IMPLEMENTASI METODE RESPONSE SURFACE SEBAGAI UPAYA OPTIMALISASI JUMLAH BINTIL AKAR PADA TANAMAN KEDELAI - Diponegoro University | Institutional Repository (UNDIP-IR) M. Aziz C.

IMPLEMENTASI METODE RESPONSE SURFACE SEBAGAI UPAYA
OPTIMALISASI JUMLAH BINTIL AKAR PADA TANAMAN KEDELAI

SKRIPSI

Disusun Oleh :
MUCHAMMAD AZIZ CHUSEN
24010210141041

DEPARTEMEN STATISTIKA
FAKULTAS SAINS DAN MATEMATIKA
UNIVERSITAS DIPONEGORO
SEMARANG
2017

IMPLEMENTASI METODE RESPONSE SURFACE SEBAGAI UPAYA
OPTIMALISASI JUMLAH BINTIL AKAR PADA TANAMAN KEDELAI

Oleh:
MUCHAMMAD AZIZ CHUSEN
24010210141004


Sebagai salah satu syarat untuk memperoleh gelar
Sarjana Sains pada Departemen Statistika

DEPARTEMEN STATISTIKA
FAKULTAS SAINS DAN MATEMATIKA
UNIVERSITAS DIPONEGORO
SEMARANG
2017

i

LMN N N 
Judul

:

Implementasi Metode Response Surface Sebagai Upaya
Optimalisasi Jumlah Bintil Akar pada Tanaman Kedelai


Nama

:

Muchammad Aziz Chusen

NIM

:

24010210141041

Telah diujikan pada sidang Tugas Akhir dan dinyatakan lulus pada tanggal 22
Maret 2017

Semarang, Maret 2017

Mengetahui
Ketua Departeman Statistika


Panitia Penguji Tugas Akhir

FSM UNDIP

Ketua,

rs. Tarno, M.Si

Drs. Rukun Santoso, M.Si
NIP. 196502251992011001

NIP. 196307061991021001

ii

HALAMAN PENGESAHAN II

Judul

:


Implementasi Metode Response Surface Sebagai Upaya
Optimalisasi Jumlah Bintil Akar pada Tanaman Kedelai

Nama

:

Muchammad Aziz Chusen

NIM

:

24010210141041

Telah diujikan pada sidang Tugas Akhir tanggal 22 Maret 2017

Semarang, Maret 2017


Dosen Pembimbing I

Dosen Pembimbing II

Rita Rahmawati, S.Si, M.Si
NIP. 198009102005012002

Drs. Rukun Santoso, M.Si
NIP. 196502251992011001

iii





Puji syukur kehadirat Allah SWT yang telah memberikan rahmat, hidayah,

dan karunia-Nya sehingga penulis dapat menyelesaikan penulisan Tugas Akhir
dengan judul Implementasi Metode


  sebagai Upaya Optimalisasi

Jumlah Bintil Akar pada Tanaman Kedelai .

Penulis menyadari bahwa di dalam penyusunan Tugas Akhir ini masih banyak

terdapat kekurangan. Penulis sangat berharap setiap kekurangan yang ada dapat
diperbaiki sehingga akan dapat memberikan manfaat bagi kita semua.

Tugas Akhir ini dapat diselesaikan karena bantuan beberapa pihak. Pada

kesempatan ini penulis menyampaikan terima kasih kepada:
1.

2.

3.
4.


Bapak Drs. Tarno, M.Si selaku Ketua Departeman Statistika Fakultas Sains

dan Matematika Universitas Diponegoro Semarang.

Bapak Drs. Rukun Santoso, M.Si sebagai pembimbing I dan Ibu Rita

Rahmawati, S.Si, M.Si sebagai pembimbing II yang telah memberikan
motivasi, bimbingan dan pengarahan dalam penulisan.

Bapak dan Ibu dosen Departeman Statistika Fakultas Sains dan Matematika
Universitas Diponegoro yang telah memberikan ilmu yang bermanfaat.

Semua pihak yang telah membantu dalam penulisan laporan ini yang tidak
dapat disebutkan satu per satu.

Penulis sadar bahwa penulisan Tugas Akhir ini masih jauh dari sempurna.

