Metode Naive dan Moving Average

METODE NAIVE DAN MOVING AVERAGE A.

   Metode Naive

  Para pebisnis muda sering kali menghadapi suatu pilihan yang rumit ketika mencoba meramalkan dengan data yang berukuran sangat kecil. Situasi ini menciptakan sebuah masalah nyata karena banyak teknik peramalan memerlukan data yang besar. Peramalan dengan Naïve merupakan penyelesaian yang mungkin jika semata-mata didasarkan pada informasi yang tersedia sekarang.

  Peramalan dengan Naïve diasumsikan bahwa periode sekarang adalah prediksi terbaik untuk masa depan. Bentuk model Naïve adalah (1)

  =

  • +1

  • 1

  Di mana ramalan yang dibuat pada waktu untuk waktu + 1. Peramalan dengan

  metode Naïve untuk masing-masing periode mendekati obsevasi yang terdahulu. Ramalan dengan model Naive adalah ramalan yang kadang disebut dengan “ramalan tanpa perubahan”. Karena ramalannya untuk setiap periode mendekati observasi yang terdahulu.

  Karena ramalan Naive membuang semua observasi yang lain, skema berubah dengan cepat. Permasalahan yang berkaitan dengan pendekatan tersebut adalah menyebabka plot berubah naik turun sesuai dasar perubahan.

  Contoh 1 Gambar 1 menunjukkan secara kuartal pejualan gergaji pada perusahaan Acme Tool.

  Dengan teknik peramalan Naïve menunjukkan bahwa penjualan pada kuartal berkutya akan sama dengan kuatal sebelumnya. Tabel 1 menunjukkan data dari 1996 sampai 2002. Jika data dari 1996 sampai 2002 digunakan sebagai bagian awal dan 2002 sebagai baian yang diuji, peramalan untuk kuartal pertama dari 2002 adalah

  =

  24+1

  24

  = 650

25 Kesalahan peramalan dihitung dengan menggunakan persamaan 3.6. Kesalahan untuk

  periode 25 adalah = = 850

  25 25 − 25 − 650 = 200 Dengan cara yang sama peramalan untuk periode 26 adalah 850, sedangkan erornya -250.

  Gambar 1 menunjukkan bahwa data-datanya mempunyai trend naik dan menunjukkan pola musiman (urutan pertama dan keempat relatif tinggi). Jadi kesimpulannya dibuat dengan memodifikasi mode Naive.

  100 200 300 400 500 600 700 800 900 1996 1997 1998 1998 1999 2000 2001 2002 2001 tahun p e n ju a la n

penjualan gergaji pada perusahaan Acme Tool

  2

  15

  16 550 350 250 550

  2000

  1

  2

  3

  4

  17

  18

  19

  20 550 400 350 600

  2001

  1

  3

  13

  4

  21

  22

  23

  24 750 500 400 650

  2002

  1

  2

  3

  4

  25

  26

  27

  14

  4

  Gambar 1 Penjualan Gergaji Perusahaan Acme Tool Tahun 1996- 2002 Tabel 1. Penjualan Gergaji untuk Perusahaan Acme Tool, 1996-2002 Tahun Quartal T Penjualan 1996

  5

  1

  2

  3

  4

  1

  2

  3

  4 500 350 250 400

  1997

  1

  2

  3

  4

  6

  3

  7

  8 450 350 200 300

  1998

  1

  2

  3

  4

  9

  10

  11

  12 350 200 150 400

  1999

  1

  2

  28 850 600 450 700 Pemeriksaan data pada contoh 1 merupakan petunjuk untuk menyimpulkan bahwa nilai-nilai tersebut meningkat setiap waktu. Saat nilai data meningkat setiap waktu disebut tidak stasioner atau mengandung trend. Jika persamaan (1) digunakan, proyeksinya tetap rendah. Teknik yang dapat dipakai untuk mengambil pertimbangan trend dengan menambah selisih antara periode sakarang dan periode terakhir. Persamaan peramalannya adalah

  (2) = + ( )

  −

  • 1 −1 Persamaan (2) memuat perubahan antara kuartal-kuartal.

