more on GIs datasets and analysis.
Why Did They Do Ht ?
The authors note that this type of exercise,
although fraught with difficulties, helps to establish
upper and lower limits on ecosystem's value. These
limits were detemined to be US$54 trillion and
US$16 trillion per annun, respectively. In adcSition,
the exercise assesses the relative magnitude of ecosystem services,which - if a middle range estimate
of US$33 trillion is used - are about 1.8 times the
current global Gross National Product. The research
establishes a framework for fbture studies of this
kind, just as Costanza and his colleagues built on
thework of Daily (1997) and Pearce (1993), among
others. Finally, the study shows where more work
is needed and is provocative enough to stimulate
er research and debate.
One of the main analysis problems was that
the database used included no data for the desert,

Pelatihan untuk Pelatih, Pengelolaen WiIayah Pesisir Terpadu

tundra and iee/rock biomes. Such huge areas as REFENNGES
,R., et al. 1997. The Value of the World's Ecothe htaretic presurrmably are yet to be included in
system
Services and natural Capital. Nature, VoI. 387 :
the analysis. Perhaps ongoing research conducted
253 - 260.
at the Uiversity of Calgarywill pmGde better models of htaretica's role in proG&g v d o w ecosgrs- Daily, G., ed. 1997. Naturek Services :Societal Dependence on Natural Ecosystems. Island Press, Washtern services (Giovinetto, 1990). In addi~on,
ington, D.C.
s believe thatmore eeonsidered and tIratmore Giovinetto, M.B., et al. 1990. Dependence of Antarctic
Surface Mass Balance on Temperature, Elevation and
realistic representahon of emsystem d y n ~ can$
s
Distance to Open Ocean. Journal of Geophysical res vvlll help to increase the x c m y
search anddhospheres, Vol. 95 (D4) :3,517- 3,53 1.

A Bargah at Any P ~ e e
Ecologists and economists now pay more
attention to the worth of ecosystem services. They
realize, to quote Wide again, that "no man is rich
enou@ to buy back his past". Once destroye4 the
services that ecosystems provided may become
priceless.

Pearce, D. W. 1993. Economic Values and the Natural
World. B43T Press, Cambridge, Mass.
Pimm, S.L. 1997. The Value ofEve
:23 1 -232.

Valuasi ekonorni surnberdaya.......(1

- 34)

Notes to Tab
m many key h'unc6ons, h m regula~ngthe biosphere to the prmessing of clernents

into countIess configurations of food webs, sdirnents, and water column forms. We have focused here on a subset
of important functions to which we felt some value could or should be assigned. These include the development of
food webs teading to h m ~ a b l food
e and haw materials, n u h a t cybng, and b e role the weain plays in regula~ng
gas exchanges ~ t theh atmosphere. Where possible, we ~ e todpmGde a range of value eshates, recognikg that
diEcnnt sets of assumptions can result in wide divergence in tbe assignhg of value. For food and raw mate~als
production, market values were determind fim the best avaaabk haes, For biogwhedeal flues, we
were no longer able to supply the particula
attempted to computc rcplacment values if thc natural
onic pnicing) as a surrogate for rhe service
service. Finally, we used estimates of real egate price di
that m a ~ n ecosystems
e
perFom in chancing the cultural fabic of society.
Some important values are m r e difficult to q m ~ f than
y even the difficuIt evaluations we did cany out,
2nd far this reason were left out of the cunent an;iIysis. This iaduda fie gszsmennt of value of bidiversigy as
such and the services of higher trophic tevcls as controllers and amplifiers of tcosystcrn processes. Many of these
services simply have no convenient economic analog (cg.,what is the repiacemcnt value of a species, or a spceies
assemblage? surely it depcnds on the species and the
lage). While achowledging hat these services L K ~ :
probably important, we IeR them out for now.