Oleh karena itu, saran dan kritik dari berbagai pihak sangat penulis harapkan. Besar
harapan penulis semoga Tugas Akhir ini dapat bermanfaat bagi semua pihak.
Semarang, Maret 2017


Penulis

iv

 !
"#$%&# response surface a&'(a) *+a$+ ,+-.+(a/ &'01 $#,/1,2$#,/1, *$a$1*$1,' &'/
-a$#-a$1,' ay/3 b#03+/' +/$+, -#/3a/a(1*1* .#0-a*'(a)a/ $#/$a/3 b#b#0a.a
4'01ab#( b#ba* ay/3 -#-.#/3'0+)1 4'01ab#( $a, b#ba* &'01 0#*.%/5 *#0$a b#0$+6+'/
-#/3%.$1-+-,'/ 0#*.%/7 8#b#0a&'a/ -#$%&# 0esponse surface -a-.+
-#-ba/$+ .#/#(1$1 &'(a- -#(a,+,'/ 1-.0%41*'*1 +/$+, -#/&'.a$,'/ )'*1(
%.$1-+- *#9''r #t .'t &'/ #:1*1#/ 7 Pa&' .#09%;''/ 1/1 &13+/','/ &'t' :a,$%01a(
R?@AB

1340,1 Kobalt 2

93 Ferum*(Kobalt 2). Nilai konsentrasi pada saat ferum = 2 mg/L dan kobalt =
0,1 mg/L mampu menghasilkan pertumbuhan jumlah bintil akar tanaman kedelai
yang optimum pada percobaan ini.
Kata kunci: Rancangan faktorial, Response Surface


v

IJSTRICT

Response surface method is a set of statistics and mathematical techniques, useful
to analyze the issue of multiple independent variables that affect to the dependent
variable of response, and aim to optimize the response. The existence of response
surface method is able to assist researchers in conducting improvised to get
optimum results accurately and efficiently. Experiment using the data factorial
CRD (completely randomized design) with two factors and three levels. Two
factors were tested consists of the elements cobalt and ferrum, with the level in
the form of element concentrations are cobalt (0 mg / L, 0.1 mg / L and 0.2 mg /
L), ferrum (0 mg / L, 1mg / L and 2mg / L). Response variable is the number of
nodules roots of soybean crops. After testing the response surface method
produced a linear model of the first order Jumlah Bintil Akar Kedelai = 10,3 +
10,2 Ferum + 238,3 Kobalt

1340,1 Kobalt


2

93 Ferum*(Kobalt 2). With

the value of concentration at ferrum = 2 mg/L and cobalt = 0.1 mg/L is able to
generate growth in the number of nodules optimum soybean crop in these
experiments.

Keywords: Factorial design, Response surface

vi

KLMNLO PQP
RSTSUSV
RWXWYWZ [\]\X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ _
RWXWYWZ `aZGabWRWZ c ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ __
RWXWYWZ `aZGabWRWZ cc^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ___
dWeW `aZGWZeWf ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ _v
WgbefWd^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ v
WgbefWhe^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ i_

]WjeWf cbc^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ i__
]WjeWf eWgaX^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ x
]WjeWf GWYgWf ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ x_ _
]WjeWf XWY`cfWZ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ x__ _
gWg c `aZ]WR\X\WZ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
k^k^ XStSl gmTSnSVo ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
k^p^ `mluUqrSV YSrSTSs ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
k^t^ gSSt sSV YSrSTSs^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
k^u^ eqvqSV `mVqT_rSV^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

k
k
t
u
u

gWg cc ecZ[W\WZ `\beWdW^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
p^k^ `mlxyzSSV jSn{yl_ST ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
p^p^ fSVxSVoSV jSn{yl_ST fWX ]Su jSn{yl ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
p^p^k^ Yy}mT X_VmSl fSVxSVoSV jSn{yl_ST ]Su jSn{yl ^^^^^^^^^^^^^^^^
p^p^p^ R_y{mr_s^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
p^p^t^ ar{_USr_ `SlSUmtml Yy}mT fSVxSVoSV jSn{yl_ST fWX
]qS jSn{yl
p^p^u^ WVST_r_s bSt t_ts_n fSVxSVoSV jSn{yl_ST fWX ]qS jSn{yl
`mVoqlS_SV [qUTSs dqS}lSt ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
p^t^ hsmxn_Vo Yy}mT ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
p^u^ YStl_nr ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
p^u^k^ YStl_nr dqS}lSt ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

w
w
|
~
€

vii


kw
pk
pu
pw

ƒ„…„ƒ„ †‡ˆtr‰Š ‹‡ut‡r Œ „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ ƒ
ƒ„…„Ž„ †‡t ˆ‰Š ‘’ˆtˆ’‡ „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ ƒ“
ƒ„…„…„ †‡t ˆ‰Š ”•‘Œ–ˆ‡t s „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ ƒ“
ƒ„…„„ †‡t ˆ‰Š —‘˜‡™ˆ‰‡Œ (šnvers†‡t ˆ‰Š) „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ ƒ›
ƒ„…„“„ †‡t ˆ‰Š œˆ‡’Œ‡™ „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ ƒž
ƒ„…„›„ ‹‘ŒŸ ¡™‡¢‡Œ †‡t ˆ‰Š „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ ƒž
ƒ„…„8„ ‹‘‰‡™ˆ‡Œ †‡t ˆ‰Š „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ ƒž
ƒ„…„£„ †ˆŒ †‡tˆ‰Š „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ ƒ£
ƒ„…„¤¥„ —¦‡‰– †‡tˆ‰Š „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ ƒ£
ƒ„…„¤¤„œ‘t‘¡ˆŒ‡Œ †‡t ˆ‰Š „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ Ž¥
ƒ„„ †‘t•‘ Re§¨©ª§« Surface „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ Ž¥
ƒ„“„ ¬‘’‘Šˆ ­ˆŒ‘‡„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ „„„„„„„„„„„„„„„„„„„„„„ Ž8
ƒ„“„¤„ ¬‘’‘Šˆ ­ˆŒ‘‡ ®‘’‡Œ•‡„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ Žž
ƒ„“„ƒ„ ¬‘Šˆ• ‡™„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ …ƒ
ƒ„“„Ž„ Ordinary Least Square„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ …Ž
®¯® ”””
Ž„¤„
Ž„ƒ„
ބބ

†°±²œ²­²G” ‹°³°­”±”¯³„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„
 ¡˜‘ œ‡‡t „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„
†‘t•‘ ¯Œ‡™ˆŠˆs „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„
œˆ‡’‡¡ ¯™ˆ ¯Œ‡™ˆŠˆs œ‡‡t „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„

…›
…›
…›
…£

®¯® ”´ ¯³¯­”” œ¯³ ‹°†®¯µ¯¯³ „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„
…„¤„ ¯Œ‡™ˆŠˆs ´‡ˆ‡Œ ‹‘¶˜‡‡Œ ·‡‰–ˆ‡™ œu‡ ·‡‰– ¬¯­„„„„„„„„„„„„„„„
…„¤„¤„ ‹‘¢ˆ t Œ’‡Œ  Œ– ‰ †‘Œ yŠ Œ ±‡˜‘™ ¯Œ¸‡„„„„„„„„„„„„„„„„„„„„„„
…„¤„ƒ„ ¹Ÿˆ ³¡‡™ˆ‡t ,s µ¡’‘Œˆ‡t s , •‡Œ ”Œ•‘º‘Œ•‘ŒŠˆ ´‡ˆ‡Œ„„
…„¤„Ž„ µˆº–‘Šˆs„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„
…„ƒ„ ‹‘Œ¶¶‰‡Œ —u¸‡ ¬‘ŠºŒ „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„
…„Ž„ ‹‘¡˜ ‡‡t Œ †•‘™ ‹‘¶˜‡‡Œ„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„
…„…„ — ¸‡ ¬‘ŠºŒŠ‘  ¦‡¶‘ „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„

¤
¤
¤

£
“ƒ
“›
›¤

®¯® ´ —°”†‹¹­¯³„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ ›Ž

viii

»¼½¾¼¿ ÀÁ¾¼Ã¼ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÅÆ
ǼÈÀÉ¿¼Ê

ÅÅ

ix

ÌÍÎÏÍÐ ÏÍÑÒÓ
Halaman

ÏÔÕÖ× ØÙ ÚÛÜÝÞß àáâá ãäâãå æáäçáäèáä éáåâêëìáí æîï àãá éáåâêëððððððððððððððððððððððððñ
ÏÔÕÖ× òÙ óêâáí Iäâôëáåõì éáåâêë î öáä éáåâêë ÷ ðððððððððððððððððððððððððððððððððððððððððððððððððððððððð9
ÏÔÕÖ× øÙ Analisis Varian Rancangan Faktorial Dua Faktor RAL..............................21
ÏÔÕÖ× ùÙ Koefisien Kontras Ortogonal ......................................................................33
ÏÔÕÖ× úÙ Koefisien Kontras ALBL ..............................................................................34
ÏÔÕÖ× ûÙ Koefisien Kontras ALBK..............................................................................35
ÏÔÕÖ× üÙ Koefisien Kontras AKBL..............................................................................35
ÏÔÕÖ× ýÙ Koefisien Kontras AKBK .............................................................................36
ÏÔÕÖ× þÙ Analisis Variansi dengan Efek Linear dan Kuadrat ....................................37
ÏÔÕÖ× ØÿÙ Data jumlah bintil tanaman kedelai.......................................................... 52
ÏÔÕÖ× ØØÙ Total interaksi ferum dan kobalt ...............................................................53
ÏÔÕÖ× ØòÙ Tabel Analisis Varian RAL.......................................................................55
ÏÔÕÖ× ØøÙ Koefisien Kontras Ortogonal Ferum(A) dan Kobalt(B)..........................
ÏÔÕÖ× ØùÙ Koefisien Kontras ALBL

62

(Ferum Linear dan Kobalt Linear).............................................................63

ÏÔÕÖ× ØúÙ Koefisien Kontras ALBK
(Ferum Linear dan Kobalt Kuadrat).......................................................... 64

Ë

  Koefisien Kontras AKBL
(Ferum Kuadrat dan Kobalt Linear).......................................................... 65

  Koefisien Kontras AKBK
(Ferum Kuadrat dan Kobalt Kuadrat) ...................................................... 65

   Analisis Variansi dengan Efek Linear dan Kuadrat
(Pada Faktor Ferum dan Kobalt) ...............................................................66

 
 Perhitungan linear dan kuadrat faktor ferum, faktor kobalt dan
interaksinya............................................................................

xi

..

.67


 


  !" # " # $ $ % &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& '(
,2ot of Residual &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 33
 ) G"* + ,-./0/121ty
 4 56% 78$ 9: ;8"  5"89 +$ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 3?
 @ 56% UA 66!8 %$ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 3B
 C 56% 78$ 9: 9 D":% 9% &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 3E
 F G:"H Response Surface I:< J %  #+"
; G898 &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& BK
 L 56% G6%:" : 8$ I:< J %  #+"
; G898 &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& BK



OPQRPS TPUVWSPX
YZ[Z\Z]
T^_`ab^c de fghputi]Z[NjNj kZlNZ] mnlopqZZ] rZshplNZ[ tgZ rZshpl
uiv wn]xZ] ypzh{Zln |N]NhZq wZ] }Mn[~~~~~~~~~€€
T^_`ab^c e fghputi]Z[NjNj unxlnjN

‚ZwZ rZshpl rnlg\ƒ „pqZ[hƒ

„pqZ[h2 wZ] rnlg\*Kobalt2

dengan Software Minitab

.....80

T^_`ab^c …e Input dan Output Program Pembuatan Kurva †‡ˆ‰Š‹ˆ‡
ŒŽ‘‡ dengan Software R....................................................