  Contoh 2 Dengan menggunakan persamaan (2), persamaan untuk kuartal pertama dari 2002 adalah

  • =

  24+1

  24 24 −

  24 −1

  = +

  25

  24 24 −

  23

  = 650 +

  

25 650 − 400

  = 650 + 250 = 900

25 Kesalahan peramalan dari model ini adalah = = 850

  

25

  25

  25

  − − 900 = −50 Untuk beberapa tujuan, perbandingan perubahan akan lebih tepat daripada jumlah perubahan. Jika demikian, masuk akal untuk menghasilkan peramalan berdasarkan

  (3) =

  • 1

  −1

  Dari data dalam Tabel 1 terlihat bahwa ada variansi musiman. Penjualan pada kuartal pertama dan keempat lebih besar dari kuartal-kuartal yang lain. Jika pola musiman kuat, persamaan peralaman data seara kuartal yang mungkin adalah

  = (4)

  • 1 −3

  Pola umum untuk peramalan data musiman yaitu dengan s adalah =

  • 1 +1− periode musiman.

  Persamaan 4 menunjukkan bahwa kuartal berikutnya akan bernilai sama dengan kuartal yang berhubungan pada satu tahun yang lalu. Kelemahan utama dari pendekatan ini adalah mengabaikan segala sesuatu yang telah terjadi selama setahun yang lalu dan juga terdapat trend. Terdapat beberapa cara untuk memperkenalkan informasi terbaru. Sebagai cotoh, suatu analisa dapat gabungan musima dan trend yang diestimasi dan peramalan kuartal berikutnya menggunakan

  )

  • ⋯+( − −1 −3 − −4 − −3

  (5)

  • =
  • 1 −3 −3

  4

  4 Dimana menunjukkan peramalan berpola musiman, dan yang lain menunjukkan rata- −3

  rata nilai perubahan untuk empat kuartal terkhir dan memberikan perkiraan trend. Pola umum untuk pola data yang merupakan penggabungan trend dan musiman adalah

  ) − −

  • ⋯ + (

  −1 −3 −4

    <
  • 1 +1−

  Model Naïve pada persamaan (4) dan (5) digunakan untuk peramalan dengan pola data kuartal. Persamaan (4) dan (5) dapat disesuaikan untuk kasus musiman lain. Untuk data bulanan, sebagai contoh, periode musimannya adalah 12, bukan 4, dan peramalan untuk periode (bulan) berikutnya menggunakan persamaan 4 yaitu

  =

  • +1 +11

  Hal tersebut menunjukkan bahwa kerumitan yang mungkin pada model Naïve dapat diminimalisir dengan kepintaran penganalisis, tetapi penggunaaan teknik tersebut seharusnya dikendalikan dengan pertimbangan.

  Contoh 1 (lanjutan)

  Peramalan untuk kuartal pertama dari 2002 menggunakan persamaan (3), (4) dan (5)

  

24

  24

  = =

  24+1

  24

  24

  

24

  23 −1 650

  = 650 = 1056

  25 400

  = =

  24+1

  

24

  21 −3

  = = 750

  25

  

21

  )

  24 − 24 + ⋯ + ( 24 −

  24 24 −

  24 −1 −3 −4 −3

  • =
  • =

  24+1

  24 24 −3

  −3 24 20 650

  4

  4

  − −600

  • = = 750 + = 762.5

  25

  21

  4

  4 B.

   Metode Moving Average

  Suatu manajemen sering kali menghadapi situasi dimana peramalan perlu dilakukan secara harian, mingguan, atau bulanan untuk mengetahui ratusan atau ribuan barang yang perlu disediakan, namun hal ini sering kali tidak mungkin dilakukan. Oeh karena itu untuk mengembangkan teknik-teknik peramalan yang canggih untuk setiap barang perlu disediakan. Beberapa alat peramalan yang cepat, murah, sangat sederhana dibutuhkan untuk menyelesaikan tugas ini.

  Seorang manager yang menghadapi situasi ini cenderung menggunakan teknik rata- rata atau smooting. Jenis-jenis teknik ini menggunakan bentuk rata-rata tertimbang dari pengamatan-pengamatan yang lalu untuk memuluskan fluktuasi jangka pendek. Asumsi yang mendasari teknik ini adalah bahwa fluktuasi mewakili permulaan secara random nilai- nilai masa lalu dari beberapa struktur yang mendasarinya. Pertama struktur yang mendasarinya. Pertama struktur ini didefinisikan dari hasil ini dapat diproyeksikan ke dalam masa depan untuk menghasilkan sebuah ramalan.

  Simple Averages (Rata-rata sederhana)

  Suatu data masa lampau dapat dimuluskan dengan beberapa cara. Tujuan dari data dimuluskan adalah untuk dapat menggunakan data masa lampau untuk meramalkan periode-periode berikutnya. Pada bab ini metode yang digunakan untuk meramalkan periode selanjutnya adalah metode simple average. Seperti pada metode NAIVE, keputusan dibuat untuk menggunakan nilai-nilai data pertama sebagai bagian perlambangan dan data lampau sebagai bagian pengaujian. Selanjutnya, persamaan (6) digunakan untuk merata- rata (menghitung mean) data bagian perlambangan untuk peramalan periode selajutnya.

  1

  = (6)

  • 1 =1

  Ketika sebuah observasi baru menjadi tersedia, peramalan untuk periode selanjutnya,adalah rata-rata atau mean, dihitung dengan persamaan 4.6 dan observasi yang baru tersebut.

  Ketika meramal sebuah seri gabungan dengan jumlah yang besar, data penyimpanan mungkin sebuah isu. Persamaan (7) potensial untuk menyelesaikan permasalahan ini. Hanya peramalan dan observasi paling terkini dibutuhkan menyimpan waktu yang akan datang.

  • +

    +1 +1

  = (7)

  • 2
  • +1

  Metode simple average adalah salah satu teknik yang tepat ketika kemampuan runtun untuk menjadi ramalan sudah menjadi stabil, dan lingkungan di dalam runtun pada umumnya tidak berubah. Contoh untuk jenis ini dalam suatu runtun antara lain kuantitas hasil penjualan dari suatu level yang konsisten dalam usaha sales perorangan (penjualan barang), kuantitas dalam suatu produk dalam tahap pendewasaan di dalam lika-liku kehidupan, dan jumlah jabatan per minggu yang dibutuhkan dari kalangan dokter gigi,dokter umum atau pengacara yang memiliki pasien atau berdasarkan client adalah agak konstan.

  Simple average menggunakan rata-rata (mean) dari semua observasi-observasi pada periode-periode sebelumnya yang relevan sebagai ramalan pada periode berikutnya. Contoh 2 The Spokane Transit Authority (STA), beroperasi pada suatu armada pengangkutan kedua, karena selain lumpuh (tidak bisa digunakan) dan sudah tua. Catatan dari penggunaan bensin untuk armada pengangkutan ini dapat dilihat pada Tabel 2, jumlah yang sebenarnya tentang konsumsi atau penggunaan bensin pada armada pengangkutan setiap hari ditentukan secara random dari adanya panggilan maupun tujuannya. Pengujian dari penggunaan bensin digambarkan pada Gambar 2, dari gambar tersebut dapat dilihat bahwa data sangat stabil.

  Sehingga data terlihat stasioner. Metode dari simple average digunakan untuk minggu 1 sampai 28 untuk meramalkan penggunaan untuk minggu 29 dan 30.

  Tabel 2 Penggunaan Bensin untuk STA

  

Week Gallons Week Gallons Week Gallons

t T t

  1 275 11 302 21 310 2 291 12 287 22 299 3 307 13 290 23 285 4 281 14 311 24 250 5 295 15 277 25 260 6 268 16 245 26 245 7 252 17 282 27 271 8 279 18 277 28 282 9 264 19 298 29 302 10 288 20 303 30 285

  Gambar 2. Penggunaan Bensin STA Peramalan untuk minggu 29 adalah

  28

  1 =

  28+1

  28

  =1

  7,874 = = 281,2

  29

  28 Kesalahan peramalan adalah = = 302

  29 29 − 29 − 281,2 = 20,8

  Peramalan untuk minggu 30 memasukkan lebih dari satu nilai data (302) ditambahkan pada periode awal. Paramalan dengan persamaan 4.7 adalah 28 + 28 +

  28+1 28+1

  29

  29

  = =

  28+2

  28 + 1

  29

  28 281,2 + 302

  = = 281,9

  30

  29 Kesalahan peramalan adalah = = 285

  30 30 − 30 − 281,9 = 3,1

  Menggunakan metode simple average, peramalan penggunaan bensin untuk minggu 31 adalah

  30

  1 8,461 = = = 282

  30+1

  30

  30

  =1 Moving Averages Metode simple averages menggunakan rata-rata dari semua data peramalan.

  Bagaimana jika analisis lebih peduli dengan observasi baru-baru ini? Jumlah konstan titik data dapat ditetapkan pada awal dan dihitung rata-rata untuk observasi terbaru. Istilah

  

Moving Average digunakan untuk menggambarkan pendekatan ini. Setiap observasi baru

  menjadi tersedia, sebuah rata-rata baru dihitung dengan menjumlahkan nilai paling baru dan mengeluarkan yang paling tua. Moving average ini lebih digunakan untuk meramalkan periode selanjutnya. Persamaan (8) menunjukkan peramalan simple moving average. Sebuah moving average dari urutan ke k, MA (k) dihitung dengan

  Persamaan 4.8 Moving Average dengan order ke-k

  −1 − +1 ⋯+

  (8) =

  • 1

  = −

  Dimana,

  • 1

  = nilai sebenarnya pada periode t = jumlah perlakuan dalam moing average Moving average untuk periode waktu t adalah mean aritmetik dari k observasi terbaru. Dalam moving average, beban yang diberikan sama untuk setiap observasi. Setiap data baru dimasukkan dalam rata-rata yang tersedia, dan data paling awal dibuang. Kecepatan respon terhadap perubahan dalam pola data dasar tergantung pada jumlah periode k, termasuk dalam moving average.

  Perhatiakan bahwa teknik moving average hanya berkaitan dengan periode k terbaru dari data diketahui. Jumlah titik data dalam setiap rata-rata tidak berubah saat waktu kemajuan. Model moving averagetidak menangani trend atau musiman dengan sangat baik, walaupun itu lebih baik daripada metode simple average.

  Analisis harus memilih jumlah periode, k, dalam moving average. Moving average orde 1, MA(1) akan menggunakan observasi saat ini, Y , untuk meramalkan, untuk

  t

  meramalkan Y untuk periode selanjutnya. Ini hanyalah pendekatan peramalan na ve dari persamaan (4).

  Suatu Moving average order ke k adalah harga rata-rata dari k observasi yang berurutan. Harga moving average terbaru memberikan peramalan untuk periode selanjutnya. Contoh 3 Tabel 3 mendemonstrasikan teknik peramalan moving average dengan data Sponake Transit Authority (STA) menggunakan moving average lima mingguan. Peramalan moving average untuk minggu ke-29 adalah

  28

  28

  28

  ⋯ +

  −1 −5+1

  =

  28+1

  5

  28

  27

  26

  25

  24

  =

  29

  5 282 + 271 + 245 + 260 + 250 1308 = = = 261.6

  29

  5

  5 Saat nilai yang sebenarnya untuk minggu ke-29 diketahui, eror peramalan dihitung = = 302

  29 29 − 29 − 261.6 = 40.4

  5

  13.0 Peramalan untuk minggu ke-31 adalah

  30

  =

  31

  5

  30 −5+1

  30

  =

  30+1

  3.2 28 282 262.2 19.8 29 302 261.6 40.4 30 285 272.0

  

Tabel 3 Pembelian Gasoline untuk Sponake Transit Authority

t Gallons Y e t

  5.0 23 285 297.4 -12.4 24 250 299.0 -49.0 25 260 289.4 -29.4 26 245 280.8 -35.8 27 271 267.8

  19.6 20 303 275.8 27.2 21 310 281.0 29.0 22 299 294.0

  19 298 278.4

  16 245 293.4 -48.4 17 282 282.0 0.0 18 277 281.0 -4.0

  6.0 14 311 286.2 24.8 15 277 295.6 -18.6

  16.4 11 302 270.2 31.8 12 287 277.0 10.0 13 290 284.0

  10 288 271.6

  1 275 - - 3 307 - - 4 281 - - 5 295 - - 6 268 289.8 -21.8 7 252 288.4 -36.4 8 279 280.6 -1.6 9 264 275.0 -11.0

  • 30 −1
  • ⋯ +
  • 29
  • 28
  • 27
  • 26

  31

  = 285 + 302 + 282 + 271 + 245

  5 =

  1385

  5 = 277 Hasil ramalan menggunakan metode Moving Average disajikan pada Gambar 3.

  

Gambar 3 Aplikasi Moving Average untuk Pembelian Gasoline per Minggu untuk Spokane

Transit Authority

  Gambar 4 memperlihatkan fungsi autokorelasi untuk residual dan metode moving average lima minggu. Terlihat bahwa batas eror untuk autokorelsi individu berpusat pada 0, dan statistik Q Ljung-Box, mengindikasikan bahwa ada signifikan residual autokorelasi, yang berarti residual tidak random.

  

Gambar 4 Fungsi Autokorelasi untuk Residual Ketika Metode Moving Average Lima

Mingguan Digunakan dengan Data Spokane Transit Authority

Actual Predicted Actual Predicted 30 20 244 254 264 274 284 294 304 10 314 g a llo n s

  Time MSD: MAD: MAPE: Length: Moving Average 622,149 20,584 7,503 5 Moving Average Plot for Gallons Analis harus menggunakan penilaian ketika menentukan berapa banyak hari, minggu, bulan, atau kuartal yang akan menjadi dasar moving average. Jumlah yang lebih kecil, yang lebih berat diberikan kepada beberapa periode terakhir. Sebaliknya, semakin besar nomor, semakin berat diberikan untuk periode yang lebih baru. Sejumlah kecil adalah yang paling diinginkan bila ada perubahan mendadak di tingkat seri. Sejumlah kecil tempat beban berat sebelumnya, yang memungkinkan perkiraan untuk mengejar lebih cepat ketingkat saat ini. Sejumlah besar yang diinginkan ketika ada lebar, jarang terjadi fluktuasi dalam seri.

  Moving average sering digunakan dengan data kuartalan, atau bulanan untuk membantu kelancaraan kompenen dalam deret waktu. Untuk data kuartalan, moving average empat kuartalan, MA(4), menghasilkan rata-rata dari emapt penjuru dan untuk data bulanan, moving average 12 bulanan, MA(12), menghilangkan atau rata-rata keluar efek musiman. Urutan terbesar moving average lebih besar dari efek smooting.

  Dalam contoh 3, teknik moving average yang digunakan dengan data stasioner. Pada contoh 4, kami tunjukkan apa yang terjadi bila metode moving average digunakan untuk data trend. Teknik double moving average, yang dirancang untuk menangani data trend diperkenalkan berikutnya.

  Double Moving Averages

  Salah satu cara untuk mramalkan data time series yang memiliki trend linear adalah dengan menggunakan double moving average. Metode ini secra tidak langsung dinamakan set pertama dihitung moving averagenya dan set kedua dihitung sebagai moving average dari set pertama.