Open Oceans
1. Gas Rceulation
Occans play a critical rote in the balance of global gas regulation. Oygen md mbQn cyctes are inthately E ~ e d ,
as are N, P, and S cycles. We focused on the role of the meaas as (1) a sink for 602, since
fers of @02$0 the
atmosphere result in increases in greenhouse warning, and (2) a producer of methane, a secondw geenhouse gas.
A. Two estimates of CO?
- abso~tionbv the worid's weans:
I ) Schlesingcr (1991) esiimatcd oct norage of organic C in marine sdimeots at ea. 0.1 x 10IS g C y-l, which =
0.366 x
g C02 pl
2) Butcher ct ai. (1992) discuss a simple model of Lhe global carbon cycle, in whicln the mt input of G to the
oceans from the atmosphere is 1 x 1016 mol
which = 44 x 10j6 g C 0 2 -j-l.
Obviously thcrc is a largc discrepancy betwec~tllcsc estimates. On page 309 of Schlcsingcr, net inputs o l e to the
oceans is 2.4 x l0l5 g C y-l. and the amosphuic pool is 720 x 1015 g C. Thus. if the occan were to cease
absorbing the net mount of C, it would take 300 yr to double the C pool in rhc ahospberc, which would lead to an
increase of 3 'C. Fankhauar and Pearce (1994) estimated the economic cost of C02 as 120.4 per MT carbon.
Using the most and least consemalive estimates of net removal of 602 as C in marine sedlmesnts, we aAve at:
a) 0.1 n
c y-l = 100 x 106 MT y-l 132200 x 106 ha = 0.003 MT c h r l y-f
0.003 MT C ha- l y-1 x 120.4 MT-I = $0.6 1 ha-l yml
b) I x 1016 mol c y-l = 12 x ~ O ~ ~ M132200
T C x~ 106
- ~ha= 3.73 M T C ~ T p
]l
3.73 MT C ha-l y-l x 520.4 MT-I = $76 ham1y-1
The average of this low and high estimate is $38.3 &a' 1 y"1
B. Methanoeenesis bv the world's oceans
Sehlcsinger (1991) estimated: 10 x 1012 g CH4 y-1 = 7.5 x 1012 g C y-I Fsnkhauser and Pearce (L994) also
estimated the price of CHq as a greenhouse gas ns I1 10 per MT CHq. This yields: 10 x
MT CHq y.1 x $1 10
MT-I 132200 x 1 o6 ha = $0.03 ha-I y-l. This is negligible compared to the C01 benefits.

.

8. N u t ~ e ncvelins.
t
Oce2ns arc cridal in nainaining global nutrient cycles, Here wc fmus only on nitrogcn @) and gRosphomus (PI,
the major "macronu~ents". While we roco@ze that other macroou~entcycles (eg. sulphur,
a host of micronutrimts are also important, we have ignored &ern in Ihe c u m t study, irn
cstimarc. The valuc of thc weans for gtobrrl N and P cycling d & v s from their role as N aad P sinks, lf the weans
were not therc, we would bave to reereate this &action by rernoGng N snd P &mland rum@and recycling it back
to the land. We tod: two appraacbes to evaluating this hnclion.
aB1 the woddk s
w
a
=
tthat Row from
cd ~t thc weans and coastat watc
W
.
If
we
a
s
m
e
that
roughIy
onethird
rcceihs
h
n
e
watm
proGdc
a
rivers, and
and
open
mean,
inder
by
coastal
1896
in
press)
of this sehvice is provided by e s t d e s Wixon
12
3
1
(assume I 0 by shelf and IO by ocean), then the total quantity of water treat& is 40 x 10 m y" Replament
1991 as quoted in Postel and
costs to rmove M and P were esthatsd at $0.15 0.42 m3 W c M
the replacement cost for each biornek (ID) con~budoato the total vdue is $2.0 x 1012
the value for ocean (32200 x 106 ba) is theo SQZI 174 ~ c yola
I

.

-

-

-

I I. Biolokcal antrot
See data (Note 13, Mow) on & s t h t e s of fish production. We assutned b i t the contro1 h c t i o n of uppcr gop&c
levels is at least 30% of the value of the satch (tvm thou& ahe prsdudon fn those WpMc ltvels is 3-5h e s the
catch) (Source: R. D'Arge*pemnal comunicmtioa), yielding an e s t h t e of $5 hae1

r1

13. Food ~roduction
The following table summarizes data on globat fish production, catch and psoten~alcatch for troth upwelling and
open wean areas.
Ecosystem

Upwdling
Oceanic

(108 ha)

Pr,Prod
05 c me2 y-I)

5
332

22'5
57

lBrca

Fish Prod.

m a y-l)
(1 988-89)
23 2
2.46'

Fish &tch
m-2 y-1)

Potcntiai Catch
(g a$ y-l) @T ha-1

3.54"

