NN

(1)

ABSTRAK

Banjir di Indonesia umumnya disebabkan oleh kombinasi antara karakteristik hujan dan karakteristik DAS. Suatu metode yang akurat yang dapat dijadikan pedoman didalam melihat respon suatu DAS terhadap bahaya banjir adalah dengan hidrograf satuan. Saat ini belum ada Hidrograf Satuan Terukur (HST) untuk masing-masing DAS di Provinsi Lampung. Analisis hidrologi yang selama ini dipakai selalu meggunakan Hidrograf Satuan Sintetis (HSS) yang sangat dipengaruhi oleh metode pendekatan yang dipilih.

Tujuan penelitian ini adalah Mengembangkan Hidrograf Satuan Terukur pada DAS Way Kuala Garuntang dan DAS Way Simpang Kiri (Sub DAS Way Belau Kuripan) serta membandingkan hasil Hidrograf Satuan Terukur dengan Hidrograf Satuan Sintetis yang sering dipergunakan pada saat ini (HSS Snyder, HSS Gama I dan HSS Nakayasu).

Hidrograf Satuan Terukur dapat dikembangkan pada time step yang lebih kecil maupun yang lebih besar (5, 10, 15, 30, 45, 60, 120, 180, 360 dan 720 menit) sedangkan Hidrograf Satuan Sintetis hanya pada time step jam-jaman. Pada DAS Way Kuala Garuntang dan DAS Way Simpang Kiri metode HSS yang mendekati data terukur yaitu HSS Nakayasu dengan koefisien pengaliran 0,7 dan 0,4. Sedangkan metode HSS Snyder dan HSS Gama I kurang cocok digunakan sebagai pendekatan buatan di kedua DAS tersebut, kemungkinan dikarenakan koefisien karakteristik dan kondisi DAS tidak sesuai untuk kedua DAS tersebut.


(2)

ABSTRACT

The floods that happen in Indonesia are generally caused by the combination of the rainfall characteristic and basin characteristic. An accurate method that can be used as orientation in seeing the response of a basin to the danger of flood is by using unit hydrograph. The analysis that is used all this time is by Synthetic Unit Hydrograph which is influenced by a certain method.

The aim of this research are to develop measured unit hydrograph at Way Kuala Garuntang Basin and Way Simpang Kiri Basin, and to compare the result of measured Unit Hydrograph with the Syntetic Unit Hydrograph which often used nowadays (Syntetic Unit Hydrograph Snyder, Gama I, and Nakayasu).

The measured unit hydrograph can be developed at minutes time step which is smaller or bigger (5, 10, 15, 30, 45, 60, 120, 180, 360 and 720 minutes), meanwhile Syntetic Unit Hydrograph can only be at hours time step. Syntetic Unit Hydrograph that come close to measured data for Way Kuala Garuntang Basin and Way Simpang Kiri Basin are Syntetic Unit Hydrograph Nakayasu Method which flow of characteristic coeffisien 0,7 and 0,4. Syntetic Unit Hidrograph Snyder and Gama I method are not suitable to be used as an artificial approach for both basin. It is possible caused by the characteristic coeffisien and the basin condition that are used are not suitable for both of basin.


(3)

BAB II

TINJAUAN PUSTAKA

2.1 Umum

Teori-teori yang dikemukakan dalam studi ini, adalah teori yang relevan dengan analisis studi seperti teori tentang : pengertian curah hujan (presipitasi), curah hujan efektif, analisis distribusi frekuensi, uji kecocokan, transformasi hujan menjadi aliran, Hidrograf Satuan Terukur (HST), Hidrograf Satuan Sintetik (HSS) Nakayasu, Gama I , dan Snyder.

2.2 Analisis Hidrologi

2.2.1 Curah Hujan (Presipitasi)

Presipitasi adalah istilah umum untuk menyatakan uap air yang mengkondensasi dan jatuh dari atmosfir ke bumi dalam segala bentuknya dalam rangkaian siklus hidrologi (Suripin, 2004). Jika uap air yang jatuh berbentuk cair disebut hujan (rainfall) dan jika berbentuk padat disebut salju (snow). Hujan merupakan faktor terpenting dalam analisis hidrologi. Analisis dan desain hidrologi tidak hanya memerlukan volume atau ketinggian hujan, tetapi juga distribusi hujan terhadap tempat dan waktu. Distribusi hujan terhadap waktu disebut hyetograph. Dengan kata lain, hyetograph adalah grafik intensitas hujan atau ketinggian hujan terhadap waktu.


(4)

7 Kejadian hujan dapat dipisahkan menjadi dua kelompok, yaitu hujan aktual dan hujan rancangan. Hujan aktual adalah rangkaian data pengukuran di stasiun hujan selama periode tertentu. Hujan rancangan adalah hyetograf hujan yang mempunyai karakteristik terpilih. Hujan rancangan mempunyai karakteristik yang secara umum sama dengan karakteristik hujan yang terjadi pada masa lalu, sehingga menggambarkan karakteristik umum kejadian hujan yang diharapkan terjadi pada masa mendatang.

Karakteristik hujan yang perlu ditinjau dalam analisis dan perancangan hidrologi meliputi:

1. Intensitas ( i ), adalah laju hujan atau tinggi air persatuan waktu, misalnya mm/menit, mm/jam, atau mm/hari.

2. Lama waktu atau durasi ( t ), adalah panjang waktu hujan turun, dinyatakan dalam menit atau jam.

3. Tinggi hujan ( d ), adalah jumlah atau kedalaman hujan yang terjadi selama durasi hujan, dan dinyatakan dalam ketebalan air di atas permukaan datar, dalam mm.

4. Frekuensi adalah frekuensi kejadian dan biasanya dinyatakan dengan kala ulang (return period) T, misalnya sekali dalam dua tahun.

5. Luas adalah luas geografis daerah sebaran hujan.

Curah hujan harian adalah hujan yang terjadi dan tercatat pada stasiun pengamatan curah hujan setiap hari (selama 24 jam). Data curah hujan harian biasanya dipakai untuk simulasi kebutuhan air tanaman, serta simulasi operasi waduk.


(5)

8 Curah hujan harian maksimum adalah: curah hujan harian tertinggi dalam tahun pengamatan pada suatu stasiun tertentu. Data ini biasanya dipergunakan untuk perancangan bangunan hidrolik sungai seperti bendung, bendungan, tanggul, pengaman sungai dan drainase.

Curah hujan bulanan adalah: jumlah curah hujan harian dalam satu bulan pengamatan pada suatu stasiun curah hujan tertentu. Data ini biasanya dipergunakan untuk simulasi kebutuhan air dan menentukan pola tanam.

Curah hujan tahunan adalah: jumlah curah hujan bulanan dalam satu tahun pengamatan pada suatu stasiun curah hujan tertentu.

2.2.2 Curah Hujan Efektif

Curah hujan efektif adalah bagian hujan total yang menghasilkan limpasan langsung (direct run-off). Limpasan langsung ini terdiri atas limpasan permukaan (surface run-off) dan interflow (air yang masuk ke dalam lapisan tipis dibawah permukaan tanah dengan permeabilitas rendah, yang keluar lagi ditempat yang lebih rendah dan berubah menjadi limpasan permukaan).

Dengan menganggap bahwa proses transformasi hujan menjadi limpasan langsung mengikuti proses linier dan tidak berubah oleh waktu (linear and time invariant process), maka hujan netto (Rn) dapat dinyatakan sebagai berikut :

Rn = C x R (2.1)

dengan :

Rn = Hujan netto


(6)

9 R = Intesitas curah hujan

2.2.3 Analisis Frekuensi dan Probabilitas

Sistim hidrologi dipengaruhi oleh kejadian-kejadian ekstrim seperti banjir dan kekeringan. Besaran peristiwa ekstrim berbanding terbalik dengan frekuensi kejadiannya, peristiwa yang luar biasa ekstrim kejadiannya sangat langka. Tujuan analisis frekuensi adalah berkaitan dengan peristiwa-peristiwa ekstrim yang berkaitan dengan frekuensi kejadiannya melalui penerapan distribusi kemungkinan. Data hidrologi yang dianalisis diasumsikan tidak tergantung (independent) dan terdistribusi secara acak dan bersifat stokastik.

Frekuensi hujan adalah besarnya kemungkinan suatu besaran curah hujan disamai atau dilampaui. Sebaliknya kala ulang atau (return period) adalah waktu hipotetik dimana hujan dengan suatu besaran tertentu akan disamai atau dilampaui. Analisis frekuensi didasarkan pada sifat statistik data kejadian yang telah lalu untuk memperoleh probabilitas besaran hujan di masa yang akan datang. Dengan anggapan bahwa sifat statistik kejadian hujan yang akan datang masih sama dengan sifat statistik kejadian hujan masa lalu.

Ada dua macam seri data yang digunakan dalam analisis frekuensi, yaitu

1. Data maksimum tahunan: tiap tahun diambil hanya satu besaran maksimum yang berpengaruh pada analisis selanjutnya. Seri data ini dikenal dengan seri data maksimum (maximum annual series).

2. Seri parsial: dengan menetapkan suatu besaran tertentu sebagai batas bawah, selanjutnya semua besaran data yang lebih besar dari batas bawah tersebut


(7)

10 diambil dan dijadikan bagian seri data untuk kemudian dianalisis seperti biasa. Batas ambang ditetapkan berdasarkan pertimbangan teknik atau sembarang (peak over threshold), namun demikian hendaknya ambang tidak ditetapkan sedemikian hingga jumlah sampel dalam deret menjadi lebih besar dari lima kali panjang tahun data (Harto, 2000).

Dalam ilmu statistik dikenal beberapa macam distribusi frekuensi dan empat jenis distribusi yang banyak digunakan dalam bidang hidrologi adalah :

1. Distribusi Normal 2. Distribusi Log Normal,

3. Distribusi Log Pearson Type III 4. Distribusi Gumbel.

Dalam statistik dikenal beberapa parameter yang berkaitan dengan analisis data yang meliputi rata-rata, simpangan baku, koefisien variasi, koefisien kurtosis dan koefisien skewness (kecondongan atau kemencengan).