MNNN

.81

’“’ ”
•–—˜“™š›š“—
œœ ›žŸž  ’¡¢ž£ž¤¥
¦§¨§n© ª«¬«§l ­ m
«®r ¯§ª§ns §§l °
s

s §tu t§±§§mn ­m
ult©®±§²

y §n©

«³§©§­ §pn©§±² ¯§ª§±² §mupn³§°§n³§ª® ­±¬®´­trµ ¦«¬«§l ­ §¬§l§°

§t ±§§mnj«±­s pol¶±©

¬­©un§ª§n

s §§l ° s §tu

·pol¶±©§ny §n© m
«nj§¬­ ³§°§n¬§s §r §mª§±§ns «p«­tr

ª«¨§¯²

§t °® ¬§nt«m
¯«µ ¸­­tnj§u¬§­r s «©­ °§r©§² ª«¬«§l ­ «m®r ¯§ª§nsum³«r prot«­n±§³§­t
y §n© m
§ur°µ

¦«¬«l§­ m
«®r ¯§ª§nsum³«r©­z ­ y §n© ³§­ª ³§©­ §mnus ­§

ª«¬«§l ­ m
«n©§±¬®±©
§l ­ny §

y

pr«ot­nt«­tr±©

©­ ³­§l ¬­³§±¬­±©ª§n¬«n©§n

s «j§ª

§§r §t n¿­±§ ¬§n«t §l ° ¬­³®¬­¬§y §ª§nol«°

»½¼¼ ÀÁµ À«j§§l n¬«±©§n§mª­n³«rª«³m§©nny § p«¬r §©§±©§n§§ntr

±«©§§r y §n© t«jr§¬­ ¯§¬§ §º§l §³§¬
t«sr

ª§¨§n© ·ª§¨§n©§n

r s §¯m§­ 3¹ ¯«sr «n(A¬­s §rº§nt¶² »¼¼½¾µ
§­tus «³«s §35

¦«¬«§l ­ «mup§r ª§n§t ±§§mn§sl ­ ¬
§mnus ­§

² °§l ­±­ ª§«r ±§

ª«·Âò m
«ny «³§³ª§n§t ±§§mnª«¬«

«³§r ª« ³«³r §©§­ ±«© §§r tuj®§np«¬r §©§n©§n

y

§l ­ j®©§ ­ª®Ä

§­tuÅ«¯§©n² ¦¶«r §² Ʊ¬¶±«s ­§²

ul­ ¬­ª«±§l ¬­ Ʊ¬¶±«s ­§ s «j§ª §³§¬ ª«
Ʊ¬­§² Austr §­l§² ¬§nAm
«­rª§µ ¦«¬«l§­ §m
Aº§l §m
ul ¯«ny

«³§§r n¬§n¯«³m®¬­¬§y §§nª«¬«§l ­

³«ªr «³m§n© ª«

ɧ­l² Ê®s § Ë«n©©§§r ² ¬§n§pulu

y

§­tu¬­
·§pulu§l ­ny §µ

·Âǵ

ȧuluŧº§² ª«®m¬­§n
¦«³®Ä®°§nª«¬«§l ­ ¬­

Ʊ¬¶±«s ­§ s «­t§p§t °®± s «§l lum
«±­±©ª§t s «­­rn© ¬«±©§n¯«§tr ³m§°§n¯«n¬®¬®ª ¬§n
¯«³r §­ª§n¯«±¬§p§§t np«ªr §¯­§t µ ÌÍ«° ª§r«±§ ­®t ² ¬­¯«®lr ª§nsupl§­ ª«¬«§l
y §n© °§usr
t«sr

porª§«r ±§ pr¶¬®ª´­ ¬§§l m
¬­­m
±«©«­r ³«lum¬§¯§

«³®Ä (Χ¨°®r ¬¬­nÏ L­s ¬­§±§² »¼¼¼¾µ

1

­ §t ³m§°§n
tm
«±¨®ª®¯­ ª«³®Ä®°§n

2

ÐÑÒr Ós ÓÔr Ón ÕÑnÑlÖtÖÓn y Ón× ÒÖÓl ÔØÔÓn olÑÙ ÐÓÒÓn Úus Ót ÛÓt Ötst ÖÔÓ (ÐÚÛÜ
ÒÖny ÓÓt ÔÓnÝÓÙÞÓ ÔÑÝØßØÙÓnàÓs ÖáàÓlØuntÔ ÔÑÒÑÓl Ö

m
ÑàâÓpÓÖ ãäã juÓt tonÕÑrÓt ÙØàå

nuÒÑm
æÓm
ÖÔÖÓàä ÝÓurãç s Óm
ÕÓÖ 3ç ÕÑsr Ñns ÓjÓ ÒÓÖr ÔÑÝØßØÙÓnÑt sr ÑÝØß y Ón× ÒÓÓpt

ÒÖÕÑàØÙÖ olÑÙ ÕèáÒØÔéÖ ÒÓÓl màÑ×ÑÖrå ÛÑÑmÓntÓr 7ç éÓm
ÕÓÖ êç ÕÑsr ÑnÔÑÔØèÓà×Óny Óä
por ëÑÑt r×Óntu×ÓntÑÙr ÓÒÓpÖm
porÖàÖ m
ÝÑr×Óntu× ÓpÒÓ Öåm
Ñm

ÝØÓt Önst Óns Ö tÑÔr ÓÖt

sulÖtØuntÔ m
Ñà×ontlrÙÓr×Ó ÔÑÒÑÓl Öå ÚÓÒÓÙÓlÔÑst ÓÝÖÓl nÙÓr×Ó ÔÑÒÑÓl Ö ÑÓr tÔÓÖÓt ny

ÒÑà×ÓnÔÑÝÑlÓr n×sun×Ónus ÓÙÓ ÕÑà×è

Ó

ÓjÖnÓt ÙØ ÒÓntÑm
ÕÑ ÒÖ ìàÒáàÑs ÖÓ

(ÚàurÓ

íî alåä

ãççïÜå
ðÓàÓÓm n ÔÑÒÑÓl Ö ÒÓÕÓt m
Ñà×ÖÔÓt àÖtor×ÑnÒÓÖr ØÒÓÓr m
ÑÓl Øl Ö
ÕÑñmÖÔéÓs Ö àÖátr ×Ñàä y ÓÖtuÝÓÔßÑrÖ
y

ÓÔßÖñÖÓt s ÝÓÔßÑÖr

òóôõzöô÷øù ÐÓÔßÑÖr ÖàÖ tÑÒr ÓÕÓt ÒÓÓl mÝÖntÖl ÓÔÓär

ÓÖtus Ñúls ÑlÓÔÓrtum
ÝØÙÓny Ón× m
Ñn×ÓàÒØà× ÝÓÔßÑrÖ ÕÑñmÖÔéÓs Ö àÖátr ×Ñnå ÛÓÓl Ù s Ótu

