SELECTION OF DOMESTIC WASTEWATER TREATMENT TECHNOLOGY ALTERNATIVE USING LIFE CYCLE ASSESSMENT (LCA) APPROACH (CASE STUDY: SETTLEMENT AREA OF RIVERBANK KARANG MUMUS OF SAMARINDA CITY, EAST KALIMANTAN)

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018

SELECTION OF DOMESTIC WASTEWATER TREATMENT TECHNOLOGY
ALTERNATIVE USING LIFE CYCLE ASSESSMENT (LCA) APPROACH (CASE
STUDY: SETTLEMENT AREA OF RIVERBANK KARANG MUMUS OF
SAMARINDA CITY, EAST KALIMANTAN)
Rininta Triananda Noor*, Prayatni Soewondo
Master Program of Water and Sanitation Infrastructure Management, Faculty of Civil and Environmental
Engineering, Institute of Technology Bandung, Bandung, 40132, Indonesia
*Corresponding author: rininta.noor@yahoo.com

ABSTRACT

MANUSCRIPT HISTORY

Aims: This study aims to analyze and select wastewater treatment
technology that can be applied for riverbank settlement areas through
environmental impact evaluation using LCA. Methodology and results:

The technology options will be analyzed and evaluated from potential
environmental impacts of the construction and operation phase, using LCA
through SimaPro8.4 software with an impact analysis using CML2 Baseline
2000. The impacts analyzed include acidification, eutrophication, global
warming, ozone depletion. The results showed that the selected
technological options were septic tanks, Tripikon-s, and biofilter. In an
environmental impact analysis it is known that the construction phase is a
phase that contributes greatly to the potential environmental impacts. The
potential for acidification and global warming are the dominant potential
impact from the three technology options, with a contribution of 2.01x1010 kgSO2-eq for the potential of acidification and 1.11 x 10-10 kgCO2-eq
for global warming potential with biofiltration as a main contributor. The
eutrophication potential is caused by nutrients (Total Nitrogen and
Phosphorus) that come out along with the treated wastewater at the
operating stage. The greatest eutrophication potential is generated on the
Tripikon-S, at 2.3 x 10-10 kgPO4-eq. The potential for ozone depletion,
biofiltration contributes significantly to 3.09 x 10-12 kgCFC-11-eq.
Conclusion, significance and impact study: Based on the comparison of
three technologies, it is known that Tripikon S has the potential of
environmental impact in a quite minimum and can be an option to be
applied to the river banks settlement.


164






Received
December 2018
Revised
February 2018
Accepted
March 2018
Available online
April 2018

KEYWORDS








wastewater technology
LCA
acidification
eutrophication
global warming
ozon depletion layer

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018

1.

INTRODUCTION


Sanitation is a basic need that must be fulfilled by all human beings. Good sanitation reflects the
well-being of a prosperous society with a healthy and clean residential environment, and shows
an improved economic condition of the community. One form of sanitation is the management
of waste water generated from household activities Waste water management becomes one of
the supporting factors in improving the condition of a region. But today as many as 4.5 billion
people still do not have adequate sanitation, including 2.3 billion people still do not have basic
sanitation services. It also includes 600 million people who use the toilet or latrine along with
other households. And 892 million people living in rural areas, still do open defecating (BABS)
(WHO, 2014). In developing countries, the direct disposal of wastewater into water bodies
(lakes, rivers, etc.), and the difficulty of obtaining adequate clean water constitute a major
challenge. Disposal of waste water without going through a treatment has a major impact on
aquatic diversity, public health, and eutrophication. Therefore, treating of waste water needs to
be done before the waste water is discharged to the receiving water body.
Condition of a region on both physical and non-physical condition is important things to
know in designing a wastewater treatment. As in the city of Samarinda, most of the people of
Samarinda City settled on the banks of the River Karang Mumus, with fairly crowded settlement
conditions and has poor sanitation conditions. The settlement is quite dense and located in tidal
area with typical stilt house located above the Karang Mumus River, so it is heavily influenced
by the tidal movement of the river. Tese existing conditions are included in the specific area

conditions. Therefore, technology in wastewater treatment needs to be adjusted. According to
(Djonoputro, 2011), for river basin areas there are several wastewater treatment technologies,
including septic tanks, Tripikon-S, and biofiltration. Ease of application, maintenance, and
financing are the factors of application of these technologies.
Sustainability of system is evaluated from 3 aspects, namely economic, environmental, and
social. The term sustainability or sustainable development should be in line with ecological and
political views, which are related to environmental protection, economic assurance, and
community welfare. Technically, sustainability means avoiding the huge impact of resource use
to generate and rebuild from an activity (Glavic, et al., 2007).
Evaluation in terms of environmental aspects can be done using Life Cycle Assessment
(LCA) method. LCA is an approach that can evaluate several potential environmental impacts

165

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018

ranging from a product, process, to the resulting output. Life Cycle on a wastewater treatment

plant starts from the construction excavation stage, followed by the operation process, and
ends with the disposal stage. In addition, all side activities such as energy use, building materials
and use of reagents, transport (removal), and mud reduction are also factors to be considered.
This study aims to select wastewater treatment technology that can be applied to the
region as above conditions. Selection of treatment technology is done by evaluating and
comparing all stages of construction and operation phase in septic tank, Tripikon-S, and
Biofiltration using LCA method.

2.

RESEARCH METHODOLOGY

This research begins by choosing the technology options that will be used for further analysis.
The selection of technology was using descriptive analysis by looking at the physical condition of
the environment in the study area. The technology and sanitation system options was then
determined using the flow diagram of the selection of technology options and sanitation system
developed by Djonoputro (2011), based on local environmental conditions and accordance with
application of wastewater treatment technology that has been implemented in river, swamp, or
coastal areas, as has researched by Putri, et al. (2016).
The environmental impact analyses of those technologies options are carried out using the

LCA method. The data required are data from the construction and operation phase of
wastewater treatment technology. Primary data obtained from field observation and interview
about environmental conditions. There are also primary data obtained from the calculation of
technological construction material data (type and volume of material used), and emissions
related data, generated from wastewater treatment technology, ie air emissions and effluent of
treated water. Secondary data required are literature, reports / documents, and previous
studies related on domestic wastewater characteristics data, design criteria of each technology.
The LCA analysis was performed using SimaPro 8.4 software, while the method of impact
analysis using CML 2 Baseline 2000. In analyzing the impact, there are 4 categories of impacts,
namely potential of the acidification, eutrophication, global warming, and ozone depletion. All
technologies will be compared each other through its potential impacts generating from the
construction and operation phase, and then it convert to be normalized data in order to know
the dominant of impact potential.
Selection of wastewater treatment technology is carried out by looking at the most
166

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018


minimal of environmental impact potential compared between some recommended
technologies. The methodology of this research is presented in the form of flow chart. The steps
in conducting this research can be seen in Figure 1.

Figure 1 Flow chart of research

2.1 Data Processing Using Life Cycle Assessment (LCA) Method
2.1.1 Goal and Scope
Goal to be achieved is to select domestic wastewater treatment technology that can be applied
in residential area of river bank based on its environmental impact. While the LCA scope in this
study is limited only in the construction and operational phase. Computer-based software used
in this research is SimaPro 8.4 with impact analysis method using CML2 Baseline 2000.

167

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018


2.1.2 Functional Unit
In this study, the functional unit is assumed that the treatment plant can be used for 20 years
and once every 3 years is carried out by draining. The functional unit used in this study is the
volume of treated wastewater in m3/year.

2.1.3 System Boundaries
System boundaries are determined based on the scope and purpose of the study. In this study
there are only two phases, namely the construction and operational phases of concern. All
inputs and outputs for construction and operational processes are taken into account. Basic
information related to these stages is obtained or retrieved from the LCI database on SimaPro.
Illustration of system boundary done in this research can be seen in Figure 2.

Input
Effluent
Air Emission

Figure 2 System boundary of research
The system boundaries used in the LCA analysis in this study are:
-


Analysis using SimaPro8.4 Software using faculty license, with database using Ecoinvent 3.3
in 2016, for environmental impact analysis using CML 2 Baseline 2000;

-

All data are related to characterization and normalization factors using the databases
available on Ecoinvent 3.3;

-

Included in the discussion of this study is the stage of construction and operation of waste
water treatment plant. Post-construction stage, mud production, mud transport, and
sludge treatment were not discussed in this study;
168

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018


-

The process of making materials in the factory is discussed in this study;

2.1.4 Life Cycle Inventory (LCI)
Initial data of LCI on waste water treatment unit construction is done by calculating the
dimensions of treatment units based on existing design criteria, collected from previous studies
that have applied the treatment unit, and vendor-supplied information. Wastewater effluent
(Total Nitrogen, Total Phosphorus, and BOD) is estimated from the mass balance at the
treatment unit. Air emissions (CH4, CO2, and N2O) are estimated based on calculations from
(EPA, 2010) by the formula:
𝑪𝑶𝟐 = 𝟏𝟎−𝟔 × 𝑸𝒘𝒘 × 𝑶𝑫 × 𝑬𝒇𝒇𝑶𝑫 × 𝑪𝑭𝑪𝑶𝟐 × [(𝟏 − 𝑴𝑪𝑭𝒘𝒘 × 𝑩𝑮𝑪𝑯𝟒 )(𝟏 − 𝝀)] (1)
𝑪𝑯𝟒 = 𝟏𝟎−𝟔 × 𝑸𝒘𝒘 × 𝑶𝑫 × 𝑬𝒇𝒇𝑶𝑫 × 𝑪𝑭𝑪𝑯𝟒 × [(𝑴𝑪𝑭𝒘𝒘 × 𝑩𝑮𝑪𝑯𝟒 )(𝟏 − 𝝀)]
𝟒𝟒

𝑵𝟐 𝑶 = 𝑸𝒘𝒘 × 𝑻𝑲𝑵𝒊 × 𝑬𝑭𝑵𝑶𝟐 × 𝟐𝟖 × 𝟏𝟎−𝟔

(2)

(3)

A description relating to the formula can be seen in Table 1.
In this research, inventory data is divided into two stages, namely inventory data at
construction stage and operation phase. At the construction stage, all data related to the
estimated number of all materials used during the construction of the treatment plant are
collected and calculated. Then those data will be entered into the construction category on
SimaPro8.4 inventory system. The data inventory in the construction phase of this study is
presented in Table 2.

169

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018

Table 1 Description of formula
No

Symbol

Explaination

Notation

1
2
3
4
5
5
6

Qww
OD
EffOD
CFCO2
CFCH4
MCFww
BGCH4

m3/jam
mg/L = g/m3

7
8
9
10

λ
TKNi
EFNO2
44/28

Flowrate waste water
BOD5 or COD content in waste water
Removal Efficiency of BOD
Convertion Factor
Convertion Factor
Correction Factor of Methane
Carbon Fraction of CH4 in Formation of
Biogass
Biomass Growth
The number of TKN in Influent
Emission Factor of N2O
Mass conversion molecular

1,375 g CO2/g OD
0,5 g CH4/g OD
0,8*
0,65*
0,1*
0,0050 N2O/g TKN

Table 2 Inventories data of construction phase
No

Material

Unit

1
2
3
4
5
6
7
8

Sand
Portland Cement
Clay Brick
Gravel
Reinforce Steel
PVC Pipe
Fiberglass
Media of Honey
Nest

Kg/m3
Kg/m3
Kg/m3
Kg/m3
Kg/m3
Kg/m3
Kg/m3
Kg/m3

Technologies
Septic Tank
4.25
8.78
12.74
4.93
0.43
0.70
-

Tripikon S
6.06
-

Biofiltration
6.44
0.32

At the operating stage, all the data collected will be entered into the category of operation
on the SimaPro8.4 inventory system. Data relating to the operating phase is the wastewater
quantity and air emissions generated from wastewater treatment. The data inventory of the
operating phase is presented in Table 3 and Table 4.
Table 3 Efficiency data from wastewater treatment
No

1
2
3

Parameter

BOD
Total N
Total P

Concentration
(mg/L)

Mass
(g/day)

Efficiency Removal

353.43(1)
90.48(1)
25.35(2)

70.69
18.10
5.07

70%
10%
10%

1

Septictank

Tripikon
S(3)
40%
-

Biofiltration
80%
50%(4)
-

(Said, 2010), 2(Jamaluddin, 2011), 3(Magar, 2016), 3(Saraswati, dkk., 2009), 4(Kramer, dkk., 2000)

170

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018

Table 4 Effluent data from wastewater treatment
No

1
2
3

Parameter

Effluent (mg/L)
Septic Tripikon S
tank
106
212
81.43
90.48
22.82
25.35

BOD
Total N
Total P

Biofiltration
70.69
45.24
25.35

Effluent (g/day)
Septic Tripikon S
tank
21.2
42.4
16.29
18.10
4.56
5.07

Biofiltration
14.14
9.05
5.07

Table 5 Effluent data from wastewater treatment (continued)
No

Parameter

1
2
3

BOD
Total N
Total P

Effluent (g/year)
Septic Tripikon S
tank
7.738
15.476
5.946
6.607
1.664
1.851

Biofiltration
5.161
3.303
1.851

Effluent (g/m3)
Septic Tripikon S
tank
106
212
81.45
90.51
22.79
25.36

Biofiltration
70.70
45.25
25.36

Air emissions are generated from the processing that occurs within the wastewater
treatment unit. Air emissions being parameters in LCA analysis are methane (CH4) carbon
dioxide (CO2) and nitrous oxide (N2O) gases. which are included in greenhouse gas gases. In this
study. the gas emissions generated in the treatment unit are presented in Table 6
Table 6 Inventories data of air emission from wastewater treatment
No

Parameter

Unit

1
2
3

CH4
CO2
N2O

mg/m3
mg/m3
mg/m3

Emission Contents
Septic tank
Tripikon S
5.77x10-5
3.30x10-5
1.51x10-4
8.37x10-5
-7
7.08x10
7.08x10-7

Biofiltration
6.59x10-5
1.64x10-4
7.08x10-7

2.1.5 Life Cycle Impact Assessment (LCIA)
The evaluation of life cycle impact assessment (LCIA) was conducted to evaluate the impacts
generated during the life cycle of wastewater treatment technology options. The factors
analyzed in this study are environmental factors. The environmental impact analysis was
performed using Software SimaPro 8.4 and the method used was CML 2 Baseline 2000.
In this study the selected impact categories are Acidification. Global Warming Potential.
171

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018

Ozone Layer Depletion. and Eutrophication. This impact category is more accurate to the
environmental burden resulting from wastewater treatment (Frances. 2014).

2.1.6 Interpretation
The combination of results from LCI and LCIA is used to interpret and draw conclusions from
previously identified goals and scopes.

2.2 Overview Wastewater Management in Study Areas
The city of Samarinda as the capital of East Kalimantan Province. is one of the cities crossed by
the Mahakam River. so there are 20 Mahakam River Basins located in the city. One of the
watersheds in the middle of Samarinda is Karang Mumus Watershed. The flow of the Karang
Mumus River is used by the community both as transportation and toilets facilities.
Community activities in disposing of household wastewater are directly discharged into the
river with or without pipes; collecting wastewater into holes made close to the bathroom; and
discharging household wastewater to drains/ditches near his home with or without pipes.
Condition of communities along in the river bank can be seen in Figure 3.

Figure 3 One community activities along the river
The latrines used by the community are floating latrines. As many of 30% of people living
on riverbanks, using shared/families latrines built on above the water surface (floating latrines).
This latrine building has an upper part (roof and wall), central part (foot or toilet), but not
equipped with a lower part (faecal reservoir), so the generated waste water will be directly
discharged into the river without treatment. For houses in the mainland, people use private
latrines, but the conditions of septic tanks still do not meet the technical requirements which is

172

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018

unproper construction, mostly using timber constructions planted under toilet closets.
Conditions of latrine that used with people in river bank can be seen in Figure 4.

Figure 4 Conditions of latrine in community

3.