A. Distribusi Normal

Disribusi ini mempunyai rumus :

P (X) =   2

1 (2 ) ) ( 2 2     X

e (2.2 )

Dengan,

P(X) = Fungsi Densitas Peluang Normal X = Variabel Acak Kontinu

σ = Simpangan Baku nilai X μ = Rata-rata Nilai X


(8)

11 B. Distribusi Log Normal

Distibusi ini mempunyai rumus :

P (X) = (2 )

) (

2 2

2

1 yy

y e X       (2.3)

Y = Log X (2.4)

Dengan,

P(X) = Peluang Log Normal X = Nilai Variat Pengamatan σY= Deviasi Standar Nilai Variat Y μY= Nilai Rata-rata Populasi Y

Dengan nilai khas yaitu: 1. Cs 3 Cv (Coefisient Varian = X

S )

2. Cs > 0

C. Distribusi Log Pearson Type III

Pada situasi tertentu, walaupun data yang diperkirakan mengikuti distribusi sudah dikonversi dalam bentuk logaritmis, ternyata kedekatan antara data dan teori tidak cukup kuat untuk menjustifikasi pemakaian distribusi Log Normal. Salah satu distribusi yang dapat dipakai adalah Distribusi Log Pearson Type III. Berikut ini langkah-langah penggunaan distribusi Log Pearson Type III

1. Ubah data ke dalam bentuk logaritmis,

X = Log X (2.5)


(9)

12 Log Xr =

n x log

(2.6)

3. Hitung harga Standar Deviasi

SD = 1 n ) r log x (log 2  

(2.7)

4. Hitung koefisien kemencengan :

Cs = 3 2 SD ) 2 n )( 1 n ( ) xr log x (log n   

(2.8)

5. Hitung logaritma hujan atau banjir dengan periode ulang T dengan rumus :

Log XT = log X r + K SD (2.9)

Dengan:

log x = logaritma hujan harian maksimum (mm/24jam) Log r = rata – rata x

n = banyaknya data SD= Standar Deviasi

log XT = Curah hujan maksimum dalam PUH (mm/24jam)

K = Skew Curve Factor

D. Metode Gumbel Tipe I.

Metode Gumbel tipe I mempunyai persamaan umum adalah: Sx

k X

XTr  . (2.10)

Sn Yn Yt

k   (2.11)

n Xi


(10)

13 1 ) ( 2   

n Xr Xi

Sx (2.13)

)))) 1 /( ( ( * 303 , 2 ( 834 , 0 (   

Log Log Tr Tr

Yt (2.14)

keterangan : XT = besarnya curah hujan dengan periode ulang t tahun. Xr = curah hujan harian maksimum rata-rata selama periode pengamatan.

k = faktor frekuensi dari gumbel. Sx = standard deviasi.

Sn = standard deviasi dari reduced variate (tabel ) tergantung dari jumlah tahun pengamatan data.

Yt = reduced variate sebagai fungsi dari periode ulang t = -(0,834+2,303 Log(Log Tr/Tr-1))

Yn = harga rata-rata reduced variate (tabel) tergantung dari jumlah tahun pengamatan data.

Tabel 2.1 Syarat Pemilihan Metode Frekwensi

Jenis Distribusi Batasan Parameter Statistik Data Hujan Normal Cs = 0

Log Normal Cs/Cv = 3, Cs Positif Gumbel Cs = 1,1396; Ck 5,4 Log Person III -


(11)

14 2.2.4 Uji Kesesuaian Distribusi

Uji kesesuaian dimaksudkan untuk mengetahui kebenaran analisis curah hujan terhadap simpangan data vertikal maupun simpangan data horizontal sehingga diketahui apakah pemilihan metode distribusi frekuensi yang digunakan dalam perhitungan curah hujan diterima atau ditolak. Metode uji kesesuaian distribusi yang umum dipakai adalah Uji Chi-Kuadrat (Chi-Square Test) dan Uji Smirnov-Kolmogorov.

A. Uji Smirnov-Kolmogorov

Pengujian dilakukan dengan mencari nilai selisih probabilitas tiap variat Xi menurut distribusi empiris dan teoritik, yaitu disimbolkan dengan Δ. Harga Δ maksimum harus lebih kecil dari Δ kritik (dari Tabel Smirnov Kolmogorov) dengan tingkat keyakinan (α) tertentu.

Sebelum melakukan uji kesesuaian terlebih dahulu dilakukan plotting data dengan tahapan sebagai berikut:

 Data hujan harian maksimum tahunan disusun dari kecil ke besar

 Menghitung probabilitasdistribusi empiris (Pe) dengan rumus Weilbull (Harto,1993):

P= x100% 1

n m

 (2.15)

Dengan: P = probabilitas (%) m = nomor urut data n = jumlah data


(12)

15

 Menghitung Probabilitas distribusi teoritis (Pt):

Pt = 100 – P% (2.16)

 Menghitung persamaan yang digunakan (Shanin,1976) sebagai berikut: Δmaks = [Pe –Pt] (2.17)

Dengan:

Δmaks = selisih maksimum antara peluang empiris dan teoritis Pe = peluang empiris

Pt = peluang teorotis Δcr = simpangan kritis

Kemudian dibandingkan antara Δmaks dan Δc , distribusi frekuensi yang dipilih dapat

diterima apabila Δmaks< Δcrdan jika Δmaks > Δcr berarti gagal.

B. Uji Chi-Kuadrat (Chi-Square)

Uji ini digunakan untuk menguji simpangan secara vertikal yang ditentukan dengan rumus sebagai berikut :

Ft Ft Fe X

2 2

(2.18)

keterangan :

2

X = Parameter Chi-Kuadrat terhitung. Ft = frekuensi teoritis kelas j


(13)

16 Jumlah kelas distribusi dan batas kelas dihitung dengan rumus :

k = 1 + 3,22 Log n (2.19) dimana :

k = Jumlah kelas distribusi. n = Banyaknya data.

Besarnya nilai derajat kebebasan, Dk dihitung dengan rumus:

) 1 ( 

 K P

Dk (2.20)

keterangan :

Dk = derajat kebebasan. K = banyaknya kelas.

P = banyaknya keterkaitan (constain) yang untuk sebaran Chi- Kuadrat = 2

Apabila X2  Xcr2 (dari tabel) berarti distribusi frekuensi tersebut dapat diterima.

2.2.5 Tranformasi Hujan-Aliran

Proses transformasi hujan menjadi debit merupakan fenomena yang sangat kompleks (Harto, 1993). Menurut Soemarto (1987), dalam proses pengalihragaman hujan menjadi aliran ada beberapa karakteristik hujan yang perlu diperhatikan yaitu intensitas hujan, durasi, kedalaman hujan, frekuensi dan luas daerah pengaruh hujan. Karakteristik hujan tersebut mempunyai dampak terhadap respon sistem DAS. Respon hidrologi suatu DAS, terkait dengan waktu konsentrasi dari tempat terjauh hingga ke outlet DAS, dapat dikategorikan sebagai DAS sangat cepat hingga DAS


(14)

17 sangat lambat. Interaksi antara karakteristik hujan dalam skala waktu seperti tersebut di atas terhadap karakteristik DAS menentukan respon aliran pada DAS tersebut (Kusumastuti dkk, 2004; Kusumastuti dkk, 2005; Kusumastuti dkk, 2007).

Pengalihragaman hujan menjadi aliran terjadi di dalam skala ruang dan waktu. Pergerakan air dalam dimensi ruang disebabkan oleh gravitasi, topografi, dan keberadaan jaringan sungai. Air yang masuk ke dalam tanah bergerak melalui bawah tanah dari bidang lereng (hillslope) yang disebabkan oleh gravitasi. Pergerakan air ini pada awalnya memiliki arah vertikal dan dipengaruhi oleh lapisan-lapisan tanahnya, menyebabkan air mengalir menuju bawah bidang lereng. Tindakan penyaringan (filtering action) pada bidang lereng ini membagi pergerakan air melalui atas dan bawah bidang lereng dengan berbagai alur aliran (pathway), seperti limpasan permukaan (surface run-off), aliran antara (subsurface run-off) dan aliran air tanah dengan berbagai skala waktu.

Daerah Aliran Sungai (catchment, basin, watershed) merupakan daerah dimana semua airnya mengalir ke dalam suatu sungai yang dimaksudkan. Daerah ini umumnya dibatasi oleh batas topografi, yang berarti ditetapkan berdasar aliran permukaan. Batas ini tidak ditetapkan berdasar air bawah tanah karena permukaan air tanah selalu berubah sesuai dengan musim dan tingkat kegiatan pemakaian. Air hujan yang jatuh ke bumi, tidak semua bagian mencapai permukaan tanah. Sebagian akan tertahan oleh tumbuh-tumbuhan dimana sebagian akan menguap dan sebagian lagi akan jatuh atau mengalir melalui dahan-dahan ke permukaan tanah.

Air hujan yang tiba di permukaan tanah akan masuk ke dalam tanah (infiltrasi). Bagian lain yang merupakan kelebihan akan mengisi lekuk-lekuk atau


(15)

cekungan-18 cekungan permukaan tanah (depression storage atau pocket storage), kemudian mengalir ke daerah-daerah yang rendah, masuk ke sungai-sungai dan akhirnya ke laut. Air limpasan permukaan akan mengalir secara cepat ke saluran atau sungai, sehingga meningkatkan debit aliran. Sebagian air yang menyusup ke dalam tanah akan mengalir secara mendatar sebagai aliran antara (interflow). Bagian lain dari air yang terinfiltrasi dapat diteruskan sebagai air perkolasi yang mencapai akuifer (aquifer, ground water storage).

2.2.6 Hidrograf Satuan

Teori klasik hidrograf satuan (unit hydrograf), yang pertama kali diperkenalkan oleh Sherman berasal dari hubungan antara hujan efektif dengan limpasan langsung. Hubungan tersebut merupakan salah satu komponen model watershed yang umum. Metode hidrograf satuan adalah metode yang sederhana, mudah penerapannya, dan memberikan hasil hidrograf banjir yang relatif lebih akurat jika dibandingkan dengan banjir rancangan hasil analisis frekuensi debit. Teori hidrograf satuan merupakan penerapan pertama teori sistem linier dalam hidrologi. Teori hidrograf satuan ini yang dikemukakan oleh Sherman pada tahun 1932 yang mendasarkan teorinya pada beberapa andaian, yaitu:

1. Hujan mangkus (effective) terjadi merata di seluruh DAS

2. Hujan mangkus terjadi merata dalam unit waktu yang ditetapkan (constant intensity).

3. Waktu dari saat berhentinya hujan sampai akhir limpasan langsung selalu tetap. 4. Ordinat hidrograf satuan sebanding dengan volume curah hujan (linearity)


(16)

19 5. Tanggapan DAS terhadap masukan hujan tidak tergantung dari saat terjadinya hujan (time invariant).

Dalam suatu sistem DAS terdapat suatu sifat khas yang menunjukkan sifat tanggapan DAS terhadap suatu masukan tertentu (Sherman, 1932). Tanggapan ini diandaikan tetap untuk masukan dengan besaran dan penyebaran tertentu. Tanggapan yang demikian dalam konsep model hidrologi dikenal dengan hidrograf satuan. Hidrograf satuan suatu DAS adalah suatu limpasan yang diakibatkan oleh satu satuan volume hujan yang efektif yang terbagi rata dalam ruang dan waktu. Sedangkan menurut Barfield dkk. (1983) hidrograf satuan adalah suatu limpasan langsung yang dihasilkan oleh satu unit hujan efektif dengan intensitas yang tetap, terdistribusi merata di seluruh DAS dalam satuan waktu tertentu (Barfield dkk, 1983). Hidrograf ini merupakan hidrograf karakteristik untuk DAS tertentu.