4.97

0.8497

0156

0.59

0.0059

Source: Houde and Rutherford 1993 (except fafwtnotes).
These numbers are probably as good as we can get, and are probably gwithin a factor of 5. Average 1993 price,
calcula;ed &om imporls and exports of total m&ne fish catches @ycontinent) is $2.28
(* $1.18 s.d.1
(FAOSTAS Database Calleftions (on W W ) . The value of fish cafdrw. in S ha-lyl,is assumed to be the average
price h c s the quantiv (see main text for a discussion of this aswption). Thus for the total potmial catches in
these biomes, the valuc is:

-

1.Also not given by Houdc and Rutherford. I used the catch values providcd in Table 1 in Pauly and Christensen
for total catch in 1988 and divided that by the shelf area given in Houde and Rutherford (which is 6 times the area
of shelf determined by Pauly and Christensen, 1995).
2
. .This number is likely to be a gross underestimate of ocean fish production, since it assumes production 2.5 trophic
Ievets beyond primary producers. Most of the open ocean fish biomass is not comercitffly harvested and is
composed of secondary consumers (c.g., myctophiids). If one follows the calculations of Woudc and Ruacrford
(19931,substituting trophic level 2 in place of trophic levcl2.5, the resulting annual occan fish production is 4.66
g m-2 y-1; howevcr, potential catch is unlikely to change since most of thc "excess biomassWisunlikely to bc
directly marketable.

I

. .. - -----kosysiern

Upwlling
Ocanic

-

(IoBha)

Potential Grrtch
rnm2y-l MT

5

4.97

332

0.59

Am

yl

0.0497
0,0058
h a weight& average ( u p d l + open)

Value (ErlT x $22801MT)
I ba-I y-l
5 13

.L%i

SB5

9 4. Raw materials
Gnsidening only one product, i.e. the fornation of limestone In shallow ocean basins (and then "spreading" it out
ovcr the entire ocean Floor):
Estimate #I. Source: Holland 1978: 0.5 rng crnm2y f l = 5 g me2 yf'] (from 8 sbdy by Broecker and Takabashi
1966 on Bahma Grand Ba&)
Estimate #2. Source: Sehlminger 1991. 1.5 x 10 IS g y-1 (taken from Wolla 1981.) dividrd by the area of ocean =
332 x 1012 m 2 = 4.52 m-2 y-I .
The m d e t price of limestone (f.o.b., determid by
These h a t e s are roughly equivalent to 0.05 MT h-I
If m a
e W 84% of the price covers
telephone intmiews with quarry managen) is spproxhately 610
capital and labor costs, &en the ecosystem "valuc add&" mom! is woah $1.50 wI*The @that& value of
oceans for limestone prodvctioo is: 0.05 MT hav1y-l x $1 -60 MTI = $0.08 hn-I
.

r1

17. Cultural Values
As reflected in literature, song, dueation, and other ways, h

place trmendous value on ,nodines and
oceans. One bngibfe economic manifestation of the cuItural value placed on these ecosystem is he willingness to
pay for real. cstate in pmxkiQ to m a p i e s and ocm,cornpard to the price of comparably sized inlmd real estate
(all other things being quai), Price digcrentials between inland and watwfront propertis in a rich md a poor part
of the United States were cdleetd. We Ihen wsumed that this differential wwId be valid for the world"s wealthy
nations (develop&) and would be 100 t h c s lower in thc remaiader of the world"s nations.
/ 0.046 ba = S I0.8 x 106 ha"l
California: $0.5 x
Alabama: $0.1 x 106 10.186 ha = 50.54 x 1 ha-I
Coastline: ""Developed"". 194$35 km
"Undeveloped":
284,795 km
Assume that the value extends from the shorelirae and back 0.5 km from shore. Then the area of real estate is
Devdoped
9.7 x lo6 ha
Undevel.
14.2 x lo6 ha .
Using the spread in real estate price differentials above, and assuming prices are 100 times less on undeveloped
lands, we obtain
Develop& values (total): $5.24 to $105 x 1012
Total vatuc:
$5.32 ao 105.2 x 1012
If we divide this value by the area of all marine vosystms except the open ocean (4102 x lo6 ha) and amoiiize
over 20 years, the areal values become $65 to 61282 ha-I
for estuaries, shelves, coral reefs arid s e s p s s
ceosystgms. If we iangead divide this value by the total marine arm (36,302 x 106 Ha), then the annual value "flow"
is $7 to $145 ha-I y-j m- a, avenge of $76 hael y-l

Prosiding Pelanban untuk Felatih, Pengelo/aan Witayah