  Tabel 4 menunjukkan data sewa mingguan untuk took video film bersama dengan hasilnya menggunakan moving average tiga mingguan untuk meramalkan penjualan di masa mendatang.Pemeriksaan kolom kesalahan (error) pada Tabel 4 menunjukkan bahwa setiap entry adalah positif, hal ini menandakan bahwa peramalan tidak membentuk trend. Moving average tiga mingguan dan double moving average untuk data ini ditunjukkan pada Gambar 5 dan 6. Perhatikan bagaimana lag dari moving average tiga mingguan berada jauh dari nilai yang sebenarnya untuk dibandingkan periode yang menggambarkan kejadian saat teknik moving average digunakan sebagai data trend. Perhatikan juga bahwa lag dari teknik double moving averages berada jauh dari set pertama seperti halnya set yang pertama berada jauh dari nilai yang sebenarnya.Perbedaan antara kedua set pada moving average tiga mingguan adalah untuk meramalkan nilai yang sebenarnya.

  • 1

  1

  −1

  = 1 +

  1 ′

  (8) Kemudian Persamaan (9) digunakan untuk menghitung moving average kedua

  −1

  =

  =

  17 16 - - 717 - MSE=133 Persamaan (8) digunakan untuk menghitung moving average dari order ke-k.

  7 11 702 2,106 699 3 12 710 2,115 702 8 13 712 2,124 705 7 14 711 2,133 708 3 15 728 2,151 711

  21 8 694 2,058 679 15 9 701 2,088 686 15 10 703 2,098 696

  13 5 673 2,010 665 8 6 671 2,016 670 1 7 693 2,037 672

  1 654 - - - 2 658 - - - 3 665 1,997 - - 4 672 1,995 659

  Average

  Mingguan Peramalan Moving

  ) Moving Average Tiga

  Tabel 4 Persewaan mingguan untuk took video film T Persewaan mingguan per unit(

  • +

    −2
  • ⋯+ − +1
  • 1
  • −2
  • ⋯+ − +1

  (9) Persamaan (10) digunakan untuk menghitung peramalan dengan menambahkan selisih antara moving average pertama dan moving average kedua dengan moving average pertama.

  ′ ′

  (10) =

  • u

    n Moving Average

    it r 710 720

    730 Variable

  − − = 2

  

Moving Average Plot for persewaan mingguan per unit

Length Actual Fits 3 p n e g m n u in

g MSD 132,676

a a 680 690 700 Accuracy Measures MAD 9,806 MAPE 1,404 s 670 e r a p w e 650 660

  1 2 3 4 5 6 7 Index 8

9

10 11 12 13 14 15 Gambar 5 Single Moving average tiga mingguan untuk data Toko Video Film 710 720

Moving Average Plot for AVER1

Moving Average Length Fits Actual Variable 3 V A R 1 E 680 690 700 Accuracy Measures MSD 91,7469 MAD 9,0000 MAPE 1,3001 660 670 1 2 3 4 5 6 7 8

9

10 11 12 13 14 15 Index Gambar 6 Double Moving average tiga mingguan untuk data Toko Video Film

  Persamaan (11) adalah faktor penyesuaian tambahan yang mirip dengan kemiringan ukuran yang dapat berubah selama runtun waktu tersebut.

  2 ′

  (11) = ( )

  −

  −1 Persamaan (12) digunakan untuk membuat ramalan p periode di masa depan.

  (12)

  • =
  • dengan: k = jumlah periode dalam moving average p= jumlah periode peramalan untuk masa mendatang

  Contoh 4 Toko Video Film mengoprasikan beberapa rekaman video sewa outlet di Denver, Colorado.

  Perusahaan sedang berkembang dan memperluas inventaris untuk mengakomodasi meningkatnya permintaan pelayanan. Presiden menetapkan perusahaan Jill Ottenbreit memperkirakan harga sewa untuk bulan berikutnya.Data persewaan untuk 15 minggu terakhir yang tersedia disajikan dalam Tabel 5. Pada awalnya, Jill berusaha untuk mengembangkan sebuah ramalan menggunakan three weeks moving average (tiga minggu rata-rata bergerak). Mean Square Error untuk model ini adalah 133. Karena data jelas tren, dia menemukan bahwa prakiraan secara konsisten mengabaikan penyewaan sebenarnya.Karenanya,dia memutuskan untuk mencoba rata-rata bergerak ganda.Hasilnya disajikan dalam tabel 4-5. Untuk memahami ramalan minggu 16, perhitungan yang disajikan berikutnya. Persamaan (8) digunakan untuk menghitung moving average tiga mingguan (kolom 3).