Hidrograf satuan yang dihitung untuk setiap kasus banjir belum merupakan hidrograf satuan yang dapat dianggap mewakili DAS yang bersangkutan. Untuk itu diperlukan hidrograf satuan yang diturunkan dari banyak kasus banjir, kemudian dirata-ratakan untuk memperoleh hidrograf satuan yang dianggap mewakili DAS tersebut. Perata-rataan dilakukan dengan merata-rata baik debit puncak maupun waktu mencapai puncak hidrograf. Di samping itu, sisi resesinya dilakukan dengan menarik liku resesi rata-rata dengan memperhatikan agar volume hidrograf satuan sama dengan satuan volume yang ditetapkan.

Hidrograf satuan yang diperoleh tidak hanya menyatakan karakteristik-karakteristik daerah aliran sungai saja (luas, bentuk, kemiringan, pola drainase, dan lain-lain), namun juga karakteristik hujan.


(17)

20 2.2.7 Hidrograf Satuan Sintetis

Hidrograf satuan terukur dapat dibuat jika tersedia data yang baik, yaitu data tinggi muka air otomatis, data pengukuran debit, data hujan harian, dan data hujan jam-jaman. Namun jika tidak tersedia data tersebut maka hidrograf satuan dapat dibuat secara sintetis. Hidrograf satuan sintetis dapat digunakan untuk membangun di tempat lain pada sungai yang tidak diukur. Berdasarkan prinsip hidrograf satuan, beberapa peneliti telah menghasilkan model-model Hidrograf Satuan Sintetis (model-model HSS), beberapa di antaranya yaitu:

A. HSS Snyder (lokasi penelitian di USA, 1938)

Metode Snyder pada dasarnya menentukan hidrograf satuan sintetis yang dihitung berdasarkan rumus empiris dan koefisien empiris yang menghubungkan komponen hidrograf satuan dengan karakteristik DAS. Parameter yang menentukan hidrograf satuan adalah luas DAS, panjang sungai utama, dan panjang sungai utama yang diukur dari tempat pengamatan sampai dengan titik pada sungai utama yang berjarak paling dekat dengan titik berat DAS. Hidrograf Satuan Sintetis metode Snyder mempertimbangkan karakteristik DAS yang mempengaruhi bentuk hidrograf satuan, seperti luas dan bentuk DAS, topografi, kemiringan sungai, kerapatan sungai dan simpanan air (Wilson, 1993). Adapun persamaan yang dibuat oleh Snyder adalah sebagai berikut:

tp = Ct ( L.Lc) 0,30 (2.21) Dimana :


(18)

21 Lc = Panjang sungai dari titik berat basin ke outlet ( km).

tp = Waktu dari titik berat excess rainfall ke peak flow unit Hydrograf. Ct = Koefisien yang tergantung dari slope basinnya

qp = 0,278 p t Cp

, (2.22)

Dimana :

qp = Debit maksimum unit hidrograf ( 1m3/dt/km2). Cp = Koefisien yang tergantung dari karakteristik DAS

tε = 50 , 5

tp

(2.23)

Dimana :

tε = Lamanya curah hujan efektif

Jika tε>tr -- t’p = tp + 0,25 (tR –tε) (2.24) Sehingga didapat waktu untuk mencapai debit maksimum

Tp = t’p + 0,50 tR (2.25)

Jika tε < tR

Tp = tp + 0,50 tR (2.26) Tp = time rise to peak

tR = lamanya hujan efektif 1 jam


(19)

22 Dimana :

Qp = Debit maksimum total (m3/dt).

qp = Debit maksimum unit hidrograf ( 1m3/dt/km2). A = luas daerah aliran ( km2).

Bentuk dari unit hidrograf ditentukan oleh persamaan Alexseyev

Q = f( t) (2.28)

Y = Qp Q X = tp t (2.29)

Y = x x a 2 ) 1 ( 10   (2.30)   W QpxTp

-- W = 1000 h . A (2.31) h = excess rainfall dalam mm

a = 1,32 2 +0,15  + 0,045 (2.32) Rumus Snyder sudah banyak digunakan di Indonesia dengan merubah koefisien-koefisiennya, karena dalam pengujiannya untuk beberapa sungai di Pulau Jawa ternyata menunjukkan penyimpangan yang besar, baik dalam besaran waktu puncak (time to peak) maupun debit puncak (Harto, 1993). Hal ini dapat dipahami karena memang cara ini mengandung beberapa koefisien empirik yang dikembangkan di daerah Appalachian di Amerika yang kurang sesuai dengan keadaan di Indonesia.


(20)

23 B. HSS Nakayasu (lokasi penelitian di Jepang, 1948)

Nakayasu dari Jepang menyelidiki hidrograf satuan pada beberapa sungai di Jepang. Metode Nakayasu menggunakan tahapan perhitungan sebagai berikut : 1. Data yang ada untuk diproses R24 dalam mm, panjang sungai (L) dalam km,

Catchment area (A) dalam km2 2. Menentukan Tp, T0,3 dan Qp.

Tp = Tg + 0,8 Tr . (2.33)

Tr = 0,5 Tg s/d Tg (2.34)

Tg = 0,4 + 0,58L , untuk L > 15 km (2.35)

Tg = 0,21L0,7 , untuk L < 15 km (2.36)

T0,3= α Tg (2.37)

Yaitu:  = 2 =>Pada daerah pengaliran biasa

 = 1,5 =>Pada bagian naik hidrograf lambat, dan turun cepat  = 3 =>Pada bagian naik hidrograf cepat, turun lambat

Tr = satuan waktu dari curah hujan yang besarnya yaitu (0,5-1,0) x Tg

) 3 , 0 ( 6 ,

3 T T0,3 CAR Q

p o

p (2.38)

Tb = Tp + T0,3 + 1,5T0,3 + 2 T0,3 (2.39)

dimana :

Qp = Debit puncak banjir (m3/dt) C = Koefisien pengaliran


(21)

24 A = Luas daerah aliran sungai (km2)

Ro = Hujan satuan, 1 mm Tp = Waktu puncak ( jam )

T0,3 = Waktu yang diperlukan untuk penurunan debit, dari debit puncak menjadi

30 % dari debit puncak (jam) Tr = Satuan waktu hujan

Tg = Waktu konsentrasi (jam), ditentukan berdasarkan L Tb = Time Base

3. Menentukan keadaan kurva sebagai berikut.

Gambar : 2.1 Hidrograf Satuan Metode Nakayasu

a) Keadaan Kurva Naik, dengan 0 < Q < Qp 4 , 2        Tp t Qp

Q (2.40)

Tr

Lengkung Turun Lengkung Naik

0.8 Tr Tg i t Q t Qp 0.3 Qp

0.3 Qp2

Tp T0.3 1.5T


(22)

25 b) Keadaan kurva turun dengan Q > 0,3 Qp

        0.3

3 , 0 . T Tp t Qp

Q (2.41)

c) Keadaan Kurva Turun 0,32 Qp < Q < 0,3 Qp

           0.,3

3 , 0 5 , 1 5 , 0 3 , 0 . T T Tp t Qp

Q (2.42)

d) Keadaan Kurva Turun Q < 0,32 Qp

         

 0,3

3 , 0 2 5 , 1 3 , 0 . T T Tp t Qp

Q (2.43)

Selanjutnya hubungan antara t dan Q/Ro untuk setiap kondisi kurva dapat digambarkan melalui grafik.

C. HSS Gama I (lokasi penelitian di Pulau Jawa, 1985)

Hidrograf Satuan Sintetis Gama I (HSS Gama I) dikembangkan berdasarkan perilaku hidrologik 30 DAS di Pulau Jawa. Parameter yang digunakan dalam HSS Gama I adalah sebagai berikut:

1. Faktor sumber (source factor, SF) yaitu perbandingan antara jumlah panjang sungai-sungai tingkat satu (first order stream) dengan jumlah panjang sungai semua tingkat.

2. Frekuensi sumber (source frequency, SN) yaitu perbandingan antara jumlah pangsa sungai (stream segment) tingkat satu dengan jumlah pangsa sungai semua tingkat.

3. Faktor lebar (width factor, WF) yaitu perbandingan antara lebar DAS yang diukur di titik di sungai yang berjarak 0,75 L dan di titik di sungai yang


(23)

26 berjarak 0,25 L dari titik kontrol, dengan L adalah panjang sungai utama (main stream).

4. Luas DAS sebelah hulu (relative upstream area, RUA) perbandingan antara luas DAS sebelah hulu dan luas DAS.

5. Faktor simetri (symetry factor, SIM), perkalian antara factor lebar (WF) dan RUA. Faktor ini mendiskripsikan bentuk DAS.

6. Jumlah pertemuan sungai (joint frequency, JN), yaitu jumlah semua pertemuan sungai dalam DAS.

7. Kerapatan jaringan kuras (drainage density, D) yaitu jumlah panjang sungai semua titik tiap satuan luas DAS.

Penetapan tingkat-tingkat sungai dilakukan dengan cara Strahler (1964) yang pada dasarnya sebagai berikut:

1. Sungai-sungai paling ujung adalah sungai-sungai tingkat satu.

2. Apabila dua buah sungai dengan tingkat yang sama bertemu akan terbentuk sungai satu tingkat lebih tinggi.

3. Apabila sebuah sungai dengan suatu tingkat bertemu dengan sungai lain dengan tingkat yang lebih rendah maka tingkat sungai pertama tidak berubah. HSS Gama I terdiri dari empat variable pokok, yaitu waktu naik (time of rise, TR), debit puncak (QP), waktu dasar (TB) dan sisi resesi yang ditentukan oleh nilai koefisien tampungan (storage coefficient, K), sedangkan sisi resesi mengikuti persamaan eksponensial seperti persamaan:

k t p

t Q e


(24)

27 TR = 0,43(L/100 SF)3 + 1,0665 SIM + 1,2775 (2.45) QP = 0,1836 A0,5886 TR-0,4008 JN0,2574 (2.46) TB = 27,4132 TR0,1457 S-0,0986 SN0,7344 RUA 0,2574 (2.47) K = 0,5617 A0,1798 S-0,1446 SF-1,0897 D0,0452 (2.48) Beberapa persamaan tambahan yang terkait dengan HSS Gama I diantaranya adalah :

= 10,4903 – 3,859.10-6 A2 + 1,6985.10-13(A/SN)4 (2.49) dimana :

 = Phi Index

Dengan memperhatikan pendekatan aliran dasar oleh Kraijenhoff Van Der Leur pada tahun 1967 (dalam Harto, 1993) diperoleh persamaan empirik untuk aliran dasar. Analisis untuk HSS Gama I hanya dilakukan untuk musim penghujan, sehingga aliran persamaan juga hanya berlaku untuk musim hujan.

QB = 0,4751 A0,6444 D0,9430 (2.50) Apabila dalam keadaan terpaksa dalam DAS hanya terdapat satu stasiun hujan, maka hujan rata-rata DAS dapat diperoleh dengan hujan dari stasiun tersebut dengan mengalikannya dengan faktor reduksi (B).


