LITERATURE REVIEW METHODOLOGY RESULTS AND DISCUSSION

iv TABLE OF CONTENTS PAGE DECLARATION APPROVAL ABSTRACT i ABSTRAK ii ACKNOWLEDGEMENT iii TABLE OF CONTENTS iv LIST OF TABLES vi LIST OF FIGURES vii LIST OF ABBREVIATIONS x LIST OF PUBLICATIONS xii CHAPTER 1. INTRODUCTION 1

1.1 Research Background

1 1.2 Problem Statement 3

1.3 Objectives

4 1.4 Scope of Project 5

2. LITERATURE REVIEW

6

2.1 Polymer Blends

6 2.2 Thermoplastic Elastomer TPE 7 2.2.1 Thermoplastic 10 2.2.2 Elastomer 11 2.3 Thermoplastic vulcanisates TPVs 16 2.3.1 Dynamic vulcanisation DV 18 2.4 Polypropylene Elastomer 21 2.5 Compatibilisation in Polymer Blends 23 2.6 Blend Morphology 29 2.7 Current Development and Properties of Thermoplastic Elastomer 34

3. METHODOLOGY

45 3.1 Introduction 45 3.2 Raw Material 47 3.2.1 Polypropylene 47 3.2.2 Epoxidised Natural Rubber ENR 47 3.2.3 Reclaimed Rubber 47 3.2.4 Compounding Ingredients 48 3.3 Preparation of PPENR 50 3.3.1 Blending of Polymer Blends 50 3.3.2 Hot Pressing using Hot Press 53 3.4 Testing Method 54 3.4.1 Mechanical Test 54 3.4.2 Physical Test 57 v 3.4.3 Morphological Study 59 3.4.4 Thermal Analysis 59 3.4.5 Compositional Analysis 60 3.5 Stage 1: Determination of optimum PPENR ratio and mixing parameters using 2 x factorial design 60 3.6 Stage 2: Effect of Mah-PP as compatibiliser for PPENR blend 62 3.7 Stage 3: Effect of RR loading to the properties of PPENR filled RR 64