ñÓÔßor

y Ón× Ñmm
ÕÑn×ÓurÙÖ ospr Ñs

o×ál ÝÖ
ñÖÔéÓs Ö àÖátr ×ÑnÓÒÓÓl Ù lÑ×ÙÑm

otÑprÖn

y Ón× m
Ñn×ÓàÒØà×

rÑs

ÕÖÓr s Ö ÝÓÔßÑÖr òóôõzöi÷ø ä

y Ón×

ÒÓÕÓt ÒÖ×unÓÔÓ

ÝÑs Öä ÝÑñrun×s Ö m
Ñà×Ótur ÕÑsr ÑÒÖÓÓn áÔéÖ×Ñn ØuntÔ
s

ÑÙÖà××Ó m
Ñn×ÙÓs ÖÔl ÓnAðÚ

nÒÓÓl mospr Ñs

ñÖÔéÓs Ö àÖátr ×Ñn

m
ÑØr ÕÓÔÓnÝÓ×ÖÓnÒÓÖr ÔáÝÓÓl m
Ön(ýÖÓt m
ÖnÐ

ýÖÓt m
ÖnÐ

(AÒÑnos

(ûÓm
ÕÝÑl

ÖàÓ ðèÖ ÕÙos ñÓtÜ

íî alåä ãççüÜå ëáÝÓlt

ÑØr ÕÓÔÓnprÑÔØsr or ÔáÑnz Öm
þÿÜä y Ón× m

uts Ñ
Ñm
ÝÓntuÓÔßÖñÖÓt s Ñnz ÖmÑmÓt lÓmál àÖlÔáÑzn ÖmÓm
þÿ y Ón× ÝÑñrun×s Ö m

ÒÓÓl mÕÑm
ÝÑØntÔÓn lÑ×ÙÑám×ál ÝÖnÒÓÓl m
ÓÒÓÓl Ù s ÓÓl Ù s Ótuun
y Ón×

àä y ÓÖtus ØÓtu

surpÑnyusunl

r
ÝÖntÖl ÓÔÓr (Ðour×Ùßáàä ïêãÜå Ñum

o×ál ÝÖàå Ñum
rju×Ó s ÑÝÓ×ÓÖ ÔáñÓÔßorÑnz Öm
Ñ×ÙÑm

ÝÑrÕÑÓr nÒÓlÓms ÖntÑs Ös ÔáorñÖlä y ÓÖtupÓÒÓ Ót ÙÓpÕÑØr ÝÓÙÓnopr

m
ÑnjÓÒÖ átoprÙÑm
Ñ

ÕÑntÖà× ÒÓÓl mospr Ñs

(ûÓm
ÕÝÑl

toñprÖrÖnì

puny ÓÖ pÑÓr ny Ón× s Ón×Ót
íî alåä ãççüÜå ëáorñÖl m
Ñm

ñots ÖÑnts Ös ä ÒÓn ospr Ñs ñots ÖÑnts Ös

y

u ÒÓÕÓt
Ón× optÖm

3

tkanm
igejluatrupem
nbham
nat  t m
rs 
tr um n
rmupr n
num



nt l  r  lt

unsur

r
m oy n 
plr nl

usr  (Lo
vl ss    unsur

mju
l 
l m
un
m

r

 t sr 
 l mt  n

un l m nt t
r t s 

lru 
l  n
t r n ju  m

m
 n

r
 m
 t m
 lt num
nr   nt nmn l

t r p 

unsur

r

t r  
 t utr m unt m
n t


trum
 n

ntl r

n l ju

( s   


r s  r n l t sr  t
lru
l  n
t
n

ntrs

 lt n

r lmju
l y  t pt s 
n mm
pum
optml noprs s 
s
um
m

tr 

pum
 t nl ju
tru
r mm

m
 n



ntl  r p t mn

l
  ospr s
n
optml n n
l  nnn ntu

y 
tumr

p nmto

nm to

st 
tst


!"#$%&#" #'!(ac", y  
ntny   nmm
ntul m

mml ns r mt m
t  
r s
l

l
tny n tl 
l  n

 m

n


l  n
m
nt n)
s 
ls s
r s  r nm
l mt m
t  y n 
s
l 
*l njutny   n


t nt n

ntrs

 lt

r y n mm
pu
n um

m s
l n
trum
 ny n m 
ml


ntl rt mn l

+,-

t sr  

./0121345 643474845

rs nms l y n 
m
r s  r n
 l t r l n 
t s  um

ll

m

m
nt n

mun nmt 

 t m
n

ntrs

optml

r
 lt num

p m
 t m

pumn s
l n

ntl  r
!"#$%&#" #'!(ac", s 
n mm
l
s r m 
ml

4

9:;

=?=@ A=?=B=C

la tulinsa in nka shadib lirhape
DEm

lisaoptmkunagm
em
tode

FGHIJKHG HLFMacG pda

dta

trum
npebha

jum
hlabintl rka

y EnO PQORSETEn Ut Vr EEt s WEPE Er nXEnOEnYETZQorEl
AXET LUnOTEp([A

DEEt

PRE YETZorPUnOEnPEs Er[ESXEnO

L\N ASElQs EPEtE PEEl m tulQs EnQSQ UmSOO

]^_^`abc m
Q Xosr dYtefUl PEnOoprEr m
[

9:g

m
nat kNielad

En

RSETEnoprOEr mWETUt

N

hiji=@ jk@iBl?=@
mUnu
Qls EnRt OEs ETnQrQSQ PQsusun P USOEntujREnRuntT UmSOUEt nRQ

r
TdVElt PEn YUum

y EOn PQVRZRnTEn PEEl mUmnOdWZQEmlTEn

Et SEEmnTUPUEl Q UmOnOSuETEnUmtdPU

FGHIJKHG HLFMacGp

TdSoUEntrs Q

ju
l n VQntQl ETEr WEPE
Em