(25)

BAB I PENDAHULUAN

1.1Latar Belakang

Indonesia berada di daerah yang beriklim tropis dimana pada musim penghujan mempunyai curah hujan yang relatif cukup tinggi, dan seringkali mengakibatkan terjadinya banjir. Banjir adalah aliran/genangan air yang menimbulkan kerugian ekonomi atau bahkan menyebabkan kehilangan jiwa (Asdak, 1995). Aliran/genangan air ini dapat terjadi karena adanya luapan-luapan pada daerah di kanan atau kiri sungai/saluran akibat alur sungai tidak memiliki kapasitas yang cukup bagi debit aliran yang lewat (Sudjarwadi, 1987). Banjir juga merupakan suatu respon Daerah Aliran Sungai (DAS) dimana DAS merupakan suatu wilayah daratan yang secara topografik dibatasi oleh punggung-punggung gunung yang menampung dan menyimpan air hujan untuk kemudian menyalurkannya ke laut melalui sungai utama (Asdak, 2002).

Banjir di Indonesia umumnya disebabkan oleh kombinasi antara karakteristik hujan (intensitas tinggi, durasi tinggi, ketinggian hujan dan frekuensi yang cukup tinggi) dan karakteristik DAS (perubahan tata guna lahan, rusaknya sistem drainase dan penyempitan sungai). Banjir besar terakhir terjadi pada tanggal 18 Desember 2008. Ketika bencana banjir terjadi di Bandar Lampung, tidak terdapat data terukur misalkan data hujan dan aliran, sehingga solusi terhadap


(26)

2

permasalahan banjir yang ditawarkan masih bersifat prakiraan dan prediksi, bahkan banyak pendekatan yang bersifat kualitatif.

Pemecahan permasalahan banjir bukanlah hal yang mudah, karena harus diselesaikan secara kuantitatif, komprehensif, dan bertahap. Pemecahan tersebut menyangkut penyelesaian secara teknis dan non teknis, yang tidak akan menghasilkan suatu solusi yang baik tanpa didukung oleh data dan pendekatan yang terukur (kuantitas).

Data hidrologi daerah setempat akan membantu memahami kondisi DAS setempat serta respon DAS terhadap hujan (Kusumastuti, 2008). Proses transformasi hujan menjadi aliran pada suatu DAS sangat dipengaruhi oleh kondisi geografi, topografi, serta sifat hujan (Kusumastuti dkk, 2007; Kusumastuti dkk, 2008). Suatu metode yang akurat yang dapat dijadikan pedoman di dalam melihat respon suatu DAS terhadap bahaya banjir adalah dengan hidrograf satuan (Kusumastuti, 2008). Hidrograf aliran merupakan bagian yang sangat penting dalam mengatasi masalah-masalah yang berkaitan dengan hidrologi. Sebab hidrograf aliran dapat menggambarkan suatu distribusi waktu dari aliran permukaan di suatu tempat pengukuran dan menentukan keanerakaragaman karakteristik fisik DAS. Beberapa faktor yang mempengaruhi hidrograf antara lain adalah faktor hujan (jumlah, intensitas, distribusi, dan durasi hujan) dan faktor fisik permukaan lahan.

Hubungan antara hidrograf aliran dengan kondisi fisik DAS dapat menunjukkan sifat respon DAS terhadap masukan hujan. Respon DAS tersebut dalam konsep hidrologi disebut hidrograf satuan (unit hydrograph), yang merupakan hidrograf khas untuk satu DAS. Hidrograf satuan adalah hidrograf


(27)

3

limpasan langsung yang dihasilkan oleh satu satuan hujan (rainfall excess) yang tersebar merata di seluruh DAS dengan intensitas yang tetap selama satu satuan waktu tertentu.

Hidrograf satuan dapat dibuat jika tersedia pasangan data hujan dan debit aliran, tetapi selama ini jika tidak tersedia kedua data tersebut maka hidrograf satuan dibuat secara sintetik yaitu hidrograf satuan sintetis. Hidrograf Satuan Sintetis (HSS), yaitu hidrograf satuan yang tidak berdasarkan data terukur. Hidrograf Satuan Sintetis menggunakan suatu pendekatan terhadap karakteristik DAS (Kusumastuti, 2008). Terdapat beberapa model Hidrograf Satuan Sintetis diantaranya HSS Snyder , HSS Nakayasu, dan HSS Gama I.

Setiap DAS seharusnya memiliki hidrograf satuan tertentu, karena hidrograf satuan merupakan suatu pedoman di dalam melihat respon suatu DAS terhadap bahaya banjir. Beberapa penelitian mengenai Hidrograf Satuan Terukur yang telah dilakukan diantaranya oleh Jayadi dan Sujono. (2007) di DI Yogyakarta, Sukoso (2004) di DI Yogyakarta, dan Tunas dkk. (2008) di Sulawasi Tengah. Data hidrograf yang dilakukan pada daerah studi tersebut adalah data yang diperoleh berdasarkan waktu kenaikan, durasi, rata-rata debit puncak banjir, volume, rasio puncak dan serta berhubungan juga dengan karakteristik fisik DAS seperti luas area, bentuk, kemiringan, kerapatan aliran, relief DAS, serta kombinasi dari semuanya. Saat ini belum ada Hidrograf Satuan Terukur (HST) untuk masing-masing DAS di Provinsi Lampung. Analisis hidrologi yang selama ini dipakai selalu meggunakan Hidrograf Satuan Sintetis (HSS) yang sangat dipengaruhi oleh metode pendekatan yang dipilih. Oleh karena itu diperlukan pembuatan hidrograf satuan terukur sehingga akan didapatkan data yang lebih akurat di dalam


(28)

4

mendeskripsikan respon suatu DAS,karena hidrograf satuan terukur dibuat berdasarkan data primer setempat. Hasil pembuatan HST akan dibandingkan dengan HSS yang sering digunakan pada saat ini yaitu HSS Snyder, HSS Gama I, HSS Nakayasu.

Penelitian ini akan dilakukan di DAS Way Kuala Garuntang serta di DAS Way Simpang Kiri yang merupakan Sub DAS Way Belau Kuripan. DAS ini dipilih karena memiliki cakupan area terbesar sehingga dapat mewakili DAS-DAS yang ada.

1.2 Perumusan Masalah

Perumusan masalah dalam penelitian ini adalah sebagai berikut:

1. Bagaimanakah HST DAS Way Kuala Garuntang dan DAS Way Simpang Kiri (Sub DAS Way Belau Kuripan)?

2. Bagaimanakah hasil perbandingan antara HST dan HSS (Snyder, Gama I dan Nakayasu)?

1.3 Tujuan Penelitian

Tujuan penelitian ini berdasarkan masalah yang dirumuskan yaitu:

1. Mengembangkan Hidrograf Satuan Terukur pada DAS Way Kuala Garuntang dan DAS Way Simpang Kiri (Sub DAS Way Belau Kuripan).

2. Membandingkan hasil Hidrograf Satuan Terukur dengan Hidrograf Satuan Sintetis yang sering dipergunakan pada saat ini (HSS Snyder, HSS Gama I dan HSS Nakayasu).


(29)

5

1.4 Manfaat Penelitian

Manfaat dari penelitian ini adalah :

1. Memberikan informasi mengenai Hidrograf Satuan Terukur untuk dijadikan pedoman di dalam melihat respon suatu DAS.

2. Mengetahui Hidrograf Satuan Sintetis yang mana yang cenderung mendekati Hidrograf Satuan Terukur untuk wilayah yang diteliti.

1.5 Batasan Masalah

Batasan masalah dari penelitian ini adalah sebagai berikut:

1. Mengukur tinggi muka air, kecepatan, dan tampang melintang (cross section) pada titik kontrol yang terletak pada Sungai Way Kuala Garuntang dan Sungai Way Simpang Kiri.

2. Mengukur tinggi hujan dengan menggunakan alat pengukur hujan otomatis tipe tipping bucket.

3. Membuat Hidrograf Satuan Terukur untuk wilayah DAS Way Kuala Garuntang dan DAS Way Simpang Kiri.

4. Membandingkan Hidrograf Satuan Terukur dengan Hidrograf Satuan Sintetis (HSS Snyder, HSS Gama I dan HSS Nakayasu).


(30)

BAB III

METODOLOGI PENELITIAN

3.1 Lokasi Penelitian

Lokasi penelitian terletak di Bandar Lampung dengan objek penelitian DAS Way Kuala Garuntang (Sungai Way Kuala) dan DAS Way Simpang Kiri (Sub DAS Way Belau Kuripan) dapat dilihat pada Gambar 3.1.

3.2 Pengumpulan Data

Data yang diperlukan dalam penelitian ini terdiri dari:

1. Data curah hujan yang digunakan diambil dari alat penakar hujan otomatis tipe Hellman di Stasiun BMG Maritim Lampung (tahun pengamatan 2000 – sekarang).

2. Data curah hujan otomatis yang diperoleh dari automatic raingauge jenis tipping bucket yang dipasang di DAS.

3. Data tinggi muka air yang diukur langsung dari sungai baik secara manual maupun dengan automatic water level recorder.

4. Data kecepatan aliran pada masing-masing sungai. 5. Data tampang melintang (cross section).


(31)

29

3.3 Alat

Alat-alat yang digunakan pada penelitian ini:

1. Rekaman AWLR (Automatic Water Level Recorder), digunakan untuk mengukur tinggi muka air sungai secara otomatis.

2. Automatic raingauge jenis tipping bucket , digunakan untuk mendapatkan data hujan.

3. Peilscale (meteran), digunakan untuk mengukur tinggi muka air secara manual. 4. Current Meter, digunakan untuk mengukur kecepatan aliran sungai.

5. Stop Wacth, digunakan untuk mengukur waktu. 6. Meteran, digunakan untuk mengukur lebar sungai.

7. Piva PVC solid, digunakan untuk melindungi alat water level probe yang ditanamkan di sungai sehingga tinggi muka air sungai dapat terukur dengan time step yang kecil.

3.4 Langkah Penelitian

Langkah-langkah yang dilakukan dalam penelitian ini adalah sebagai berikut: 1. Pengumpulan data-data curah hujan yang didapat dari alat penakar hujan

otomatis tipe Hellman di Stasiun BMG Maritim Lampung (tahun pengamatan 2000 – sekarang) dan data curah hujan yang diperoleh dari automatic raingauge jenis tipping bucket yang dipasang di DAS.

2. Pengumpulan data-data tinggi muka air yang didapat langsung dari rekaman Automatic Water Level Recorder dan peilscale di beberapa sungai.


(32)

30

3. Pengumpulan data debit yang dilakukan melalui pengukuran kecepatan aliran dengan menggunakan current meter.

4. Pengalihragaman hidrograf tinggi muka air (stage hydrograph) menjadi hidrograf aliran (discharge hydrograph) dengan liku kalibrasi.

5. Pemisahan hidrograf limpasan langsung (direct run-off) dengan aliran dasar (base flow) (Harto, 1993). Pemisahan aliran dasar dilakukan dengan pendekatan straight line method, dimana penarikan garis aliran dasar dimulai dari saat hidrograf aliran naik dan berpotongan pada akhir resesi. Awal sisi naik ditandai dengan berubahnya ordinat hidrograf dari konstan menjadi naik, sebaliknya akhir sisi resesi ditandai dengan berubahnya hidrograf aliran dari ordinat menurun menjadi konstan. Hidrograf limpasan langsung (HLL) diperoleh dengan memperkurangkan hidrograf total dengan aliran dasar (base flow).

6. Ordinat hidrograf satuan masing-masing hidrograf banjir diperoleh dengan membagi masing-masing ordinat limpasan langsung dengan besarnya hujan efektif masing-masing DAS. Hujan efektif dalam analisis ini diartikan sebagai hujan yang dapat menyebabkan terjadinya limpasan langsung, yaitu hujan total setelah dikurangi dengan kehilangan-kehilangan dalam hal ini yang dapat dihitung adalah infiltrasi dan dinyatakan dengan indeks phi (). Besarnya indeks phi diperoleh dengan membagi selisih hujan total dan hujan yang menyebabkan limpasan langsung dengan lama hujan. Hujan yang menyebabkan limpasan langsung diperoleh dengan cara membagi jumlah total debit limpasan langsung


(33)

31

dengan luas DAS (mm/jam). Demikian seterusnya sampai diperoleh ordinat satuan setiap kejadian banjir pada setiap DAS.

7. Membandingkan ordinat hidrograf limpasan langsung yang didapat dari hitungan ini dengan ordinat hidrograf limpasan langsung yang terukur, sehingga akan diperoleh ordinat-ordinat hidrograf satuan.

8. Pengumpulan parameter-parameter DAS untuk perhitungan Hidrograf Satuan Sintetis (HSS Snyder, HSS Gama I dan HSS Nakayasu).

9. Membandingkan hasil perhitungan Hidrograf Satuan Terukur dengan Hidrograf Satuan Sintetis (HSS Snyder, HSS Gama I dan HSS Nakayasu).


(34)

32

3.5 Bagan Alir Penelitian

Gambar 3.4 Bagan Alir Penelitian

Mulai Data Hujan Masing-masing DAS Data AWLR masing-masing DAS Kecepatan Aliran Debit

Pemisahan Debit Aliran

Analisis Hidrograf Satuan Terukur

end

Parameter DAS

HSS - Snyder - Gama I - Nakayasu

Hujan Efektif

Φ=( Ptot-Pnet)/T Ф > yang diprediksi

No

Yes

Liku kalibrasi


(35)

(36)

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dari hasil penelitian dan pembahasan yang telah diuraikan sebelumnya, dapat diambil kesimpulan sebagai berikut :

1. Data hujan yang digunakan adalah data curah hujan jangka pendek (5,10, 15, 30, 45, 60, 120, 180, 360 dan 720 menit) dan merupakan data maksimum tahunan (annual maximum series) serta distribusi yang sesuai dengan data hujan tersebut adalah distribusi Log Person Tipe III. Data yang diambil di BMG Maritim Panjang dipergunakan untuk menghitung HSS sedangkan untuk HST data yang dipergunakan diambil dari rain gauge type tipping bucket yang dipasang di lokasi penelitian.

2. HST bisa dikembangkan untuk time step yang lebih kecil maupun yang lebih besar sehingga dapat terlihat hidrograf yeng terbentuk lebih detail walaupun untuk time step yang lebih kecil grafik yang terbentuk lebih noisy (time step 5, 10, dan 15 menit), sedangkan HSS hanya dapat digunakan pada time step jam-jaman.

3. Pada kedua DAS yaitu DAS Way Kuala Garuntang dan DAS Way Simpang Kiri metode HSS yang mendekati data terukur yaitu HSS Nakayasu dengan koefisien pengaliran masing-masing DAS sebesar 0,7 dan 0,4. Sedangkan


(37)

92

metode HSS Snyder maupun Gama I kurang sesuai digunakan sebagai pendekatan buatan di kedua DAS tersebut, kemungkinan dikarenakan koefisien karakteristik dan kondisi DAS yang digunakan kurang sesuai untuk kedua DAS tersebut.

3. Kejadian hujan pada tanggal 14 Februari 2010 sama dengan curah hujan rancangan (12 jam) dengan kala ulang 2 tahunan yaitu sebesar 75,6 mm/hari. Dan jika dimasukkan kedalam persamaan hidrograf satuan terukur y = 4E-13x5 - 7E-10x4 + 7E-07x3 - 0,000x2 + 0,043x + 0,646 (persamaan HST 60 Menit-an DAS Way Kuala Garuntang) maka dihasilkan debit banjir sebesar 52,09 m3/dt sedangkan dengan curah hujan yang sama untuk DAS Way Simpang Kiri dengan persamaan HST y = 8E-14x5 - 2E-10x4 + 2E-07x3 - 9E-05x2 + 0,015x + 0,337 dihasilkan debit banjir sebesar 26,60 m3/dt.

5.2 Saran

Perlu penambahan rain gauge pada beberapa daerah sepanjang DAS terutama di bagaian hulu, karena hujan sering terjadi tidak merata diseluruh DAS, sehingga jika terjadi hujan dapat diprediksi rata-rata curah hujan yang terjadi pada DAS tersebut.


(38)

iv

DAFTAR ISI

Halaman DAFTAR GAMBAR……….. vi DAFTAR TABEL……….. viii

NOTASI………... x

DAFTAR LAMPIRAN ……….. xii

I . PENDAHULUAN

1.1 Latar Belakang………. 1 1.2 Perumusan Masalah ………. 4 1.3 Tujuan Penelitian………. 4 1.4 Manfaat Penelitian………..………. 5 1.5 Batasan Masalah…………..………. 5 II. TINJAUAN PUSTAKA

2.1 Umum……… 6 2.2 Analisis Hidrologi ……… 6 2.2.1 Curah Hujan (Presipitasi)………. 6 2.2.2 Curah Hujan Efektif ……… 8 2.2.3 Analisis Frekwensi dan Probabilitas ……… 9 2.2.4 Uji Kesesuaian Distribusi ………... 14 2.2.5 Transformasi Hujan-Aliran ………. 16 2.2.6 Hidrograf Satuan ………. 18 2.2.7 Hidrograf Satuan Sintetis ……… 20

III. METODOLOGI PENELITIAN

3.1 Lokasi Penelitian………. 28 3.2 Pengumpulan Data………. 28 3.3 Alat……….. 29 3.4 Langkah Penelitian………. 20 3.5 Bagan Alir Penelitian………. 32 IV. HASIL DAN PEMBAHASAN

4.1 Umum ………. 36


(39)

v

4.3 Hujan Rancangan ……… 38 4.4 Uji Smirnov-Kolmogorof ………. 39 4.5 Uji Chi-Kuadrat X2………... 40 4.6 Hujan Jam-jaman ………. 47 4.7 Hidrograf Satuan Sintetik ……… 48 4.8 Hidrograf Satuan Terukur ……… 76 4.9 Analisis HSS dan HST ……….. 87 V. KESIMPULAN DAN SARAN

5.1 Kesimpulan ……… 91

5.2 Saran ……….. 92

DAFTAR PUSTAKA LAMPIRAN

Lampiran A. Hasil Perhitungan Curah Hujan Maksimum Tiap-Tiap Durasi Lampiran B. Hidrograf Satuan Terukur


(40)

(41)

(42)

(43)

DAFTAR PUSTAKA

Asdak, C. 1995. Hidrologi dan Pengelolaan Daerah Aliran Sungai. Gajah Mada University Press, Yogyakarta.

Asdak, C. 2002. Hidrologi dan Pengelolaan Daerah Aliran Sungai. Gajah Mada University Press, Yogyakarta.

Barfield, B.J., Warner, C., dan Haan, C.T., 1983, Applied Hydrology and Sedimentology of Distributed Lands, Oklahama Technical Press, Oklahama.

Chow, V.T. 1964. Handbook of Applied Hydrology. McGraw-Hill Book Company, New York.

Harto, S., 1993. Analisis Hidrologi, Penerbit P.T Gramedia Pustaka Utama, Jakarta.

Harto, S., 2000. Hidrologi (Teori, Masalah dan Penyelesaiannya). Nafiri, Yogyakarta.

Kusumastuti, D.I., 2008. Metode Analis Dalam Analisis Banjir Rancangan Way Pegadungan. Jurnal Rekayasa. Vol.12, No.1. 14-22, April 2008.

Kusumastuti, D.I., Sivapalan, M., Struthers, I., Reynolds, D.A., Murray, K., and Turlach, B.A. 2008. Theresholds in The Storm Response of a Catchment-Lake System and The Occurrence And Magnitude of Catchment-Lake Overflows: Implications For Flood Frequency, Water Resources Reseach Journal Vol. 44 W02438, doi: 10.1029/2006WR005628.2008.

Kusumastuti, D.I., Sivapalan, M., Struthers, I., and Reynolds, D.A., 2007. Theresholds effects in Strom Response and The Occurrence and Magnitude of Flood Event: Implications For Flood Frequency, Hidrological and Enviromental System Science Journal, Special Issue : Thereshold and Pattern Dynamics, Hydrol. Earth Syst. Sci., 11.1515-1528.2007.

Kusumastuti, D.I., Sivapalan, M., and Reynolds, D.A. 2005. The Impact of Within Strom Temporal Pattern and Surface Runoff Triggering on Flood


(44)

Frequency. Presented at VIIth IAHS Scientific Assembly, Foz do Iguassu, Brasil, 3-9 April 2005.

Kusumastuti, D.I., Sivapalan, and Reynolds, D.A. 2005. Effect of Within Strom Temporal Pattern on Flood Frequency. Presented at International Workshop on Prediction in Ungauged Basin, Held by UWA and Centre for Water Reseach, 2-5 Februari 2004.

Jayadi, R., Sujono, J., 2007. Hidrograf Satuan: Permasalahan, dan Alternatif Penyelesaiannya, Forum Teknik Sipil No. XVII/2-Mei 2007.

Shanin, M.M.A. 1976. Statistical Analysis in Hydrology. Lecture Note. IHE. Netherlands.

Sherman, L. K., 1932. Streamflow From Rainfall By Unitgraf Method, Engineering News Records, No.7, April, pp 549 – 563.

Soemarto, CD. 1987. Hidrologi Teknik. Usaha Nasional, Surabaya.

Strahler. A. N. 1964.(Ven Ten Chow, ed), Quantitative Geomorfology Of Drainage Basins and Chanel Networks. Handbook of Applied Hydrology, pp 4.39 – 4.76. McGraw Hill, New York.

Sudjarwadi. 1987. Teknik Sumber Daya Air. PAU Ilmu Teknik UGM, Yogyakarta.

Sukoso, E., 2004. Perbandingan Tingkat Ketelitian Pemakaian Persamaan Hujan Jam-jaman dan Agihan Jam-jaman Terukur Terhadap Hidrograf Debit Rancangan, Tesis, Magister pengelolaan bencana Alam (MPBA), Sekolah Pascasarjana Universitas Gadjah Mada,Yogyakarta.