4. RESULTS AND DISCUSSION

66 4.1 Stage 1: Determination of optimum ratio and mixing parameters for PPENR blend 66 4.1.1 Mechanical Properties 66 4.1.2 Experimental analysis of PPENR blends 75 4.1.3 Determination of the optimum formulation of PPENR blend using the Response Surface Methodology RSM 78 4.2 Stage 2: Effect of Mah-PP as compatibiliser for PPENR blend 82 4.2.1 Mechanical Properties 82 4.2.2 Physical Properties of PPENR Treated with Mah-PP 84 4.2.3 Thermal Analysis of PPENR Treated with Mah-PP 88 4.2.4 Fourier Transform Infrared Spectra of PPENR Treated with Mah-PP 91 4.2.5 Morphological Analysis of PPENR treated with Mah-PP 95 4.3 Stage 3: Effect of RR loading to the properties of PPENR filled RR 98 4.3.1 Mechanical Properties 98 4.3.2 Fourier Transform Infrared Spectrophotometer FTIR 108 4.3.3 Fracture Surface Morphological of Tensile specimen 108 5. CONCLUSION AND RECOMMENDATIONS 115 5.1 Conclusion 115 5.2 Future work Recommendation 117 REFERENCES 118 vi LIST OF TABLES TABLE TITLE PAGE 2.1 Technical specification of reclaimed rubber 15 2.2 Examples of elastomer-thermoplastic blends 21 3.1 Composition of PPENR vulcanisation 50 3.2 Mixing time of PPENR blend 51 3.3 Mixing time of ENRRR masterbatch 52 3.4 Combination of mixing parameters and ENR percentage 61 3.5 Level of variables for the screening factor 61 3.6 Design matrix of process parameter PPENR blends treated with Mah-PP 63 3.7 Formulation of PPENR blend 64 3.8 Mixing time of PPENR blend treated with Mah-PP 65 3.9 Formulation of PPENR filled Reclaimed Rubber 65 4.1 Regression model for every response 69 4.2 Glass transition temperature of samples 77 4.3 Criteria for Optimisation of properties 79 4.4 Regression model for every response 84 vii LIST OF FIGURES FIGURE TITLE PAGE 2.1 Structure of cis-Polyisoprene 12 2.2 Structure of Epoxidised Natural Rubber ENR 13 2.3 Stress-strain curves of crosslinked rubbers 15 2.4 Classification of thermoplastic elastomers TPEs 17 2.5 Morphology development of TPV 20 2.6 Compatibiliser effect: monolayer of a block copolymer A’-B’ in the interface between the phases of two homopolymers A and B 25 2.7 Chemical structure of polypropylene grafted maleic anhydride 27 2.8 Types and structural orientation of polymer 28 3.1 Flow chart of the research project 46 3.2 The main materials in the study a PP, b ENR and c RR 48 3.3 Chemical used in this study to vulcanised rubber 49 3.4 Maleic anhydride-grafted polypropylene Mah-PP 49 3.5 a Internal mixer b Banbury rotor 53 3.6 PPENR blend after dumped from internal mixer 53 3.7 a Compound is placed in the mold and b Gotech GT 7014 – A hot press machine 54 3.8 Dog bone type specimen size for BS 6747 55 viii 3.9 Zwick Roell Hardness Tester 56 3.10 a Impact test sample and b CEAST Impact Tester 57 3.11 Electronic densitometer 58 3.12 Perkin Elmer DSC-7 Diffrential Scanning Calometry 59 4.1 Three dimension interaction of a temperature-ENR content and b rotor speed ENR content with tensile strength 70 4.2 Young’s modulus versus ENR content of PPENR blends 71 4.3 Elongation at break versus ENR content of PPENR blends 72 4.4 Impact strength and hardness versus ENR content in PPENR blends 74 4.5 Perturbation plot of ENR content and mixing time to impact strength of PPENR blends 75 4.6 The degree of swelling of the PPENR blends 76 4.7 SEM of a unfilled PP,b 9010 PPENR and c 7030 PPENR at magnification of 500x d 45050 PPENR 80 4.8 Fractional degrees of desirability the selection of formula for PPENR 81 4.9 Pertubation plot of Mah-PP - ENR content with a tensile strength, b Young’s Modulus and c Elongation at Break 86 4.10 a Impact Strength and of treated 9010 PPENR at different level of Mah-PP 87 4.11 Toulene uptake of treated 9010 PPENR at different level of Mah-PP 87 4.12 Possible mechanism of compatibilization of PPENR blends by Mah-PP 89 4.13 Schematic representation of the formation of micelles in a 6040 ENRPP blend: a at the optimum level of the compatibilizer and b above the critical micelle concentration 89 ix 4.14 DSC Thermograms of a PP,b ENR and c PPENR treated with Mah-PP 90 4.15 FTIR spectra of PP and Mah-PP 92 4.16 The difference spectra of PPENR blends containing varying level loading of Mah-PP; a 5wt, b 10wt and c 15wt 94 4.17 SEM tensile fracture of 9010 PPENR blend compatibilized with Mah-PP at magnification 100, 500 and 5000x a 5 Mah-PP, b 10 Mah-PP, and c 15 Mah-PP 96 4.18 Fractional degrees of desire fulfilled the selection formula for PP ENR treated with Mah-PP 97 4.19 Impact strength of PPENR filled RR at various RR loading 99 4.20 The hardness of PPENR filled RR samples 100 4.21 aTensile strength, b Young’s modulus, and c Elongation at break versus RR content 102 4.22 Effect of reclaimed rubber content on glass transition temperature and degree of swelling for PPENRRR blends 105 4.23 The endothermic curves of a PPENR, b PPENR10RR, c PPENR- 20RR and d PPENR30RR ePPENR40RR and f PPENR- 50RR 107 4.24 FTIR spectra of PPENRRR blends at various RR content 110 4.25 SEM of Tensile Strength of PPENR filled RR at magnification 100, 500 AND 5000x a PPENR, b PPENR 30RR and c PPENR 50RR 113 x LIST OF ABBREVIATIONS ABS - Acrylonitrile-Butadiene-Styrene Rubber DV - Dynamic Vulcanisation ENR - Epoxidised Natural Rubber EOC - Ethylene Octene Copolymer EPDM - Ethylene Propylene Diene Monome EVA - Ethylene Vinyl Acetate EPR - Ethylene-propylene copolymer Mah-PP Maleic Anhydries Grafted Polypropylene NBR - Nitrile Rubber NR - Natural Rubber PE - Polyethylene PP - Polypropylene PP-g-MAH - Maleic Anhydries Grafted Polypropylene PC - Polycarbonate PhR - Part perhundred rubber PA-6 - Polyamide-6 PBT - Polybutylene terephthalate PVC - Polyvinyl Chloride RR - Reclaimed Rubber xi RSM - Response Surface Methodology Tg - Glass transition temperature TPE - Thermoplastic Elastomer TPO - Thermoplastic Elastomeric Olefin TPU - Polyurethanes TPV - Thermoplastic Vulcanizates RIPS - Reaction Induced Phase Separation PCL - Polycaprolactone PPO - Polypropylene Oxide TETA - Triethyl Tetra Amine iPP - Isotactic Polypropylene SBS - Styrene Block Copolymer MAH - Maleic Anhydride MAH-PP - Maleic Anhydries Grafted Polypropylene HDPE - High Density Polyethelene SEM - Scanning Electron Microscopy DSC - Differential Scanning Calorimetry FTIR - Fourier Transform Infrared Spectra Tm - Melting Temperature Ph-PP - Phenolic Modified Polypropylene Ts - Tensile Strength Eb - Elongation at Break xii LIST OF PUBLICATIONS Journals 1. Noraiham Mohamad, Nur Sharafina Zainol, Faisal Faris Rahim, Hairul Effendy Ab Maulod, Toibah Abd Rahim, Siti Rahmah Shamsuri, Mohd Asyadi ‘Azam Mohd Abid, Mohd Yuhazri Yaakub, Mohd Fadzli Abdollah, Mohd Edeerozey Abd Manaf. 2013: Mechanical and Morphological Properties of PolypropyleneEpoxidised Natural Rubber Blends at Various Mixing Ratio, Procedia Engineering, Vol.68, pp. 439–445.

2. Noraiham Mohamad, Nur Sharafina Zainol, Jeefferie Abd Razak. 2013: