1. TAYLOR ’ S FORMULA - 8.Taylor n dim

Chapter 8 TAYLOR’S FORMULA. EXTREMES We will extend in this chapter Taylor’s formula to scalar

  p

  functions with many variables of the form  IR. We

  f : A  IR n+1

  remind that in the case

  p=1, if A is an interval, fC (A) and a,x

  A,

  then it exists  between a and x so that: n

  1 k n 1  1     (*)

  f ( x ) d f ( x a ) d f ( x a ) akk ! ( n  1 )!

  We will show that even for

  p1, in certain conditions, a similar

  formula exists, so we can approximate in a neighbourhood

  V the V a

  function (of

  

f with Taylor’s polynomial function T n degree):

n n

  1 k    .

  f ( x ) T ( x ) d f ( x a ) n ak k !

  One of the most important problems in technique, economy, and so on is the one of optimisation of diverse processes; the optimisation of a process relies in finding the extremes (minimum or maximum) of a function  function that mathematically models the process  in certain conditions imposed to the variables  conditions that give the domain of definition of that function. This type of problems is handled by the theory of optimisation. We will approach only a few techniques of finding the extreme points (locale, sometimes even global) and their nature by using the formula (*).

1. TAYLOR’S FORMULA

  p

  Let  IR be a real function of

  f : A IR p real variables, p1.

  Definition 1. If f is differentiable n times in the point aA

p

  then the polynomial function : IR  IR

  T n

  1 1 n        x A

  T ( x ) f ( a ) d f ( x a ) ... d f ( x a ), n a a

  1 ! n ! is called Taylor’s polynomial function of degree n associated to the

  function  , then we can write f in the point a; denoting d f f ( a ) n

a

  1 k   .

  T ( x ) d f ( x a ) n akk !

  The function:

    R : A  IR, R (x)=f(x) T (x), x A n n n

  is called remainder of order

  n, and the relationship  f(x)= T n (x)+ R n (x), x A

  we call it Taylor’s formula of order n, or the Taylor’s development of

  the function f around the point a.

  Remark. Using the operator of differentiation d we have

  ( k )

    k    

  ;

  d fdx  ...  dx f ( a ) a 1 p

     xx 1 p

    if

  a=(a 1 ,…,a p ), x=(x 1 ,…,x p ), then: ( k )

    k    

d f ( xa )  ( xa )  ...  ( xa ) f ( a ) .

a 1 1 p p

     xx 1 p

    In order to extend the formula (*) valid on the interval

  A for the case

p1 we need two new notions: the one of segment and the other of

convex set.

p

  Definition 2. Let x,y IR . We call a segment which binds

  the points x and y the set: p  x  t(y x)  I R  .

  • The set p p x t(y x)

    x , yt   ,

  1 

  • p

  I R

  I R

    x , y    t     ,

  1 

  

  is called an open segment. If for any  , 

  x,y AIR [x,y]

  A, we say

  that A is a convex set.

  p

  be a convex set,

  Theorem 1(Taylor’s formula). Let AIR n+1

  on   Å . For any 

  

f : A  IR be a function of class C A and a A x A

  exists (

  a,x) such that

  ) ( )! 1 (

  ... ) ( 1 1 1 )) ( ( ) ( ... ) (

    

     

  ... )) ( ( ) ( ... )) ( ( ) ( ) ( ) ( 1 2 2 1 2 1 1 1 1 ''  

     .

     

   

     

       

  ) 1 ( 1 1 1 a x t a f

x

a x x a x

p

p p

  F a x t p p p

       a x t a x x f a x a x t a x f

  a x t a x f a x a x t a x f

    

   

       

     

     

       

 

  According to the rules of derivation of the functions of several variables and the preceding Remark we obtain:

  F F F F (0) and .

           

  F a x a x t p p p

  , we need explicit values ) ( ),..., ( ), ( ' ) ) 1 ( ( ''

   

     

   

    

      

  F a x t n p

p p

n

  ) ( 1 1 1 ) ( a x t a f x

a x

x

  … )) ( ( ) ( ... ) ( ) (

     .

     

    

      

      

  ) 2 ( 1 1 1 a x t a f

x

a x x a x

p

p p

  )) ( ( ) ( ... ) (

  a x t a x f a x a x t a x x f a x a x p p p p p p

     )) ( ( ) ( ... )) ( ( ) ( ) ( ... 2 2 1 2 1 1

    

       

    

     

    n n

  F F F x f

  1 ) ( !

  1 ,…,x p

  F is derivable n+1 times,

  it results that

  f is of class C n+1

          . Because

  F a x t a a x t a f a x t a f t

  IR defined by: )) ( ),..., ( ( )) ( ( ) ( 1 1 1 p p p

  F : [0,1]

  function

  ) and the

  ), x=(x

  F (n+1)

  

1

,…,a p

  Proof. Let us consider a=(a

   .

            

  1 ) ( ) ( 1 2 a x f d n a x f d

n

a x f d a x f d a f x f n n a a a

  1

  1 ) ( !

  2

  1 ... ) ( !

  with the derivative

  continuous. From Mac-Laurin’s formula it follows that for any

  F n F

n

  )! 1 (

         n n

   

  ) 1 ( ( ) ) 1 ( (

  1 ) ( )

  1

  !

  1 ... ) ( '

  !

  1 ) (

  Because ) (

  t[0,1] it exists  (0,1) so that:

         .

   

  n t

F

n t F t F t F t F n n n n

  1 ) ( ) ( ) 1 ( 1 ) ( '' 2 F t

  !

  2 ) ( '

  ... ) ( !

  ) ( !

  ) ( )! 1 (

    

  ( n  1 )

    ( n    1 ) .

  F ( t )  ( xa )  ...  ( xa ) f ( at ( xa )) 1

1 p p

     xx 1

    Therefore, '' 2 (n) n

        

  F( ) f(a), F'( ) d f(x a a a

  a), F ( ) d f(x a),...,F ( ) d f(x

  a) ( n   1 ) n 1

  and .

  F (  )  d f ( xa ), where   a   - (x

  a)  (a, x)

  

  As a consequence: n n

  1 ( k ) ( n 1  1 ) k n

  1 1  1 F (

1 ) f ( x ) F ( ) F (  ) d f ( x a ) d f ( x a )

      

a   k k

   

k ! ( n 1 )! k ! ( n 1 )! and Taylor’s formula is proved.

  Remark 1. For n=0, from Taylor’s formula we can write p

   f ,

  f(x)f(a)d f(x

î k k

  a) )  (xa ), î(a,x)k

  x

1 k

  equality witch represents a generalization (for

  p1) of Lagrange’s formula.

  Remark 2. The remainder of order n from Taylor’s formula:

  1  n 1 R ( x )  d f ( xa ),   (a, x) n ( n  1 )! allows us to evaluate the error from the approximation of order n

  n:

  1 k     ,

  f(x) T (x) d f(x n a

  a), x Akk!

  in case that the partial derivatives of order

  n+1 of the function f on A

  (which interfere in the differential expression of order

  n+1) are

  bounded by the same constant

  

M0:

p n 1 n 1 n1 M   Mp       . f ( x ) T ( x ) R ( x ) x a x a n n i i

  

    ( n  1 )!  ( nk 1 1 )!

   

  Remark 3. If a=0=(0,...,0)A, Taylor’s formula: n ( k )

     

  1  

      

  f ( x ) f ( ) x ... x f ( )

1 p

      kk ! x x 1 1 p

   

   ( n 1 )

     

  1  

    

  x ... x f (  x ) 1 p

      

  ( n 1 )! x x 1 p  

  is called Mac-Laurin’s formula.

  Remark 4. In the case p=2 (using Newton’s binomial) the

  Taylor development of the function 

  f around the point (a,b) A (or in powers of   x a and y

  b) becomes:

  1   ff

  

f ( x , y )  f ( a , b )  ( a , b )( xa )  ( a , b )( yb ) 

    1 !  xy 2 2   2

   1  fff 2 2  ( a , b )( xa )  2 2 ( a , b )( xa )( yb )  ( a , b )( yb )  2

    2 !  xxyy

   n n  1  fk n k k

  ,  ...  C ( a , b )( xa ) ( yb )  R ( x , y ) n n nk k

   n !   xy k

  where: nn1 1 1  f   k n 1 k k

  R ( x , y )  C (  ,  )( xa ) ( yb ) , n n

1  

n

1 k k

  ( n  1 )!   xy k

             . a -

  ( x a ), b (y

  b), with (0,1) In this case the graphical representation of

  f is a surface of

  equation:

   S : z = f(x,y), (x,y) A.

  

2

2 Let us suppose that  and f C (A), d f  0  d f U is ( a , b ) ( a , b )

  neighbourhood of the point

  (a,b)

A.

  The approximation of order 0:

  f(x,y)T (x,y)f(a,b), (x,y)U

  means, from a geometrical point of view, that if 

  (x,y) U the point

M(x,y,f(x,y)) is replaced with the point M (x,y,f(a,b)) which belongs to

  a part of the parallel plane with

  xOy of equation: 

  S : z = T (a,b) = f(a,b), (x,y)

  A,

  approximation which, in general, is unsatisfying even if the neighbourhood

  U is “small”. (see Fig.1.) z z=T (x,y) M (a,b,f(a,b)) M y

  U (a,b,0) x Fig.1.

  The approximation of order

  1:    

  f(x,y) T (x,y) f(a,b) d f(x-a,y-b) , (x,y) U 1 (a,b)

  is more precise, because it presumes the substitution of the point M with the point

  M (x,y,T (x,y)) from the part of the plane tangent in the

  1

  1

  point

  P(a,b,f(a,b)) on the surface S: 

  S 1 : z = T 1 (x,y), (x,y) A.

  (see Fig.2.).

  The approximation of second order:

  1 2

  f(x,y)T (x,y)f(a,b)d f(x-a,y-b)d f(x-a,y-b) , (x,y)U 2 (a,b) (a,b)

  2 is more precise than the preceding; in this case the point

  

M(x,y,f(x,y)) on the graphic S, (x,y) U is replaced with the point

M

  2 (x,y,T 2 (x,y)) belonging to the surface of equation: S : z = T (x,y), (x,y)

  A,

  2

  2

  surface tangent in

  P(a,b,f(a,b)) on the surface S and which has as plane tangent in (see Fig.3.). P the plane S

  1

  Example 1. Expand the polynomial function f(x,y,z) = x

  3

  3

  2

  • +y
  • +xyzz
  • +xy+xz+1

  in powers of x1, y+1 and z.

  M M 1 S 1 z y x z=T 1 (x,y) (a,b,f(a,b))

  (a,b,0)

Fig.2.

  S 2 z y x z=T 2 (x,y) (a,b,f(a,b))

  (a,b,0) A Fig.3

  Solution. We will use Taylor’s development of the function f

  3

  around the point . Because

  a=(1, 1,1) IR f is a polynomial of third

  4

  degree

  d f=0, so R

3 (x,y,z)=0 and Taylor’s formula is:

f ( x , y , z )  f ( 1 ,  1 , 1 )  d f ( x( 1 ,  1 , 1 ) 1 , y  1 , z  1 ) 

  1 2

  1

3

d f ( x( 1 ,  1 , 1 ) ( 1 , y  1 , z  1 )  d f ( x1 ,  1 , 1 ) 1 , y  1 , z  1 )

  2 2 2

6 But

  ,

  df2 3 x dx  3 y dyyzdxzxdyxydz2 2 2 zdzydxxdydxdz d f

  6 xdx  6 ydy  ( zdyydz ) dx  ( zdxxdz ) dy2 ,  ( ydxxdy ) dz  2 dz  2 dxdy and 3 3 3 .

  d f

  6 ( dxdydxdydz ) Now we compute

     ,

  f(1,1,1)=2, d f 2 2 ( 1 ,  1 , 1 ) 2 2 dx 2 5 dy 4 dz

     ;

  d f( 1 ,  1 , 1 ) 6 dx  6 dy  2 dz  4 dxdy 2 dydz 2 dzdx therefore: 2 2 2 f ( x , y , z )  

  2  2 ( x  1 )  5 ( y  1 )  4 ( z  1 )  3 ( x  1 )  3 ( y  1 )  ( z  1 )   2 ( x  1 )( y  1 )  ( y  1 )( z  1 )  ( z  1 )( x  1 )  3 3 .  ( x  1 )  ( y  1 )  ( x  1 )( y  1 )( z  1 )

  Remark. The polynomial f from the preceding example is a

  vector from the linear space IR [

  3 x,y,z] of the polynomials with three

  variables of degree smaller or equal with three formulated in the

  2

  2

  2

  2

  2

  2

  2

  2

  2

  canonical base B ={1,

  x, y, z, xy, yz, x , y , z , x y, x z, y x, y z, z x, z y, c

  3

  3

  3

  [

  x , y , z , xyz} (dim IR x,y,z]=20). The development of f in powers of

  3   x 1, y+1, z 1 means in fact formulating this vector in the base

  2

  2 B={       

1, x 1, y+1, z 1, (x 1)(y+1), (y+1)(z 1), (x 1)(z 1), (x 1) , (y+1) ,

  2

  2

  2

  2

  2

  2 (z1) , (x1) (y+1), (x1) (z1), (y+1) (x1), (y+1) (z1), (z1) (x1),

  2

  3

  3

  3      (z 1) (y+1), (x 1) , (y+1) , (z 1) , (x 1) (y+1) (z 1)}.

  Example 2. Using Taylor’s formula of order three compute

  2.1 the approximate value of the number (0.9) . y

  Solution. We need the value of the function in the f(x,y)=x

  point

  (x,y)=(0.9; 2.1); we will choose as point (a,b) around which we will develop the function

  f in which we can compute precisely the

  function z and its partial derivatives and also, as close as possible from ( 2 . 1 x,y). Let then be (a,b)=(1,2). Then:

  1 2 ( . 9 )  f ( x , y )  T ( x , y )  f ( 3 ( 1 , 2 )  d f ( xa , yb )  d f ( xa , yb )  1 , 2 ) ( 1 , 2 )

  2

  1 3 

  1

  1

  

1

2 

  1

  1

  1 3 

  1

  1  d f ( xa , yb )  1  d f ,  d f ,  d f , ( 1 , 2 ) ( 1 , 2 ) (             1 , 2 ) ( 1 , 2 )

  6

  10

  10

  

2

  10

  10

  6

  10

  10      

  As y1 y ,

  d fyx dxx ln xdy|( 2 y 1 , 2 ) ( 1 y 1 , 2 ) 2 2 dx

     

  d f x dxdy y ( y

  1 ) x dx ( 1 , 2 )y    1 y

1 y y

1x ln x dxyx dxx ln xdy  ln xdyx dxdy|

     2 3 ( 1 , 2 ) 2

  =   , and ,

  dxdy

  2 dxdxdy  2 dx ( dx dy ) d f( 1 , 2 ) 7 dx dy 2 . 1

  2

  7 it follows that:     . ( . 9 ) 1 . 807 10 1000

  Let us observe that the approximation of order 0 is

  2.1

  2.1

  (0.9) T (x,y)=1, and the one of order two is (0.9) T

  1 (x,y)=0,8. In

  none of these cases we do not have an estimation of the error. If we want to compute an expression with a pre-established precision  we must find an .

  nIN so that R   n 4 Example 3. Let us compute with two exact N  4  .

  1 .

  9 2 1 4 1 decimals. We consider the function which we

  f ( x , y )  x y

  compute around the point (4; 1). Because

  N=f(x,y) where x=4.1 and y= 0.9, according to Taylor’s formula there exists (4; 4.1) and

  (0.9; 1) so that: n

  1 k  

  1

  

1

Nf ( 4 ; 1 )  d f ,   R ( x , y ) , ( 4 ; 1 ) n    k 1   k !

  10

  

10

  1   n 1

  1 1  where   . We must find an nIN

  R ( x , y ) d f  ,  n (  ,  )

   ( n 1 )! 

  10 10 

   2

  minimal so that , where (

  R ( x , y )  n 10 x,y)=(4.1; 0.9). Because:

  

  1 1 

  1

  1

        

R ( x , y ) d f  ,  f ' ( , ) f ' ( , ) (  ,  ) x y

  

  10 10 

  10

  10

  1  f ' (  ,  )  f ' (  ,  ) ,  x y

  10 1 1

  

  1 2 4

  1

  1

  1

        and     , f ' ( , ) f ' ( , ) x y 4 3

  2

  2

  4

  2

  

  3 then  and the approximation of order zero:

  R ( x , y )

  40 N

  T (x,y)=f(4.1)=2 does not look very satisfying. Let us try an estimation as precise as possible for the reminder of first order.

  Because

  1 2 

  1 1  1 ''

  1 2 '' 1 ''    2       2    R ( x , y ) d f  ,  f ( , ) f ( , ) f ( , ) 1 (  ,  ) xy x 2 2 2 y

  2

  10

  10

  2

  10

  10

  10  

  1 '' '' ''   

  f 2 (  ,  )

  2 f (  ,  ) f xy 2 (  ,  )

    x y

  200 and 3 1 ''

  1 2 4

  1   ,

  f x 2 (  ,  )  

  4

  32 13''

  1 2 4

  1

  1 4

  10

  5

      , f ( , )      xy

  8

  8

  2

  9

  24 '' 17 7

  3 2 4

  3 1  4 10 

  3

  10

  5

              , f y 2 ( , )  

  2

  16

  16

  2

  9

  32

  9

  24   1 

  1

  10 5 

  1 It follows that     , so we can affirm

  R ( x , y )   1

  200

  32

  24 24 100   with certitude that the approximation of the first order:

  

  1 1 

  1

  1 1            

  N T ( x , y ) f ( 1 ( 4 ; 1 ) d f  ,  4 ; 1 ) 2   2 . 025 1 . 975

  

  10 10  10 

  4 2  is an evaluation with two exact decimals of the number

  N.

2. LOCAL EXTREMA

  p

  Let f : AIR IR, p1.

  Definition 3. The point aA is called local extreme point

(relative) of function  such

f if there exists a neighbourhood V

  V a

  that „the increase” of function

  f: 

  E(x)=f(x) f(a)

  keeps a constant sigh on the set 

  A V; if E(x)0, xA

  V

  we say that

   a is a point of local maximum, (or relative) for f and we

  write f =f(a); if

  max   

  E(x) 0, x A

  V

  the point

  a carries the name of local minimum (or relative) of the function f and we write f =f(a). min

  If

  V=A, and the point a is a local extreme (minimum or

  maximum) we say that

  a is a global extreme (or absolute) of the

  function f.

  We saw that, in the case of functions with a single real variable, Fermat’s theorem offers necessary conditions of extreme (if  I is an extreme point of the function

  a f : I IR  IR and f is

  differentiable at  or, equivalently,

  a, then f ' ( a ) d f=0). Fermat’s a theorem admits a generalization for functions with several variables.

  Theorem 2(of Fermat - necessary conditions for local p extreme). Let f : AIR IR, p1. If aÅ is an extreme point

  of the function f and f is differentiable in a, then 

  

f

  . d f=0, or, equivalently, (a) , k

  1 , p

  a

  

  x

k

Proof. Because the point a belongs to the interior of the set

  

A, and it is a local extreme of the function f, it follows that there

  exists 

  r0 such that E(x)= f(x) f(a) keeps a constant sign for all p

   

  and the auxiliary

  x S(a,r)

A. Let s be an arbitrary versor from IR

  function   IR ,   .

  g : ( r , r ) g(t) f(a ts)

  Then      

  g ( t ) g ( ) f ( a ts ) f ( a ) E ( a ts ) keeps a constant sign for    

  t ( r,r), because a ts S(a,r); this means

  that the function

  g has a local extreme in t=0. Because g is

  differentiable in

  t=0 (being a composite function of differentiable

  

  f

  functions), from Fermat’s theorem it results that   ;

  g ' ( ) ( a )

  

  s

  

  f p

  therefore  , for any versor ; particularly, assigning ( a ) s from IR

  

  s p

   (vectors of the canonical basis in IR ) we obtain

  s=e k , k

  1 , p

  f

    , or

  (a) , k 1 , p d a f=0.

  

  x k

p

Definition 4. Let  Å . f : AIR IR, p1 and a

  If

  f is differentiable at a, and d a f=0, the point a is called stationary point of the function f.

  If a is stationary point for f, or f is not differentiable in a, we say that

  a is a critical point of the function f (for function f).

  Remark 1. From Fermat’s theorem results that the interior

  points which are local extremes of the differentiable function

  f are

  found, if existing, within the solutions of the system of p equations with

  p unknowns.

  

  f   .

  (x ,...x ) , k 1 p 1 , p

  

  x k Remark 2. As in the case p=1, Fermat’s theorem gives

  necessary, but not sufficient, conditions of existence of the local extreme points.

  For example, the function

  2 f : IR IR, f(x,y)=xy

  has null partial derivatives in (0,0), but the origin is not a local extreme point of the function

  f (f being a quadratic undefined form).

  So (0,0) is a stationary point (therefore critical) for

  f which is not a

  local extreme. But, for the function

  g : [0,)[0,)  IR, g(x,y)=xy ,

  the origin (0,0) is a critical point (

  g is not differentiable in (0,0)) which is not stationary, but is a global extreme point.

  Remark 3. We have seen that from single variable functions the second order’s differential sign in a stationary point gives us information over the nature of this point. In the case of several variable functions the second order differential (which is a quadratic form) sign in a stationary point will determine the nature of the respective point. We will use the following lemmas:

  p Lemma 1. Let : IR  IR be a quadratic form. p

  (a) If is positively defined (i.e. \ {0})

    (x)0, for any x IR 2 p there exists , for . m0 such that  ( x  ) m x x IR p

  (b) If is undefined then there exist  IR \ {0 such

   s , s

  1

  2

  • that  (ts )  0 and  (ts )  0, for any t IR .

  1

  2

p

Proof. (a). Let

  IR . Then Sx  | x

  1 S is a closed and

  

 

  bounded set, therefore a compact set, and is a continuous

  

  function, therefore  is bounded and reaches its edge on

  S (theorem

  16, cap.5). Let on

  m be the minim of  S; of course m0 because 

  is positively defined and:

     (x) m, for any x S (1) p

  Now, let \ {0}; then

  x IR

   

  1

  1

  1 and   ;

  xS x  ( x )

2

   

  x x x

   

  p consequently, from (1) results that  , for any .

  ( x  ) m x x IR

  p

  (b) Let be the canonical basis from IR . As  is of

  B c

  quadratic form, there exists an orthogonal basis  has

  B in which

  canonical form. Let to

  T=(b ij ) be the transformation matrix from B c B.

  Then: 2 2 2 (2)

   ( x ,..., x )   y   y  ...   y 1 p 1 1 2 2 p p

  where p (3)

  yb x , i   i ij j 1 , 2 ,...,p   j1

  and  ,  ,...,  are the eigenvalues of the attached matrix of the

  1 2 p

  quadratic form  in canonical base. We can assume (with an eventual permutation of the indexes) that  0 and  0 (the form 

  1

  2

  being undefined). The systems:

  (4)

  y1 i 1 , y, i   2 , 3 ,...,p

  (5)

  y2 i 1 , y, i   1 , 3 , 4 ,...,p  have, according to (3), the matrix

  respectively, a unique solution. Let , respectively

  s  ( a ,..., a ) 1 1 p be the solutions of the systems (4), respectively (5). s  ( b ,..., b ) 2 1 p

  Then, according to (2) we obtain: and (6)

   ( s )     ( s )    1 1 2

2

  • But is a quadratic form, so for any

   t IR 2 2 2 and .

   ( ts )  t  ( s )   t   ( ts )  t   1 1 1 2 2

2 Lemma 2. Let  

  f C (A) and a

  A. Then there exists a

  function  

   : AIR such that for any x

  A: 2

  1 2         ,

  

f ( x ) f ( a ) d f ( x a ) d f ( x a ) x a ( x )

a a

  2 where     . lim ( x ) ( a ) x a

  Proof. Let xA \ {a}. According to Taylor’s formula there

  exists (

  a,x) such that:

  1 2      (1)

  f ( x ) f ( a ) d f ( x a ) d f ( x a ) a

  2 Let 2 2  

  f f ù

     (2) ij

  (x) (î ) (a), i ,j

  1 , p     '' x x x x i j i j

  Because  and  

  f C ( A ) a when x x x i j

  a, from (2) results: ù

    (3) lim (x) , i,j ij 1 , p x a  Then: 2 2 '' '' p

  d f ( xa )  d f ( xa )  f (  )  f ( a ) ( xa )( xa )  ax x x xi i j j i j i j

  

i , j

1

  so, from (2) we obtain: 2 2 p

   (4) d f ( xa )  d f ( xa )  ( x )( xa )( xa )

   a ij i i j j

i , j

1 Let 

  (a)0 and

  p

  2

    ,when 

  ( x )  ( x )( xa )( xa ) x 2 ij i i j j a.

Dokumen yang terkait

An al i s i s T ak s o n om i S i as at P e r m u k aan T u t u r an M ah as i s w a d al am S e m i n ar P r op os al S k r i p s i M ah as i s w a P r ogr a m S t u d i Pe n d i d i k a n B ah as a d an S as t r a I n d on e s i a Un i ve r s i t as J e

0 8 14

C o m p e n sat i on S yst e m I n f l u e n c e T o Job S at i sf ac t i on A n d Job S p i r i t F i r e s A n E m p l oye e E ast P ar t S e l l O n P T . F or u m A g r o S u k se s T i m u r j e m b e r

0 4 17

d e n tif i k asi M ak r ob e n tos S e b agai B ioi n d i k a tor Pe n c e m a r an Air d i Dae r ah Aliran S u n gai B e d ad u n g (Stud i d i Wil ayah K e lu r ah an Je m b e r L or Kec a m at an P at r an g d an Kelu r a h an S u m b e r sari K e c a

0 7 22

D i a j u k a n Gu n a Me me n u h i S a l a h S a t u S y a r a t u n t u k Me n y e l e s a i k a n Pe n d i d i k a n Pr o g r a m S t r a t a Sa t u Program Studi Agribisnis Jurusan Sosial Ekonomi Pertanian Fakultas Pertanian Universitas Jember

1 7 150

Dik s i d a n G aya B ah a sa d alam P e r c ak ap an “S e n tilan S e n tilu n

0 7 18

Hu b u n gan P e n ge tahu an d an S ik a p Orang T u a te n tang K e se h at an R e p r od u k si d e n gan T in d ak an Oran g T u a M e n gaw in k an P u te r in ya d i Usia Re m aj a (Stud i d i K e c a m at an S u k o w on o K ab u p at e n Je m b e

0 16 19

IM PROV ING T HE T E NTH GRAD E S T UD E NTS ’ R E AD ING COM PREHE NSIO N AC HIE VEM E NT T H ROUGH S M ALL GROUP WORKING T E CHNIQUE A T S M AN 1 S RONO

0 6 14

KARYA ILMIAH TERTULIS (SKRIPSI) Di a j u k a n Gu n a Me me n u h i S a l a h S a t u S y a r a t u n t u k Me n y e l e s a i k a n P e n d i d i k a n P r o g r a m S t r a t a S a t u Program Studi Agribisnis Jurusan Sosial Ekonomi Pertanian Fakultas P

0 5 18

Ra h a s ia S e n yu m Mu h a m m a d

0 1 9

1. P e n d a h u l u a n a. Tujuan Pembelajaran - 12. Pemeriksaan Sektor Publik

0 4 12