Suripin. 2004. Sistem Drainase Yang Berkelanjutan. UNDIP Semarang.

Triatmodjo, B. 2006. Hidrologi Terapan Cetakan Pertama, Penerbit Beta Offset Yogyakarta.

Tunas, G., I., Tanga, A., Lesmana, B.C., 2008. Model Transformasi Hujan Aliran Berbasis Hidrograf Satuan Untuk Analisa Banjir. Prosiding Seminar Nasional Sains dan Teknologi-II 2008 Universitas Lampung, 17-18 November 2008

Wilson, E.M. 1993. Hidrologi Teknik. Terjemahan Asnawi. Penerbit Erlangga. Jakarta.


(45)

(46)

DAFTAR ISI

Halaman DAFTAR GAMBAR……….. iii DAFTAR TABEL……….. iv NOTASI………... v

DAFTAR LAMPIRAN ………..

I . PENDAHULUAN

1.1 Latar Belakang………. 1 1.2 Perumusan Masalah ………. 4

1.3 Tujuan Penelitian………. 4

1.4 Manfaat Penelitian………..………. 5

1.5 Batasan Masalah…………..………. 5 II. TINJAUAN PUSTAKA

2.1 Umum……… 6 2.2 Analisis Hidrologi ……… 6 2.2.1 Curah Hujan (Presipitasi)………. 6

2.2.2 Curah Hujan Efektif ……… 8

2.2.3 Analisis Frekwensi dan Probabilitas ……… 9

2.2.4 Uji Kessesuaian Distribusi ………... 13 2.2.5 Transformasi Hujan-Aliran ………. 15

2.2.6 Hidrograf Satuan ………. 17 2.2.7 Hidrograf Satuan Sintetis ……… 19

III. METODOLOGI PENELITIAN

3.1 Lokasi Penelitian………. 26 3.2 Pengumpulan Data………. 26 3.3 Alat……….. 27 3.4 Langkah Penelitian………. 27

3.5 Bagan Alir Penelitian………. 30 IV. HASIL DAN PEMBAHASAN

4.1 Umum ………. 32


(47)

4.3 Hujan Rancangan ………. 34 4.4 Uji Smirnov-Kolmogorof ………. 36 4.5 Uji Chi Kuadrat X2………... 36 4.6 Hujan Jam-jaman ………. 39

4.7 Hidrograf Satuan Sintetik ……… 40 4.8 Hidrograf Satuan Terukur ……… 63 4.9 Analisis HSS dan HST ……….. 73 V. KESIMPULAN DAN SARAN

5.1 Kesimpulan ……… 75

5.2 Saran ……….. 76 DAFTAR PUSTAKA

LAMPIRAN

Lampiran A. Hasil Perhitungan Curah Hujan Maksimum Tiap-Tiap Durasi Lampiran B. Hidrograf Satuan Terukur


(48)

(49)

(50)

DAFTAR GAMBAR

Gambar Halaman

2.1 Hidrograf Satuan Metode Nakayasu………. 22 3.1 DAS di Kota Bandar Lampung ……… 31 3.2 Bagan Alir Penelitian………. 30 4.1 QHSS Gama I……… 42 4.2 HSS Gama I W.K. Garuntang……… 44 4.3 HSS Gama I DAS Way Simpang Kiri……… 44 4.4 QHSS Snyder………. 50 4.5. HSS Snyder DAS Way Kuala Garuntang……….. 50 4.6 HSS Snyder DAS Way Simpang Kiri……… 50 4.7 QHSS Nakayasu………. 57 4.8 HSS Nakayasu DAS Way Simpang Kiri……… 57 4.9 HSS Nakayasu DAS Way Kuala Garuntang……….. 57 4.10 HSS DAS Way Kuala Garuntang……….. 60 4.11 HSS DAS Way Simpang Kiri……… 62 4.12 Liku Kalibrasi DAS Way Kuala Garuntang……….. 63 4.13 Liku Kalibrasi DAS Way Simpang Kiri……….………... 64 4.14 HST 27 Januari 2010 DAS Way Kuala Garuntang……… 67 4.15 HST 27 Januari 2010 DAS Way Simpang Kiri……….. 67


(51)

Gambar Halaman 4.16 HST DAS Way Kuala Garuntang Periode Waktu 5, 10, 15,

30, 45 dan 60 Menit ……… 68 4.17 HST DAS Way Kuala Garuntang Periode Waktu 2, 3, 6,

dan 12 jam ………..……….……….. 69 4.18 HST DAS Way Simpang Kiri Periode Waktu 5,10,15, 30,

dan 60 Menit-an ………. 70 4.19 HST Periode Waktu 2, 3, 6, 12 Jam-an Pada DAS Way

Simpang Kiri……… .. 71 4.20 Perbandingan QHST dan QHSS DAS Way Kuala

Garuntang………….……….. .. 73 4.21 Perbandingan HST dan HSS DAS Way Simpang Kiri……… 74


(52)

DAFTAR TABEL

Tabel Halaman

4.1 Data Curah Hujan Stasiun BMG Maritim Lampung……. ….. 33 4.2 Tabel Analisa Curah Hujan……….….. 35 4.3 Hujan Rancangan……….…. 35 4.4 Uji Kesesuaian Distribusi Smirnov Kolmogorof Stasiun

BMG Maritim ……….. 37 4.5 Pengujian Chi-Square (χ^2)……….. 38 4.6 Intensitas Hujan jam-jaman ……….… 39 4.7 Analisis Hidrograf Satuan Sintetik Gama I………. 40 4.8 HSS Gama I………... 42 4.9 HSS Gama I DAS Way Kuala Garuntang……… 43 4.10 HSS Gama I DAS Way Simpang Kiri………. 45 4.11 HSS Snyder………..… 49 4.12 HSS Syder DAS Way Kuala Garuntang………..…… 51 4.13 HSS Syder DAS Way Simpang Kiri………. 52 4.14 HSS Nakayasu ……….. 56 4.15 HSS Nakayasu DAS Way Simpang Kiri……….. 58 4.16 HSS Nakayasu DAS Way Kuala Garuntang………. 59 4.17 Perhitungan Hidrograf Limpasan Langsung………. 65 4.18 HST Periode 60 Menitan DAS Way Kuala Garuntang…… …… 66 4.19 Persamaan Hidrograf Satuan Terukur DAS Way


(53)

Tabel Halaman 4.20 Persamaan Hidrograf Satuan Terukur DAS Way


(54)

(55)

NOTASI

B = Faktor reduksi C = Koefisien limpasan

Ct = Koefisien jangkauan antara 0.61 dan 0.94 Cp = Koefisien dengan jangkau antara 0.4 dan 0.8 D = Density

Dk = Derajat kebebasan.

Fe = Frekuensi pengamatan kelas j Ft = Frekuensi teoritis kelas j JN = Joint Frequency

k = Faktor frekuensi dari Gumbel

Lc = Panjang sungai dari titik kontrol sampai titik berat DAS (mil) L = Panjang sungai dari titik ontrol sampai titik berat DAS di hulu (mil)

LogX = Curah hujan harian maksimum rata-rata dalam harga logaritmik M = Nomor urut data.

n

= Jumlah tahun pengamatan. P = Peluang (%)

Qp = Debit puncak banjir (m3/detik) R = Intesitas curah hujan

R0 = Hujan satuan (mm)


(56)

RUA = Relative Upstream Area SF = Source Factor

SIM = Symmetry Factor SN = Source Frequency

Sn = standard deviasi dari reduced variate (tabel ) tergantung dari jumlah tahun pengamatan data.

SLogX= Standard deviasi dari rangkaian data dalam harga logaritmik Sx = standar deviasi

Tp = Tenggang waktu (time lag) dari permulaan hujan sampai puncak banjir

(jam)

T0.3 = Waktu yang diperlukan oleh penurunan debit, dari debit puncak sampai

menjadi 30% dari debit puncak.

p

t = Beda waktu antara tengah-tengah hujan efektif dengan lama tr dan debit puncak dalam jam.

r

t = Lama hujan efektif TB = Waktu dasar

TR = Time of rise WF = Width Factor

Xi = Curah hujan pada tahun pengamatan ke i.

Xr = Curah hujan harian maksimum rata-rata selama periode pengamatan.

T

X = besarnya curah hujan dengan periode ulang t tahun.

Yn = harga rata-rata reduced variate (tabel ) tergantung dari jumlah tahun pengamatan data.

Yt = reduced variate sebagai fungsi dari periode ulang t = -(0.834+2.303 Log(Log Tr/Tr-1).


(57)

 = 2 =>Pada daerah pengaliran biasa

 = 1,5 =>Pada bagian naik hidrograf lambat, dan turun cepat  = 3 =>Pada bagian naik hidrograf cepat, turun lambat


(58)

DAFTAR LAMPIRAN

LAMPIRAN A

A.1 Curah Hujan Maksimum Tiap-Tiap Durasi

A.2 Perhitungan Analisis Frekuensi Curah Hujan Dengan Durasi 5 dan 10 Menit

A.3 Perhitungan Analisis Frekuensi Curah Hujan Dengan Durasi 15 dan 30 Menit

A.4 Perhitungan Analisis Frekuensi Curah Hujan Dengan Durasi 45 dan 60 Menit

A.5 Perhitungan Analisis Frekuensi Curah Hujan Dengan Durasi 120 dan 180 Menit

A.6 Perhitungan Analisis Frekuensi Curah Hujan Dengan Durasi 360 dan 720 Menit

A.7 Parameter Statistik Analisis Frekuensi A.8 Konstanta (G) Untuk Harga Cs Positif A.9 Konstanta (G) Untuk Harga Cs Negatif

A.10 Tabel Uji Kesesuaian Distribusi Smirnov Kolmogorof Stasiun BMG Maritim Lampung Durasi 5 Menit

A.11 Tabel Uji Kesesuaian Distribusi Smirnov Kolmogorof Stasiun BMG Maritim Lampung Durasi 10 Menit

A.12 Tabel Uji Kesesuaian Distribusi Smirnov Kolmogorof Stasiun BMG Maritim Lampung Durasi 15 Menit

A.13 Tabel Uji Kesesuaian Distribusi Smirnov Kolmogorof Stasiun BMG Maritim Lampung Durasi 30 Menit


(59)

LAMPIRAN A

A.14 Tabel Uji Kesesuaian Distribusi Smirnov Kolmogorof Stasiun BMG Maritim Lampung Durasi 45 Menit

A.15 Tabel Uji Kesesuaian Distribusi Smirnov Kolmogorof Stasiun BMG Maritim Lampung Durasi 60 Menit

A.16 Tabel Uji Kesesuaian Distribusi Smirnov Kolmogorof Stasiun BMG Maritim Lampung Durasi 120 Menit

A.17 Tabel Uji Kesesuaian Distribusi Smirnov Kolmogorof Stasiun BMG Maritim Lampung Durasi 180 Menit

A.18 Tabel Uji Kesesuaian Distribusi Smirnov Kolmogorof Stasiun BMG Maritim Lampung Durasi 360 Menit