RESULTS AND DISCUSSION

3.1 Analysis of Technology Selection
Based on Putri, et.al., (2016), wastewater treatment technologies implemented in river banks
can be seen in Table 7.
Table 7 Wastewater treatment technology applied in swamp settlement
Wastewater Treatment
Technology
Septic Tank

Tripikon S
Biofiltration
Dry and Separated toilet wth
container
Floating ponds/garden

Anaerobic Baffled Reactor

Application in Swamp Settlement
- Application on swamp area in Palembang
- Application on swamp area in Bontang with
improvement in foundation using curug.
Application on swamp and river settlement in Pontianak,
Yogyakarta, Morodemak, Palembang, dan Kendari
Application on river swamp area in Banjarmasin dan
Palembang
Application on floating house in Tonle River, Kamboja
Application on floating houses in Cambodia as primary
treatment and on river swamp settlement in Banjarmasin,
as secondary treatment
Application as communal treatment in Tihitik-tihitik and
Selangan Communities and Bintan Islands

173

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018

Referencing to several technologies that have been applied, the technology options were
determined using flow chart of system and technology selection developed by Djonoputro
(2011). The flow chart of system selection and technology can be seen in Figure 5

Figure 5 Flow chart selection technology options

Physical conditions in the field are known to density of population in Sub-districts of
Sidodadi and Sidomulyo is under 200 persons / ha, so that the onsite system for stage-house
settlements that can be used are private/joints latrines and the treatment technology are
Biofiltration and Tripikon-S. For landed-house settlements of similar density, the onsite system
can still be applied with private or shared latrines, and if groundwater table is more than 2 m,
the Septic Tank and the infiltration field can be used. Conditions of house building density can
be seen in Figure 6.

Figure 6 Conditions of building density

174

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018

As for Kelurahan Pelita with density level more than 200 persons/ha, for the type of stagehouse, offsite system can be applied, while due to limited land, wastewater treatment is built in
waters and technology that can be applied is septic tank. For landed-houses, with the same
density, the off site system can be used, and with limited land availability, the piping system can
be applied. Condition of wooden houses on the river bank can be seen in Figure 7.

Figure 7 The condition of wooden houses on the river bank
Selection of technology options is done by looking at the conditions in the field based on
studies that have been conducted in similar areas. The wastewater treatment technology used
in this research are Septic Tank, Biofiltration and Tripikon-S. The technology selection is based
on potential of environmental impacts resulting from the construction process to the operation
process.

3.2 Environmental Impact Analysis
3.2.1 Acidification Potential
The potential of acidification from three technology options is generated from the construction
phase. The production process of building material is the source of the occurrence of
acidification. The results of the analysis of impact categories based on technical stage of each
option can be seen in Table 8.

175

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018

Table 8 Acidification impact from type and phase technologies
No

Technology

1

Septic Tank

2

Tripikon S

3

Biofiltration

Construction
Operation
Construction
Operation
Construction
Operation

Unit

Total

kgSO2 eq.
kgSO2 eq.
kgSO2 eq.
kgSO2 eq.
kgSO2 eq.
kgSO2 eq.

0.0406
0
0.0336
3.45x10-13
0.135
3.54x10-13

The acidification is resulted from the presence of sulphur oxide (SO2) in the atmosphere.
The construction stage is a major contributor to the cause of potential acidification. On
anaerobic waste water process, there are 3 stages of the process of decomposition of organic
material into biogas, one is the process of acidogensis. The main results obtained from the
acidogenesis process are acetate propionate, butyrate, hydrogen (H2) and CO2. Since the fatty
acids produced in this process are volatile, some of these acids become gases that go out into
the air (Soeprijanto, et al., 2015). This causes the operation process can also cause the potential
of acidification.
Biofiltration give contribution to the formation of SOx. The biggest contribution of the
process in the potential for acidification is the use of pipes and materials made of plastic as
construction material. The use of biofiltration with fiberglass material and filter media made of
PVC gives a considerable influence on the potential of acidification that occurs. The production
process on fiber-making in the plastic industry requires considerable energy in terms of
electricity, heat, and combustion. The process that occurs can be a potential process in the
formation of SOx and NOx in the air. Comparison between technologies for acidification content
can be seen in Table 9
Table 9 Comparison of acidification contents from technologies
No

Contents

Unit

1
2
3

Sulphur Oxide (SOx)
Nitrogen Oxide (NOx)
Ammonia

kgSO2 eq.
kgSO2 eq.
kgSO2 eq.

Septic Tank
Construction
0.0253
0.0145
0.00076

Tripikon-S
Construction
0.0205
0.0128
0.000223

Biofiltration
Construction
0.0991
0.0333
0.00228

Based on Table 9, it is known that biofiltration contributes more to the formation of SOx
compared to other technologies. In addition, septic tanks also have a considerable impact. The
biggest contribution for acidification potential is the use of pipes and materials made of plastic
176

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018

as construction material. As much of 97.7% of the potential for acidification in the
environmental profile stems from the overall construction phase and the remainder is derived
from transport emissions (Frances, 2014). Electricity and incineration are the biggest
contributors to SOx and NOx to the air (Akwo, 2008).

3.2.2 Eutrophication Potential
Waste water treatment either directly or indirectly, can cause changes in water quality. This is
due to the effluent coming out from the wastewater treatment plant that flowing into the
receiving water body, even though the nutrient levels have reach the standard disposal used.
The result of eutrophication impact category analysis on wastewater treatment technology can
be seen in Table 10.
Table 10 Comparison of eutrophication impact categories
No

Technology

1

Septic Tank

2

Tripikon S

3

Biofiltration

Construction
Operation
Construction
Operation
Construction
Operation

Unit

Total

kgPO4 eq.
kgPO4 eq.
kgPO4 eq.
kgPO4 eq.
kgPO4 eq.
kgPO4 eq.

0.00519
0.104
0.00413
0.116
0.0175
0.0966

Based on Table 10, it is known that the potential impact of eutrophication on wastewater
treatment occurs both in the construction and operation phases. In the operation phase,
Tripikon-S contributes high impact, due to its low efficiency of treating. Biofiltration contributes
to a lower eutrophication potential, since it use filter media that able to absorb nutrients better.
In the biofiltration unit, it is known that the eutrophication potential is not only in operation but
also in construction as well. The material production process influences the potential of
eutrophication. So that the eutrophication potential occurring in biofiltration construction is
obtained from the wastewater of the fiberglass production process at the plant. Ammonia and
nitrogen oxide are part of the burning process that occurs in the plant.
Content that provides potential for eutrophication in septic tanks and Tripikon S can be
seen in Table 11.

177

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018

Table 11 Comparison of eutrophication contents From Tripikon-S and Septic Tank
No

Contents

1

Unit

Total
Nitrogen
Total
Phosphorus

2

kgPO4
eq.
kgPO4
eq.

Septic Tank
Construction
0

Operation
0.0342

Tripikon S
Construction
0

Operation
0.038

0

0.0697

0

0.0776

Waste water effluent from Tripikon-S has total nitrogen and total phosphorus content
higher than that from septic tank. This is because the nutrient removal efficiency at Tripikon-S is
lower than septic tank. Septic tanks can treat nitrogen and phosphorus from household
wastewater by 5-10% (Magar, 2016). Although still relatively low in the process of nitrogen and
phosphorus, but septic tank can reduce eutrophication potential compared with Tripikon S.

3.2.3 Global Warming Potential
Wastewater treatment is one of the sectors that contribute in generating greenhouse gases.
This is because in the processing stage anaerobic process occurs which results from the process
are CO2, CH4, and N2O while the gas is categorized as greenhouse gas. The results of the global
warming impact category analysis can be seen in Table 12.
Table 12 Comparison of global warming impact categories
No
1

Technology
Septic Tank

2

Tripikon S

3

Biofiltration

Construction
Operation
Construction
Operation
Construction
Operation

Unit
kgCO2 eq.
kgCO2 eq.
kgCO2 eq.
kgCO2 eq.
kgCO2 eq.
kgCO2 eq.

Total
14.6
1.69 x 10-9
12
8.43 x 10-10
28
1.68 x 10-9

Biofiltration is a potential contributor to the impact of global warming, more than other
technologies. The construction stage provides considerable potential due to the processing of
wastewater using materials or commercial products such as cement, red brick, coral, iron, PVC,
and other plastic based materials. The production process of plastic based materials contributes
to greenhouse gas emissions through electrical energy, heat, combustion, chemical use in the
production process (Sapkota, 2016). The biofiltration production process produces considerable

178

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018

CO2 and CH4 emissions. The production process of making glass fiber and filter media
contribute considerable impact as well.
Likewise the septic tank, while brick and cement production processes are major
contributors to the potential for global warming. Coal, bituminous, clinker, and electricity used
to produce cement and bricks as the dominant materials can remove components such as CO2,
CH4, and N2O, which are the largest contributors to global warming potential (Sapkota, 2016).
Comparison of global warming impact categories can be seen in Table 13.

Table 13 Contents of impact categories of global warming
No

Contents

Unit

Septic Tank

Tripikon S

Biofiltration

1
2
3

CO2 (Fossil)
CH4 (Fossil)
N2O

kgCO2 eq.
kgCO2 eq.
kgCO2 eq.

14.1
0.435
0.0435

11.3
0.561
0.0937

20.7
2.02
4.21

As described above, in wastewater treatment the use of fuel in the building material
production process has an impact on the potential of global warming. Based on Table 13, it is
known that the biofiltration production process generates substantial CO2 and CH4 emissions.
The production process of making glass fiber and filter media contribute considerable as well.
So is the Tripikon-S, that use of PVC pipes, fiberglass fabrication, and filter media made of plastic
materials contribute substantially to the formation of CO2, CH4, and N2O gases from the
combustion process.

3.2.4 Ozon Depletion Potential
Wastewater treatment, the potential depletion of the ozone layer is largely due to the
construction phase. The results of the ozone depletion impact category analysis can be seen in
Table 14
Table 14 Comparison of ozon depletion impact categories
No

Technology

1

Septic Tank

2

Tripikon S

3

Biofiltration

Construction
Operation
Construction
Operation
Construction
Operation
179

Unit

Total

kgPO4 eq.
kgPO4 eq.
kgPO4 eq.
kgPO4 eq.
kgPO4 eq.
kgPO4 eq.

6.57 x 10-7
0
8.91 x 10-8
0
3.03 x 10-6
0

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018

Potential ozone depletion occurs due to the construction phase of wastewater treatment.
The burning process that occurs in the factory plays an important role in ozone damage. This is
because the combustion gases release directly to the atmosphere and react with ozone. The
combustion gases, among them are SOx, CO, NO, Ammonia, Hydrocarbons. To clarify the
comparison of impacts, the data in the table can be presented in graphical form as in Figure 8.

Figure 8 Comparison of normalization category of ozon depletion impact
Biofiltration consisting of fiberglass and polyethylene filter media, is a material made of
plastic base material. In the production process that occurs it will cause hydrocarbon gas from
the combustion process. The air emissions produced by biofiltration are Methane, Tetrachloro,
CFC-10, of 1.46 x 10-6 kgCFC-11. Septic tanks, brick and cement production processes contribute
substantially to the ozone depletion potential. The resulting air emissions are methane,
bromotrifluoro, Halon 1301 from the construction process and contribute 5.46 x 10-7 kgCFC-11.
Tripikon-S, the resulting air emissions are Methane, Bromotrifluoro, Halon 1301 contribute
8.13 x 10-8 kgCFC-11. This gas also includes hydrocarbon compounds that are released along
with the combustion process that occurs. The production process of PVC pipe, also requires
great energy in the combustion process is done. The result of the combustion process also
emits gas that causes ozone depletion.

180

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018

3.3 Comparation of Categories Impact Analysis
The construction phase contributes substantially to each category of impacts analyzed. Raw
material of building material used as main material in construction and production process from
each material raw material plays an important role to the potential of environmental impact. To
compare the potential impact of these three technologies, the normalization data should be
used. Comparison of normalization between technologies can be seen in Figure 9.

Figure 9 Comparation of normalization impact categories
Based on Figure 9, it is known that the dominant potential impact is from the potential of
acidification and potential for global warming. Biofiltration is a major contributor to the
potential impacts that may occur from the domestic wastewater construction stage.
Based on those three domestic wastewater treatment technologies analyzed, Tripikon-S is
the technology that gives the lowest impact compared to other technologies. The use of a
simple material, does not require large area and low environmental impact that resulted in
making Tripikon-S as the appropriate technology to be applied. But in terms of operation, the
processing efficiency at Tripikon-S is still low, this is indicated by the potential value of
eutrophication produced by Tripikon-S technology that is still high.

181

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018

3.4 Interpretation of Results
Based on the results of the environmental impact assessment using LCA then made a
comparison with the technological conditions that have been applied, there are some things
that can be an increase or modification on the application of these technologies, namely:
1.

