8.1. Fungsi Logarithma Natural. - 8 Fungsi Log Natural, Exponensial, Hiperbolik

8. Fungsi Logaritma Natural, Eksponensial, Hiperbolik 8.1. Fungsi Logarithma Natural.

  Definisi. Logaritma natural adalah logaritma dengan menggunakan basis bilangan e.

  Bilangan e ini, seperti halnya bilangan , adalah bilangan-nyata dengan desimal tak terbatas.

  π

  Sampai dengan 10 angka di belakang koma, nilainya adalah

  

e = 2,7182818284

  Bilangan e merupakan salah satu bilangan-nyata yang sangat penting dalam matematika: (8.1)

  ln e =

  

1

a

  (8.2)

  ln e = a ln e = a

  Kita lihat sekarang fungsi logaritma natural. Fungsi logaritma natural dari x dituliskan sebagai (8.3)

  y = ln x

  Fungsi ini didefinisikan melalui integral (mengenai integrasi akan kita pelajari pada Bab-12), yaitu

  

x

  

1

  (8.4)

  ln x = dt

  

1

t

  Berikut ini kita akan melihat definisi tersebut secara grafis di mana integral dengan batas tertentu seperti (8.4) berarti luas bidang antara fungsi 1/t dan sumbu-x yang dibatasi oleh t = 1 dan t = x . Perhatikan Gb.8.1. Nilai fungsi y = ln x adalah luas bidang yang dibatasi oleh kurva (1/t) dan sumbu-t, dalam rentang antara t = 1 dan t = x.

  6 y

  5

  4 1/t

ln x

  3

  2

  1 t x

  1

  

2

  3

  4 Gb.8.1. Definisi ln x ditunjukkan secara grafis.

  Kurva fungsi y = ln x dalam koordinat x-y adalah seperti pada Gb.8.2. Nilai ln x = 1 terjadi pada nilai x = e.

  2 y 1,5 y = ln x

  1 0,5

  1

  2

  3

  4 e x

  • 0,5
  • <
  • 1,5
  • 2 Gb.8.2. Kurva y = ln x.

  Sifat-Sifat. Sifat-sifat logaritma natural mirip dengan logaritma biasa. Jika x dan a

  adalah positif dan n adalah bilangan rasional, maka:

  = x

ln = ln x − ln a ;

a n ln x n ln x

  • ln ax ln a ln x

  =

  (8.5)

  ln e

  1 = x ln e x

  = ln x bernilai negatif untuk x

  1 &lt;

8.2. Fungsi Eksponensial

  Antilogaritma dan Fungsi Eksponensial. Antilogaritma adalah inversi dari logaritma;

  kita melihatnya sebagai suatu fungsi (8.6)

  

x ln y

=

  Mengingat sifat logaritma sebagaimana disebutkan di atas, ekspresi ini ekivalen dengan

  x

  (8.7)

  

y e

=

yang disebut fungsi eksponensial.

  Fungsi eksponensial yang penting dan sering kita jumpai adalah fungsi eksponensial dengan eksponen negatif; fungsi ini dianggap mulai muncul pada x = 0 walaupun faktor u(x), yaitu fungsi anak tangga satuan, tidak dituliskan.

  

bx

  (8.8)

  

y = ae ; x

Eksponen negatif ini menunjukkan bahwa makin besar bx maka nilai fungsi makin kecil.

  untuk suatu nilai b tertentu, makin besar x fungsi ini akan makin menurun. Makin besar b akan makin cepat penurunan tersebut. Dengan mengambil nilai a = 1, kita akan melihat bentuk kurva fungsi eksponensial (8.8) untuk beberapa nilai b, dalam rentang x 0 seperti terlihat pada Gb.8.3. Pada Gb.8.3. ini

  ≥ terlihat bahwa makin besar nilai b, makin cepat fungsi menurun.

  2/6 Sudaryatno Sudirham, Fungsi Log Natural, Eksponensial, Hiperbolik

  1 y x

  0,8 − e

  2x

  0,6 e

  0,4 0,2 0,5 1 1,5 2 2,5 3 3,5 x

  4 − x − 2x Gb.8.3. Perbandingan kurva y = e dan y = e .

  Penurunan kurva fungsi eksponensial ini sudah mencapai sekitar 36% dari nilai awalnya (yaitu nilai pada x = 0), pada saat x = 1/b. Pada saat x = 5b kurva sudah sangat menurun mendekati sumbu-x, nilai fungsi sudah di bawah 1% dari nilai awalnya. Oleh karena itu fungsi eksponensial biasa dianggap sudah bernilai nol pada x = 5/b.

  Persamaan umum fungsi eksponensial dengan amplitudo A adalah

  aty = Ae u (t ) (8.9)

  Faktor u(t) adalah fungsi anak tangga satuan untuk menyatakan bahwa kita hanya meninjau keadaan pada t

0. Fungsi ini menurun makin cepat jika a makin besar. Didefinisikanlah

  ≥

  1 τ =

  (8.10)

  a

  sehingga (8.9) dituliskan

  − t / τ y Ae u ( t ) (8.11)

  = disebut konstanta waktu; makin kecil , makin cepat fungsi eksponensial menurun.

  τ τ

Gabungan Fungsi Eksponensial. Gabungan fungsi eksponensial yang banyak dijumpai dalam

  rekayasa adalah eksponensial ganda yaitu penjumlahan dua fungsi eksponensial. Kedua fungsi mempunyai amplitudo sama tetapi berlawanan tanda; konstanta waktu dari keduanya juga berbeda. Persamaan fungsi gabungan ini adalah

  − t / τ − t / τ 1 2 y A e e u ( t ) (8.12)

  = − ( ) Bentuk kurva dari fungsi ini terlihat pada Gb.8.4.