A.19 Tabel Uji Kesesuaian Distribusi Smirnov Kolmogorof Stasiun BMG Maritim Lampung Durasi 720 Menit

A.20 Tabel Nilai Kritis (cr) Smirnov - Kolmogorov

A.21 Perhitungan Uji Kesesuaian Distribusi Dengan Metode Chi Square Durasi 5 Menit

A.22 Perhitungan Uji Kesesuaian Distribusi Dengan Metode Chi Square Durasi 10 Menit

A.23 Perhitungan Uji Kesesuaian Distribusi Dengan Metode Chi Square Durasi 15 Menit

A.24 Perhitungan Uji Kesesuaian Distribusi Dengan Metode Chi Square Durasi 30 Menit

A.25 Perhitungan Uji Kesesuaian Distribusi Dengan Metode Chi Square Durasi 45 Menit

A.26 Perhitungan Uji Kesesuaian Distribusi Dengan Metode Chi Square Durasi 60 Menit

A.27 Perhitungan Uji Kesesuaian Distribusi Dengan Metode Chi Square Durasi 120 Menit

A.28 Perhitungan Uji Kesesuaian Distribusi Dengan Metode Chi Square Durasi 180 Menit

A.29 Perhitungan Uji Kesesuaian Distribusi Dengan Metode Chi Square Durasi 360 Menit


(60)

LAMPIRAN A

A.30 Perhitungan Uji Kesesuaian Distribusi Dengan Metode Chi Square Durasi 720 Menit

A.31 Tabel Hasil Δmaks Uji Smirnov Kolmogorof

LAMPIRAN B

B.1 Hidrograf Satuan Terukur Tanggal 15 Desember 2009 B.2 Hidrograf Satuan Terukur Tanggal 15 Desember 2009 B.3 Hidrograf Satuan Terukur Tanggal 15 Desember 2009 B.4 Hidrograf Satuan Terukur Tanggal 25 Desember 2009 B.5 Hidrograf Satuan Terukur Tanggal 25 Desember 2009 B.6 Hidrograf Satuan Terukur Tanggal 25 Desember 2009 B.7 Hidrograf Satuan Terukur Tanggal 25 Desember 2009 B.8 Hidrograf Satuan Terukur Tanggal 25 Desember 2009 B.9 Hidrograf Satuan Terukur Tanggal 27 Desember 2009 B.10 Hidrograf Satuan Terukur Tanggal 27 Desember 2009 B.11 Hidrograf Satuan Terukur Tanggal 27 Desember 2009 B.12 Hidrograf Satuan Terukur Tanggal 27 Desember 2009 B.13 Hidrograf Satuan Terukur Tanggal 31 Desember 2009 B.14 Hidrograf Satuan Terukur Tanggal 31 Desember 2009 B.15 Hidrograf Satuan Terukur Tanggal 31 Desember 2009 B.16 Hidrograf Satuan Terukur Tanggal 31 Desember 2009 B.17 Hidrograf Satuan Terukur Tanggal 8 Januari 2010 B.18 Hidrograf Satuan Terukur Tanggal 8 Januari 2010 B.19 Hidrograf Satuan Terukur Tanggal 8 Januari 2010


(61)

LAMPIRAN B B.20 Hidrograf Satuan Terukur Tanggal 8 Januari 2010 B.21 Hidrograf Satuan Terukur Tanggal 10 Januari 2010 B.22 Hidrograf Satuan Terukur Tanggal 10 Januari 2010 B.23 Hidrograf Satuan Terukur Tanggal 13 Januari 2010 B.24 Hidrograf Satuan Terukur Tanggal 13 Januari 2010 B.25 Hidrograf Satuan Terukur Tanggal 13 Januari 2010 B.26 Hidrograf Satuan Terukur Tanggal 13 Januari 2010 B.27 Hidrograf Satuan Terukur Tanggal 13 Januari 2010 B.28 Hidrograf Satuan Terukur Tanggal 27 Januari 2010 B.29 Hidrograf Satuan Terukur Tanggal 27 Januari 2010 B.30 Hidrograf Satuan Terukur Tanggal 27 Januari 2010 B.31 Hidrograf Satuan Terukur Tanggal 27 Januari 2010 B.32 Hidrograf Satuan Terukur Tanggal 4 Februari 2010 B.33 Hidrograf Satuan Terukur Tanggal 4 Februari 2010 B.34 Hidrograf Satuan Terukur Tanggal 4 Februari 2010 B.35 Hidrograf Satuan Terukur Tanggal 4 Februari 2010 B.36 Hidrograf Satuan Terukur Tanggal 27 Desember 2009 B.37 Hidrograf Satuan Terukur Tanggal 27 Desember 2009 B.38 Hidrograf Satuan Terukur Tanggal 27 Desember 2009 B.39 Hidrograf Satuan Terukur Tanggal 27 Desember 2009 B.40 Hidrograf Satuan Terukur Tanggal 8 Januari 2010 B.41 Hidrograf Satuan Terukur Tanggal 8 Januari 2010 B.42 Hidrograf Satuan Terukur Tanggal 24 Januari 2010


(62)

LAMPIRAN B B.43 Hidrograf Satuan Terukur Tanggal 27 Januari 2010 B.44 Hidrograf Satuan Terukur Tanggal 27 Januari 2010 B.45 Hidrograf Satuan Terukur Tanggal 27 Januari 2010 B.46 Hidrograf Satuan Terukur Tanggal 27 Januari 2010 B.47 Hidrograf Satuan Terukur Tanggal 29 Januari 2010 B.48 Hidrograf Satuan Terukur Tanggal 29 Januari 2010 B.49 Hidrograf Satuan Terukur Tanggal 1 Februari 2010 B.50 Hidrograf Satuan Terukur Tanggal 1 Februari 2010

LAMPIRAN C

C.1 Current Meter dan Tipping Bucket

C.2 AWLR ( Automatic Water Level Recorder) dan Pipa PVC C.3 Peilscale


(63)

(64)

39


(65)

PERBANDINGAN HIDROGRAF SATUAN TERUKUR DENGAN HIDROGRAF SATUAN SINTETIS PADA DAS WAY KUALA

GARUNTANG DAN DAS WAY SIMPANG KIRI

Oleh RINA FEBRINA

Tesis

Sebagai Salah Satu Syarat Untuk Mencapai Gelar MAGISTER TEKNIK

PROGRAM PASCA SARJANAMAGISTER TEKNIK SIPIL FAKULTAS TEKNIK

UNIVERSITAS LAMPUNG 2010


(66)

Judul Tesis : Perbandingan Hidrograf Satuan Terukur Dengan Hidrograf Satuan Sintetis Pada DAS Way Kuala Garuntang dan DAS Way Simpang Kiri

Nama Mahasiswa : Rina Febrina

Nomor Pokok Mahasiswa : 0725011016

Program Studi : Magister Teknik Sipil

Fakultas : Teknik

MENYETUJUI

1. Komisi Pembimbing

Dr. Dyah Indriana K., S.T., M.Sc. Dwi Joko Winarno, S.T., M.Eng NIP 196912191995122001 NIP 196903211995121001

2. Ketua Program Magister Teknik Sipil

Ir. Ahmad Zakaria, M.T., Ph.D. NIP 196705141993031002


(67)

MENGESAHKAN

1. Tim Penguji

Ketua : DR. Dyah Indriana K., S.T., M. Sc. ………. Sekretaris : Dwi Joko Winarno, S.T., M. Eng., ………..

Penguji

Bukan Pembimbing : Ir. Ahmad Zakaria, M.T., Ph.D. ………...

2. Dekan Fakultas Teknik

DR. Ir. Lusmeilia Afriani, D.E.A NIP 196505101993032008

3. Direktur Program Pasca Sarjana Universitas Lampung

Prof. DR. Ir. Abdul Kadir Salam, M.Sc. NIP 196011091985031001


(68)

LEMBAR PERNYATAAN

Dengan ini saya menyatakan dengan sebenarnya bahwa:

1. Tesis dengan judul PERBANDINGAN HIDROGRAF SATUAN TERUKUR DENGAN HIDROGRAF SATUAN SINTETIS PADA DAS WAY KUALA GARUNTANG DAN DAS WAY SIMPANG KIRI adalah karya saya sendiri dan saya tidak melakukan penjiplakan atau pengutipan atas karya penulis lain dengan cara yang tidak sesuai dengan tata etika ilmiah yang berlaku dalam masyarakat akademik atau yang disebut plagiarisme.

2. Hak intelektual atas karya ilmiah ini diserahkan sepenuhnya kepada Universitas Lampung.

Atas pernyataan ini, apabila dikemudian hari ternyata ditemukan adanya ketidak benaran, saya bersedia menanggung akibat dan sangksi yang diberikan kepada saya dan sanggup dituntut sesuai hukum yang berlaku.

Bandar Lampung, Pembuat Pernyataan

RINA FEBRINA NPM 0725011016


(69)

SANWACANA

Puji syukur penulis haturkan kepada Allah SWT Yang Maha Pengasih dan Maha Penyayang, karena berkat rahmat dan karunia-Nya penulis dapat menyelesaikan tugas akhir ini.

Tugas akhir ini dibuat sebagai salah satu syarat untuk menyelesaikan program studi Magister Teknik Sipil pada Universitas Lampung. Penulis menyadari tidaklah mungkin tugas akhir ini dapat diselesaikan tanpa adanya bantuan dari berbagai pihak baik langsung maupun tidak langsung.

Dengan selesainya tugas akhir ini, penulis mengucapkan terima kasih yang setulus-tulusnya kepada:

1. Ibu DR. Ir. Lusmeilia Afriani D.E.A., selaku Dekan Fakultas Teknik atas izin dan fasilitas yang diberikan kepada saya selama perkuliahan dan menyelesaikan tugas akhir ini.

2. Ibu DR. Dyah Indriana K., S.T., M.Sc., selaku Pembimbing Utama atas kesediannya untuk memberikan bimbingan, saran dan kritik dalam proses penyelesaian tugas akhir ini.

3. Bapak Dwi Joko Winarno, S.T., M. Eng., selalu Pembimbing Kedua atas kesediannya untuk memberikan bimbingan, saran dan kritik dalam proses penyelesaian tugas akhir ini.


(70)

4. Bapak Ir. Ahmad Zakaria, M.T., Ph.D., selaku Ketua Program Magister Teknik Sipil dan Penguji Utama atas masukan dan saran-saran kepada penulis.

5. Bapak Drs. I Wayan Diana, S.T., M.T., selaku Pengelola Program Magister Teknik Sipil atas masukan dan saran-saran pada seminar proposal dan seminar pembahasan.

6. Ibu Sumiharni, S.T., M.T., selaku Pengelola Program Magister Teknik Sipil atas masukan dan saran-saran pada seminar proposal dan seminar pembahasan. 7. Bapak dan Ibu Dosen pada Program Magister Teknik Sipil Fakultas Teknik

Universitas Lampung yang telah membekali penulis dengan ilmu pengetahuan selama perkuliahan.