The use of biofiltration provides the potential for considerable environmental impact, with
the use of fiberglass and filter media. Based on this, in its application not only need
modification on the tank buffer to withstand the tidal wave but also the modification in
terms of the material. The use of fiberglass material provides ease in construction and
impermeability, so media filters can use media such as gravel, bamboo, which can replace
plastic material as medium with provide the same benefits.

2.

The use of cement and bricks provides a higher environmental impact compared to the use
of PVC materials. Based on this, improvisation is needed on the use of cement and brick
material by replacing those materials with environmentally friendly material. There are
several materials that have the same function that can substitute bricks, such as light bricks
that have been widely used in the field of construction.

3.

Eutrophication in septic tanks and Tripikon-S, still has great potential. Based on this, it is
necessary to add a processing unit such as the infiltration or wetland to reduce the nutrient
content that still high.

4.

In the application of Tripikon-S, it is necessary to modify the bottom foundation of the
construction to avoid the occurrence of damage that occurred during the use based on
experience of implementation that has been done.

For the selection of technologies in terms of environmental impacts, good operating
performance and low emissions of air and water can be considered (Sapkota, 2016). Based on
this, the Tripikon-S can be a best option for domestic wastewater treatment.

4. CONCLUSION
The greatest contribution to environmental impact is the construction phase. The use of
building materials used in the manufacture of wastewater treatment systems contributes
substantially. The use of diesel energy, heat energy, gas combustion, and transportation carried
out in the production process of building materials indirectly affect the environment in the

182

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018

construction of wastewater treatment technology. The impacts of wastewater treatment
technology analysis in the construction and operation stages are the potential of acidification,
eutrophication, global warming, and ozone depletion. The most dominant potential impact is
for acidification and global warming. Tripikon S can be a technology selected because the
environmental impacts are relatively small, but the removal efficiency needs to be increased
with additional treatment units to process a high nutrient content in the effluent.

5. REFERENCES
Akwo, N. 2008. A Life Cycle Assessment of Sewage Sludge Treatment Options. Aalborg, Aalborg
University.
Cleij, V., Oele, M., Gelder, C.d. 2016: SimaPro8 installation manual, California (USA),
Pre-Sustainability
Cleij, V., Oele, M., Gelder, C.d. 2017. SimaPro database manual: methods library, California
(USA), Pre-Sustainability
Djonoputro, E. R. 2011. Opsi Sanitasi yang Terjangkau untuk Daerah Spesifik, WSP
Putri, D.W., Soewondo, P., Effendi, A.J., dan Setiadi, T. (2016): Sustainability Analysis of
Domestic Wastewater Treatment Technology Applied on Human Settlement in Swamp
Area, 7(9)
Frances, A. 2014. A comparative assessment of BORDA decentralized wastewater treatment
system with Schleswig centralized system using life cycle assessment, Germany, University
of Flensburg.
Glavic, P., dan Lukman, R. 2007. Review of Sustainability Terms and Their Definitions. Journal of
Cleaner Production. 15(18):1875-1885
International Standards Organization (ISO) 14040. 1997. Environmental Management, Life Cycle
Assessment, Principles and Frameork, Swizerland, Geneva
Magar, K. K. 2016. Comparative Environmental Performance of Small Scale Wastewater
Treatment Systems in Norway-Life Cycle Analysis, Norwegian, Norwegian University of Life
Science
Sapkota, N. 2016. Environmental Performance Evaluation of Decentralized Wastewater
Treatment System Using Life Cycle Analysis, Norway, Norwegian University of Life Science

183

Selection of Domestic Wastewater Treatment Technology Alternative using Life Cycle Assessment (LCA)
Approach (Case Study: Settlement Area of Riverbank Karang Mumus of Samarinda City, East Kalimantan)
Noor, Soewondo
p-ISSN 2579-9150; e-ISSN 2579-9207, Volume 1, Number 2, pp 164 - 184 , April 2018

Soeprijanto, Suprapto, P, D. H., Puspita, N. F., Pudjiastuti, L., Setiawan, B., dan Anzip, A. 2015.
Pembuatan biogas dari kotoran sapi menggunakan biodigester di Desa Jumput Kabupaten
Bojonegoro, Surabaya, Institut Teknologi Surabaya.
WHO, U. 2014. Progress on sanitation and drinking water: 2015 update, World Health
Organization.

184