  = + +

  15

  15

  

15

  15 −1 −3+1

  728 + 711 + 712 = = = 717

  15

  16

  3 Kemudian gunakan Persamaan (9) untuk menghitung moving average ganda (kolom 4)

  15

  15

  15 −1 −3+1 ′

  =

  15

  3 717 + 711 + 708

  ′

  = = 712

  15

  3 Tabel 5 Peramalan Double Moving Average terhadap Movie Video Store untuk Contoh 4 (1)

  Time T

  15 8 694 686 679 693 7 689

  15 ′

  15 −

  = 2

  15

  Gunakan Persamaan (10) untuk menghitung perbedaan kedua moving average(kolom 5)

  11 16 - - - - - 727 - MSE=63.7

  1 14 711 711 708 714 3 714 -3 15 728 717 712 722 5 717

  2 13 712 708 705 711 3 711

  1 10 703 699 694 704 5 714 -11 11 702 702 699 705 3 709 -7 12 710 705 702 708 3 708

  5 9 701 696 687 705 9 700

  5 - - 6 671 672 669 675 3 680 -9 7 693 679 674 684 5 678

  (2) Penjualan per minggu

  2 658 - - - - - - 3 665 659 - - - - - 4 672 665 - - - - - 5 673 670 665 675

  (p=1) (8) 1 6541 - - - - - -

  (7) Peramalan a+bp

  (6) Nilai b

  (5) Nilai a

  ′

  Average

  (4) Double Moving

  Average tiga mingguan

  (3) Moving

  = 2 217 − 712 = 722 Persamaan (11) mengatur kemiringan (kolom 6)

  2

  2

  ′

  =

  15 15 −

15 =

  717 − 712 = 5

  3

  2 − 1

  Gunakan Persamaan (12) untuk membuat ramalan satu period eke depan (kolom 7)

  • =

  15+1

  15 15 = 722 + 5 1 = 727

  Peramalan empat minggu mendatang adalah

  • =

  15+4

  15

  15

  = 722 + 5 4 = 74 Catatan bahwa MSE tidak berkurang dari 133 menjadi 63.7

  Ini terlihat beralasan bahwa beberapa observasi yang baru mungkin berisi informasi yang lebih penting.Caranya diperkenalkan pada sesi berikutnya diman lebih menekankan pada observasi terbaru.

  Rangkuman Materi 1.

  Pada Metode Naive mempunyai beberapa model antara lain a.

  Untuk data stasioner =

  • 1 b.

  Untuk data tidak stasioner atau mengandung trend = + ( )

  −

  • 1 −1 c.

  Untuk perbandingan perubahan antar periode =

  • 1 −1 d.

  Jika pola musiman kuat =

  • 1 +1−

  e. pola data merupakan penggabungan trend dan musiman Jika

  ) − −

  • ⋯ + (

  

−1 −3 −4

    <
  • 1 +1− 2.

  Peramalan dengan berdasarkan pada nilai rata-rata yaitu Simple Moving Average,Moving Average,Double Moving Average.

  3. Metode simple average adalah salah satu teknik yang tepat dan sangat sederhana untuk melakukan peramalan dengan data yang pada umumnya tidak berubah atau data stasioner. Untuk merata-rata (menghitung mean) data untuk peramalan satu periode selanjutnya.

  1 =

  • 1 =1

  Ketika suatu data pada umumnya telah berubah atau data sudah bersifat stasioner, kita juga dapat melakukan peramalan untuk dua periode selanjutnya dengan persamaan sebagai berikut.

  • 1 +1

  =

    <
  • 1 4.

  Moving Average lebih cocok digunakan untuk meramalkan data yang berpola Stasioner 5. Double Moving Average digunakan untuk meramalkan data yang cenderung berpola Trend linier.

  Referensi: E.Hanke,John,W. Wichern Dean. Business Forecasting. 2005. Pearson Education,Inc