8. Ayah, Ibu dan Adik-adikku atas dukungan semangat, do’a, dan cinta selama penulis menyelesaikan perkuliahan.

9. Teman-teman seperjuanganku Dodi, Izul, Dasril dan Maman atas kerjasamanya yang sangat menyenangkan.

10. Bapak dan Ibu staf di Sta. BMG Maritim atas bantuan data untuk menyelesaikan tugas akhir.

11. Bapak dan Ibu staf Fakultas Teknik dan Sekretariat Pascasarjana Unila atas bantuannya kepada penulis.

12. Rekan-rekan angkatan 2007 untuk persahabatan yang menyenangkan serta semua pihak yang telah banyak memberikan bantuan kepada penulis selama menyelesaikan tugas akhir.


(71)

Akhir kata, Penulis menyadari bahwa tugas akhir ini masih jauh dari kesempurnaan, akan tetapi harapan penulis semoga tugas akhir yang sederhana ini dapat memberikan sumbangan yang berguna bagi kita semua. Amin.

Bandar Lampung, Penulis,


(72)

RIWAYAT HIDUP

Penulis dilahirkan di Tanjung Karang 12 Februari 1977, anak pertama dari Syukri dan Ernawati.

Pendidikan di Sekolah Dasar SD Budi Bhakti Persit diselesaikan pada tahun 1988; Sekolah Menengah Pertama di SMPN2 Kedaton pada tahun 1991; Sekolah Menengah Atas di SMAN2 Tanjung Karang pada tahun 1994; Sarjana Teknik pada Fakultas Teknik Universitas Lampung pada tahun 1999; dan Magister Teknik pada Program Magister Teknik Sipil Universitas Lampung pada tahun 2010.

Pada tahun 1999 sampai sekarang, penulis menjadi Dosen Tetap Yayasan pada Universitas Malahayati Bandar Lampung. Tahun 2000 sampai sekarang, penulis menjadi dsen luar biasa pada Universitas Saburai Bandar Lampung. Tahun 2000 – 2002 penulis menjadi koordinator asisten pada Program D3 Teknik Sipil Universitas Lampung.


(73)

Kupersembahkan karya sederhanaku ini untuk :

Ayah, Ibu, Adik

Adikku dan Ponakanku

Atas dukungan do’a, semangat, cinta dan keikhlasan hati untuk membuat

aku terus maju dan berusaha menjadi lebih baik dalam hidup ini

Serta

Malaikat kecilku

Akhmad Rizki Farhan


(74)

i

SANWACANA

Puji syukur penulis panjatkan kehadirat Allah SWT Yang Maha Pengasih dan Maha Penyayang, karena berkat rahmat dan karunia-Nya penulis dapat menyelesaikan tugas akhir ini.

Tugas akhir ini dibuat sebagai salah satu syarat untuk menyelesaikan program studi Magister Teknik Sipil pada Universitas Lampung. Penulis menyadari tidaklah mungkin tugas akhir ini dapat diselesaikan tanpa adanya bantuan dari berbagai pihak baik langsung maupun tidak langsung.

Dengan selesainya tugas akhir ini, penulis mengucapkan terima kasih yang setulus-tulusnya kepada:

1. Ibu Dr. Ir. Lusmeilia Afriani, D.E.A., selaku Dekan Fakultas Teknik atas izin dan fasilitas yang diberikan kepada saya selama perkuliahan dan menyelesaikan tugas akhir ini.

2. Ibu Dr. Dyah Indriana K., S.T., M.Sc., selaku Pembimbing Utama atas kesediannya untuk memberikan bimbingan, saran dan kritik dalam proses penyelesaian tugas akhir ini.

3. Bapak Dwi Joko Winarno, S.T., M. Eng., selalu Pembimbing Kedua atas kesediannya untuk memberikan bimbingan, saran dan kritik dalam proses penyelesaian tugas akhir ini.


(75)

ii

4. Bapak Ir. Ahmad Zakaria, M.T., Ph.D., selaku Ketua Program Magister Teknik Sipil dan Penguji Utama atas masukan dan saran-saran kepada penulis.

5. Bapak Drs. I Wayan Diana, S.T., M.T., selaku Pengelola Program Magister Teknik Sipil atas masukan dan saran-saran pada seminar proposal dan seminar pembahasan.

6. Bapak Ir.Idhar Mahadi Adha, M.T, selaku Pengelola Program Magister Teknik Sipil atas masukan dan saran-saran pada seminar proposal dan seminar pembahasan.

7. Ibu Sumiharni, S.T., M.T., selaku Pengelola Program Magister Teknik Sipil atas masukan dan saran-saran pada seminar proposal dan seminar pembahasan. 8. Bapak dan Ibu Dosen pada Program Magister Teknik Sipil Fakultas Teknik

Universitas Lampung yang telah membekali penulis dengan ilmu pengetahuan selama perkuliahan.

9. Bapak M. Joel D. Mastana, selaku Direktur Taman Satwa dan Wisata Bumi Kedaton dan staf atas bantuan yang telah diberikan selama melakukan penelitian.

10. Mas Afit dan Mbak Esti atas bantuannya dalam menyelesaikan tugas akhir. 11. Teman-teman seperjuanganku Dodi, Izul, Dasril dan Maman atas

kerjasamanya yang sangat menyenangkan.

12. Bapak dan Ibu staf di Sta. BMG Maritim atas bantuan data untuk menyelesaikan tugas akhir.


(76)

iii

13. Bapak dan Ibu staf Fakultas Teknik dan Sekretariat Pascasarjana Unila atas bantuannya kepada penulis.

14. Rekan-rekan angkatan 2007 untuk persahabatan yang menyenangkan serta semua pihak yang telah banyak memberikan bantuan kepada penulis selama menyelesaikan tugas akhir.

Akhir kata, Penulis menyadari bahwa tugas akhir ini masih jauh dari kesempurnaan, akan tetapi harapan penulis semoga tugas akhir yang sederhana ini dapat memberikan sumbangan yang berguna bagi kita semua. Amin.

Bandar Lampung, 10 Mei 2010 Penulis,


(77)

(1)

RIWAYAT HIDUP

Penulis dilahirkan di Tanjung Karang 12 Februari 1977, anak pertama dari Syukri dan Ernawati.

Pendidikan di Sekolah Dasar SD Budi Bhakti Persit diselesaikan pada tahun 1988; Sekolah Menengah Pertama di SMPN2 Kedaton pada tahun 1991; Sekolah Menengah Atas di SMAN2 Tanjung Karang pada tahun 1994; Sarjana Teknik pada Fakultas Teknik Universitas Lampung pada tahun 1999; dan Magister Teknik pada Program Magister Teknik Sipil Universitas Lampung pada tahun 2010.

Pada tahun 1999 sampai sekarang, penulis menjadi Dosen Tetap Yayasan pada Universitas Malahayati Bandar Lampung. Tahun 2000 sampai sekarang, penulis menjadi dsen luar biasa pada Universitas Saburai Bandar Lampung. Tahun 2000 – 2002 penulis menjadi koordinator asisten pada Program D3 Teknik Sipil Universitas Lampung.


(2)

Kupersembahkan karya sederhanaku ini untuk :

Ayah, Ibu, Adik

Adikku dan Ponakanku

Atas dukungan do’a, semangat, cinta dan keikhlasan hati untuk membuat

aku terus maju dan berusaha menjadi lebih baik dalam hidup ini

Serta

Malaikat kecilku


(3)

i

SANWACANA

Puji syukur penulis panjatkan kehadirat Allah SWT Yang Maha Pengasih dan Maha Penyayang, karena berkat rahmat dan karunia-Nya penulis dapat menyelesaikan tugas akhir ini.

Tugas akhir ini dibuat sebagai salah satu syarat untuk menyelesaikan program studi Magister Teknik Sipil pada Universitas Lampung. Penulis menyadari tidaklah mungkin tugas akhir ini dapat diselesaikan tanpa adanya bantuan dari berbagai pihak baik langsung maupun tidak langsung.

Dengan selesainya tugas akhir ini, penulis mengucapkan terima kasih yang setulus-tulusnya kepada:

1. Ibu Dr. Ir. Lusmeilia Afriani, D.E.A., selaku Dekan Fakultas Teknik atas izin dan fasilitas yang diberikan kepada saya selama perkuliahan dan menyelesaikan tugas akhir ini.

2. Ibu Dr. Dyah Indriana K., S.T., M.Sc., selaku Pembimbing Utama atas kesediannya untuk memberikan bimbingan, saran dan kritik dalam proses penyelesaian tugas akhir ini.

3. Bapak Dwi Joko Winarno, S.T., M. Eng., selalu Pembimbing Kedua atas kesediannya untuk memberikan bimbingan, saran dan kritik dalam proses penyelesaian tugas akhir ini.


(4)

ii 4. Bapak Ir. Ahmad Zakaria, M.T., Ph.D., selaku Ketua Program Magister Teknik

Sipil dan Penguji Utama atas masukan dan saran-saran kepada penulis.

5. Bapak Drs. I Wayan Diana, S.T., M.T., selaku Pengelola Program Magister Teknik Sipil atas masukan dan saran-saran pada seminar proposal dan seminar pembahasan.

6. Bapak Ir.Idhar Mahadi Adha, M.T, selaku Pengelola Program Magister Teknik Sipil atas masukan dan saran-saran pada seminar proposal dan seminar pembahasan.

7. Ibu Sumiharni, S.T., M.T., selaku Pengelola Program Magister Teknik Sipil atas masukan dan saran-saran pada seminar proposal dan seminar pembahasan. 8. Bapak dan Ibu Dosen pada Program Magister Teknik Sipil Fakultas Teknik

Universitas Lampung yang telah membekali penulis dengan ilmu pengetahuan selama perkuliahan.

9. Bapak M. Joel D. Mastana, selaku Direktur Taman Satwa dan Wisata Bumi Kedaton dan staf atas bantuan yang telah diberikan selama melakukan penelitian.

10. Mas Afit dan Mbak Esti atas bantuannya dalam menyelesaikan tugas akhir. 11. Teman-teman seperjuanganku Dodi, Izul, Dasril dan Maman atas

kerjasamanya yang sangat menyenangkan.

12. Bapak dan Ibu staf di Sta. BMG Maritim atas bantuan data untuk menyelesaikan tugas akhir.


(5)

iii 13. Bapak dan Ibu staf Fakultas Teknik dan Sekretariat Pascasarjana Unila atas

bantuannya kepada penulis.

14. Rekan-rekan angkatan 2007 untuk persahabatan yang menyenangkan serta semua pihak yang telah banyak memberikan bantuan kepada penulis selama menyelesaikan tugas akhir.

Akhir kata, Penulis menyadari bahwa tugas akhir ini masih jauh dari kesempurnaan, akan tetapi harapan penulis semoga tugas akhir yang sederhana ini dapat memberikan sumbangan yang berguna bagi kita semua. Amin.

Bandar Lampung, 10 Mei 2010 Penulis,


(6)