  Fungsi ini dapat digunakan untuk memodelkan surja. Gelombang surja (surge) merupakan jenis pulsa yang awalnya naik dengan cepat sampai suatu nilai maksimum tertentu kemudian menurun dengan agak lebih lambat. Surja tegangan yang dibangkitkan untuk keperluan laboratorium berbentuk “mulus” namun kejadian alamiah yang sering dimodelkan dengan surja tidaklah mulus, misalnya arus terpaan petir.

  5 t /

  τ 1 −−−− A y Ae

  1 ====

t / τ

  4 −−−− 2 y Ae

  ====

  2 t / τ t / τ

  

−−−−

1 −−−− 2

  3

y A e e

  

==== −−−−

(((( ))))

  2

  1

  1

  2

  3

  4

  5 t/

  τ Gb.8.4. Kurva gabungan dua fungsi eksponensial.

8.3. Fungsi Hiperbolik

  Definisi. Kombinasi tertentu dari fungsi eksponensial membentuk fungsi hiperbolik,

  seperti cosinus hiperbolik (cosh) dan sinus hiperbolik (sinh)

  vv vv

  • e e e e

  −

  (8.13)

  cosh v ; sinh v = =

  2

  2 Persamaan (8.13) ini merupakan definisi dari cosinus hiperbolik dan sinus hiperbolik. Definisi

  ini mengingatkan kita pada fungsi trigonometri biasa cosinus dan sinus. Pada fungsi trigonometri biasa, jika x = cos dan y = sin maka fungsi sinus dan cosinus ini memenuhi

  θ θ

  persamaan “lingkaran satuan” (berjari-jari 1), yaitu

  2

  2

  2

  2 . x y 1 sin cos

  • = = θ θ

  Pada fungsi hiperbolik, jika x = cosh v dan y = sinh v, maka fungsi-fungsi ini memenuhi persamaan “hiperbola satuan”:

  2

  

2

xy =

  1 Hal ini dapat kita uji dengan mensubstitusikan cosh v untuk x dan sinh v untuk y dan kita

  akan mendapatkan bahwa persamaan “hiperbola satuan” akan terpenuhi. Kita coba:

  2 v v

  2 2 v 2 v − − e + + + 2 e e − 2 e

  4

  2

  2

  2

  2 x y cosh v sinh v

  1

− = − = − = =

  4

  4

  4 Bentuk kurva fungsi hiperbolik satuan terlihat pada Gb. 8.5. dengan v v v v

  − −

  • e e e e

  − x cosh v ; y sinh v

  = = = =

  2

  2

  4 v =

  ∞

  3 y

  2 v = 0

  P[x,y]

  1 x

  1

  2

  3

  4

  • 1
  • 2
  • 3
  • 4 Gb.8.5. Kurva fungsi hiperbolik satuan.

  4/6 Sudaryatno Sudirham, Fungsi Log Natural, Eksponensial, Hiperbolik

  • = =
  • = =
  • − = =
  • = =

  1 x e

  2 csch 1 coth

  = − . Identitas ini diperoleh dengan membagi identitas pertama dengan

  sinh

  2 v.

  4).

  u e v v

  = + sinh cosh . Ini merupakan konsekuensi definisinya.

  5).

  u e v v

  − = − sinh cosh . Ini juga merupakan konsekuensi definisinya.

  Kurva-Kurva Fungsi Hiperbolik. Gb.8.6 berikut ini memperlihatkan kurva fungsi- fungsi hiperbolik.

  (a) b)

  x e

  2

  

  v v

  2

  1 = x y sinh x y

  1

  2

  3

  4

  1

  2

  1

  2

  3

  4

  1

  2 x y sech

  2

  3).

  = = x y cosh y x

  (8.14)

  Jika kita masukkan

  2 ; sinh 2 cosh v v v v e e v y e e v x

  − − − = =

  maka titik P[x,y] akan berada di bagian positif kurva tersebut. Karena e

  v selalu bernilai positif

  dan e

  − v

  = 1/e v

  juga selalu positif untuk semua nilai nyata dari v, maka titik P[x,y] selalu berada di bagian positif (sebelah kanan sumbu-y) kurva hiperbolik. Mirip dengan fungsi trigonometri, fungsi hiperbolik yang lain didefinisikan sebagai

  v v v v v v v v e e e e v v v e e e e v v v

  − − − −

  −

  sinh cosh ; coth cosh sinh tanh

  v v v v e e v v e e v v

  2 v.

  . Identitas ini telah kita buktikan di atas. Identitas ini mirip dengan identitas fungsi trigonometri biasa. 2).

  cosh

  1 = − . Identitas ini diperoleh dengan membagi identitas pertama dengan

  2 sech tanh

  2

  v v

  2 = − v v

  − − − = =

  2

  1 sinh cosh

  1).

  (8.15) Identitas. Beberapa identitas fungsi hiperbolik kita lihat di bawah ini.

  2 cosh 1 sech

  2 sinh 1 ; csch

  • 2 -1

  • 2 -
  • 4
  • 3
  • 2
  • 1
  • 1

  4 y

  3

  4 y coth x

  = y y = cosh x

  2

  3

  2

  1 y tanh x

  =

  1

  1 x x y = sinh x e

  • 2 -1

  1

  2

  • 1

  2

  • 2 -1

  1 2 x

  • 1
  • 2

  y coth x =

  • 2
  • <
  • 3

  c) d)

  • 4
  • 4

  4 y y = csch x

  3 = y sinh x

  2

  1 x

  • 2 -1

  1

  2

  • 1
  • 2
  • 3

  = y csch x

  • 4

e) Gb.8.6. Kurva-kurva fungsi hiperbolik.

  6/6 Sudaryatno Sudirham, Fungsi Log Natural, Eksponensial, Hiperbolik