338, 1803–1811. Analysis of multi-step experiment

analyze data from non-standard, specially designed experi- ments. These experiments can be optimized to produce data that contain significantly more information about the system to be modeled. We have shown that the radial flow experi- ment provides sensitive data for the simultaneous determi- nation of absolute permeability and the parameters of the relative permeability and capillary pressure functions. Installation of the tensiometer near the outer wall of the flow cell is a slightly sub-optimal, but robust configuration. ColIecting transient flow data from a multi-step experiment provides the information needed to constrain the effective permeability governing unsaturated flow. In many cases, applying conventional curve fitting pro- cedures to capillary pressure data collected under equi- librium conditions does not allow one to distinguish between alternative conceptual models such as the Brooks–Corey–Burdine or van Genuchten–Mualem model. As a consequence, predictions made with the result- ing parameter set may be erroneous if the wrong model is chosen, and if absolute permeability and unsaturated hydraulic properties are determined independently. It is therefore important to numerically simulate a transient experiment, capturing the relevant processes governing unsaturated flow, as opposed to inferring effective permeability from geometric pore size distribution models. We have used three criteria to evaluate inversions that use different conceptual models and have different numbers of adjustable parameters. We have demonstrated that the good- ness-of-fit criterion is insufficient and misleading. It has to be complemented by an aggregate measure for estimation uncertainty, and a penalty term to guard against over- parameterization. We have pointed out in this paper that the estimated parameters are not intrinsic properties of the porous med- ium; they are related to the functional model being used as illustrated by the dependence of the absolute permeability estimate on the hydraulic model. If an independent measure- ment of absolute permeability or any value of effective permeability were made, the inverse solution can be further constrained, making it possible to select the model that is more likely to be true. On the other hand, if no such mea- surement is available, the parameter value concurrently esti- mated by inverse modeling partly compensates for the error in the model, making the subsequent predictions more accurate. The proposed experimental design and analysis proce- dure will be used in the future to investigate additional effects caused by temperature changes, entrapped air, ani- sotropy, and hysteresis. ACKNOWLEDGEMENTS This work was partially supported by the Environmental Management Science Program under a grant from EM-52, Office of Science and Technology, and Office of Energy Research, of the US Department of Energy under Contract no. DE-AC03-76SF00098. We thank K. Pruess and E. Son- nenthal LBNL for their reviews of an earlier draft of this paper. The valuable commments and suggestions of three anonymous reviewers are gratefully acknowledged. REFERENCES 1. Beck, J. V., and K. J. Arnold, Parameter Estimation in Engi- neering and Science . Wiley, New York, 1977. 2. Brooks, R. H. and Corey, A. T., Hydraulic properties of porous media, Hydrology Paper , Vol. 3. Colorado State University, Fort Collins, 1964, pp. 1–27. 3. Burdine, N. T. Relative permeability calculations from pore size distribution data. Petr. Trans. Am. Inst. Mining Eng, 1953, 198, 71–78. 4. Carrera, J. and Neuman, S. P. Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior informa- tion. Water Resour. Res., 1986, 222, 199–210. 5. Clausnitzer, V., Hopmans, J. W. and Nielsen, D. R. Simultaneous scaling of soil water retention and hydraulic conductivity curves. Water Resour. Res., 1992, 28 1, 19–31. 6. Dane, J. H. and Hruska, S. in situ determination of soil hydraulic properties during drainage. Soil Sci. Soc. Am. J., 1983, 47, 619–624. 7. Doering, E. J. Soil-water diffusivity by one-step method. Soil Sci. , 1965, 995, 322–326. 8. Durner, W., Vorhersage der hydraulischen Leitfa¨higkeit strukturierter Bo¨den, Bayreuther Bodenkundliche Berichte , Vol. 20, Bayreuth, Germany, 1991. 9. Durner, W. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res., 1994, 30 2, 211–223. 10. Dzekunov, N. E., Zhemov, I. E. and Faybishenko, B. A., Thermodynamic Methods of Investigating the Water Regime in the Vadose Zone . Nedra, Moscow, 1987 in Russian. 11. Eching, S. O. and Hopmans, J. W. Optimization of hydraulic functions from transient outflow and soil water pressure head data. Soil Sci. Soc. Am. J., 1993, 47, 619–624. 12. Eching, S. O., Hopmans, J. W. and Wallender, W. W. Estimation of in situ unsaturated soil hydraulic functions from scaled cumulative drainage data. Water Resour. Res., 1994, 308, 2387–2394. 13. Elrick, D. L. and Bowman, D. H. Note on an improved apparatus for soil moisture flow measurements. Soil Sci. Soc. Am. Proc. , 1964, 28, 450–453. 14. Faybishenko, B. A., Water–salt Regime of Soils Under Irri- gation . Agropromizdat, Moscow, 1986 in Russian. 15. Finsterle, S., Itough2 command reference, Version 3.1, Report LBNL-40041. Lawrence Berkeley National Labora- tory, Berkeley, CA, 1997. 16. Finsterle, S. and Persoff, P. Determining permeability of tight rock samples using inverse modeling. Water Resour. Res.,

1997, 338, 1803–1811.

17. Finsterle, S. and Pruess, K. Solving the estimation– identification problem in twophase flow modeling. Water Resour. Res. , 1995, 314, 913–924. 18. Gardner, W. R. Calculation of capillary conductivity from pressure plate outflow data. Soil Sci. Soc. Am. Proc., 1956, 20, 317–320. 19. Gardner, W. R., Measurement of capillary conductivity and diffusivity with a tensiometer, Trans. 7th International Inverse modeling of multistep outflow experiment 443 Congress of Soil Science , Vol. 1. Madison, WI, Elsevier, Amsterdam, 1960, pp. 300–305. 20. Gill, P. E., Murray, W. and Wright, M. H., Practical Optimization , Academic, San Diego, CA, 1981. 21. Klute, A., Whisler, F. D. and Scott, E. J. Soil water diffusiv- ity and hysteresis data from radial flow pressure cells. Soil Sci. Soc. Am. Proc. , 1964, 28, 160–163. 22. Knopman, D. S. and Voss, C. I. Behavior of sensitivities in the advection–dispersion equation: implications for parameter estimation and sampling design. Water Resour. Res. , 1988, 242, 225–238. 23. Knopman, D. S. and Voss, C. I. Multiobjective sampling design for parameter estimation and model discrimination in groundwater solute transport. Water Resour. Res., 1989, 25 10, 2245–2258. 24. Kool, J. B. and Parker, J. C. Analysis of the inverse problem for transient unsaturated flow. Water Resour. Res., 1988, 24 6, 817–830. 25. Kool, J. B., Parker, J. C. and van Genuchten, M. Th. Deter- mining soil hydraulic properties from one-step outflow experiments by parameter estimation: I. Theory and numer- ical studies. Soil Sci. Soc. Am., 1985, 49, 1348–1354. 26. Kool, J. B., Parker, J. C. and van Genuchten, M. Th. Parameter estimation for unsaturated flow and transport models — a review. J. Hydrol., 1987, 91, 255–293. 27. Luckner, L., van Genuchten, M. Th. and Nielsen, D. R. A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface. Water Resour. Res. , 1989, 2510, 2187–2193. 28. Morel-Seytoux, H. J., Meyer, P. D., Nachabe, M., Touma, J., van Genuchten, M. Th. and Lenhard, R. J. Parameter equiva- lence for the Brooks–Corey and van Genuchten soil charac- teristics: preserving the effective capillary drive. Water Resour. Res. , 1996, 325, 1251–1258. 29. Mualem, Y. A new model for predicting the hydraulic con- ductivity of unsaturated porous media. Water Resour. Res.,

1976, 123, 513–522.

Dokumen yang terkait

Cash Waqf Performance In Indonesia Empirical Analyses on Islamic Social Entrepreneurship Model

0 0 9

EFEK ANTIJAMUR DAUN KAPUK ( Ceiba petandra) TERHADAP JAMUR Candida Albicans SECARA IN VITRO Sonlimar Mangunsong Poltekkes Kemenkes Palembang ABSTRAK - Efek Antijamur Daun Kapuk (Ceiba petandra) terhadap Jamur Candida Albicans secara In Vitro Sonlimar

0 0 6

Water Castle Taman Sari

1 1 11

Long-Term Relationship In Hemodialysis With Inter-Dialytic Weight Gain (IDWG) On Hemodialysis Patients

0 0 7

KOMPOSISI ZOOPLANKTON DI PERAIRAN RAWA BANJIRAN SUNGAI RUNGAN KOTA PALANGKARAYA (Zooplankton Composition In The Waters Of A Flood Of The River Swamp Rungan Palangkaraya City) Infa Minggawati Program Studi Budidaya Perairan Universitas Kristen Palangkaraya

0 0 5

Desain Water Treatment Menggunakan Karbon Aktif Dari Cangkang Kelapa Sawit Pada Proses Pengolahan Air Bersih Di Sungai Martapura

1 4 9

PRESENTASE JENIS MAKANAN DALAM LAMBUNG IKAN LAIS (Ompok hypopthalmus) DI RAWA SUNGAI RUNGAN, KOTA PALANGKA RAYA (Feed Type Percentage In The Stomach of Fish Lais (Ompok hypophthalmus) In Rungan Swamp River, Palangka Raya City) Lukas dan Infa Minggawati Pr

0 0 5

KONTRIBUSI TENAGA KERJA DALAM KELUARGA TERHADAP PENDAPATAN USAHATANI TERONG ( Solanum melongena L.) DI KELURAHAN LANDASAN ULIN UTARA KECAMATAN LIANG ANGGANG KOTA BANJARBARU (Contribution of Employment In The Family to Eggplant Farming Income (Solanum melo

0 0 8

REVITALISASI INDUSTRI KEHUTANAN DALAM PENGELOLAAN HUTAN TANAMAN RAKYAT UNTUK PEMBERDAYAAN KELUARGA PETANI DAN MENDUKUNG INDUSTRI PLYWOOD DI PROVINSI KALIMANTAN TIMUR (Revitalization Of The Forestry Industry In The Management Of Forest Community Empowermen

0 0 7

ANALISIS USAHATANI DAN DINAMIKA PEMANFAATAN LAHAN PADI LADANG DI KAMPUNG TANJUNG SARI KECAMATAN BONGAN KABUPATEN KUTAI BARAT (Analysis of Farming and Utilization Dynamics of Paddy Field (Oryza sativa L.) In Tanjung Sari Village) Nike Widuri Fakultas Perta

0 0 11