1. The Mastery of Students on English Vocabulary Between Social Science Class and Natural Science Class of Eleveth Graders of SMAN 1 Kapuas Hilir a. The Description of the Data of Students in Social ScienceClass - A comparative study on english vocabulary
CHAPTER IV
RESULT OF THE STUDY
This chapter discussed the result of the studywhich consist of the data
finding and discussion.
A. Description of the Data
This section described the obtained data of the difference in the english
vocabulary mastery by Eleventh Graders of Social Science Class and Natural
Science Class at SMAN-1 Kapuas Hilir. The presented data consistof Mean,
Median, Modus, reliability value, and Standard Deviation.
1.
The Mastery of Students on English Vocabulary Between Social Science
Class and Natural Science Class of Eleveth Graders of SMAN 1 Kapuas
Hilir
a. The Description of the Data of Students in Social ScienceClass
The data presentation of the score of the students Social
Scienceshows in the table frequency distribution, the chart of frequency
distribution, the measurement of central tendency (mean, median, and mode)
and the measurement of deviation standard.
Table. 4.1 Description Data of Social Science Class
No
1
2
3
4
Name
D
JS
S
IR
Value
70
74
58
58
Range
B
B
D
D
5
6
7
No
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
MR
A
JR
Name
RM
AR
NA
TBY
TKS
M
AR
YH
S
Z
YK
AP
CSD
YFA
WK
J
S
AP
MR
M
H
MH
EO
LD
A
T
DM
WE
M
IS
R
S
70
68
66
Value
70
66
82
82
72
74
68
70
74
78
78
82
72
62
68
88
86
76
76
54
74
82
66
74
82
84
80
72
76
70
68
58
B
C
C
Range
B
44
C
A
A
B
B
C
B
B
B
B
A
B
C
C
A
A
B
B
D
B
A
C
B
A
A
A
B
B
B
C
D
40
Total
DA
84
2912
A
Based on the data above, it can be seen that the studentsβ highest
score was 88 and the studentβs lowest score was 54. To determine the range
of score, the class interval, and interval of temporary, the writer calculated
using formula as follows:
The Highest Score (H) = 88
The Lowest Score (L) = 54
The Range of Score (R) = H β L + 1
= 88 β 54 + 1
= 35
The Class Interval (K)
= 1 + (3.3) x Log n
= 1 + (3.3) x Log 40
= 1 + 4,293399
= 5,293399
=5
π
Interval of Temporary (I)= =
πΎ
35
5
=7
Thus, the range of score was 35, the class interval was 5, and
interval of temporary was 7. It was presented using frequency distribution in
the following table:
Table 4.2 Frequency Distribution of Social Science Class Test Score
Class Interval Frequency
(K)
(I)
(F)
Mid
Point
Limitation
of Each
Frequency Frequency
Relative Cumulative
1
2
3
4
5
82β 88
75β 81
68β 74
61β 67
54β 60
Total
9
6
17
4
4
βF = 40
(X)
85
78
71
64
57
Group
81,5 β 88,5
74,5 β 81,5
67,5 β 74,5
60,5 β 67,5
53,5 β 60,5
(%)
45
30
85
20
20
βP = 200
(%)
45
75
160
180
200
The distribution of the score of students Social Science can also be
seen in the following Chart.
Figure 4.3The Frequency Distribution of the Score of Students
in Social Science Class
Frequency
The Frequency Distribution of the Score of Students Social
Science Class
18
16
14
12
10
8
6
4
2
0
17
9
6
81,5 - 88,5
74,5 - 81,5
67,5 - 74,5
4
4
60,5 - 67,5
53,5 - 60,5
Limitation of Each Group
According to the chart, the writer found that there are five kinds of
frequency in distribution score of students in social science class, there are
53,5 β 60,5. 60,5 β 67,5.67,5 β 74,5. 74,5 β 81,5. 81,5 β 88,5. There are 9
students who get the score 81,5 β 88,5, there are 6 students who get the
score in 74,5 β 81,5, there are 17 students who get the score in 67,5 β 74,5,
there are 4 students who get score in 60,5 β 67,5, and there are 4 students
who get the score in 53,5 β 60,5. It means that the frequency distribution of
the score of students in social class mostly occurred in 67,5 β 74,5.
The next step, the writer tabulated the scores into the table for the
calculation of mean, median and modus as follows :
Table 4.4 The Calculation of Mean, Median and Modus of
Students in Social Science Class Test Score
Mid
Point
(x)
85
78
71
64
57
Interval Frequency
(I)
(F)
82β 88
75β 81
68β 74
61β 67
54β 60
9
6
17
4
4
N=40
Fx
Xβ
FXβ
Fka
Fkb
765
468
1207
256
228
βFx=2914
2
1
0
-1
-2
18
6
0
-4
-8
βFXβ= 12
9
15
32
36
40
40
31
25
8
4
1) Mean
Mx
=
=
βfx
π
2914
40
= 72,85
2) Median
1
Mdn
= β +2
πβπππ
ππ
= 67,5 +
ππ
20β8
17
12
π7
= 67,5 + 17 X 7
= 67,5+ 4,941
= 72,441
3) Modus
Mo
=uβ
ππ
ππ +ππ
= 74,5 β
= 74,5 β
4
6+4
28
10
π₯π
π₯7
= 74,5 β 2,8
= 71,7
4) Reliability
=
rxx
=
=
πΎπ π₯2 β π (πΎβπ)
π π₯2 (πΎβ1))
50 β68,9652 β73,1(50β73,1)
68,9652 (50β1)
237808 ,56125 +1,688,61
233052 ,390025
= 1,020
The calculation above shows thatthe mean value was 73,1, median
value was 72,441, modus value was 71,7, and reliabilty value was 1,020. So,
the test is reliable because rtest = 1,020 and rtable is 0,312. So rtest 1,020 > rtable
0,312 and the test is reliable.
Then, the writer tabulated the scores of studentβs Social Science
Class into the table for the calculation of standard deviation as follows:
Table 4.5 The Calculation of Standard Deviation of the
Students in Social Science Class Test Score
Interval
(I)
Frequency
(F)
82β 88
75β 81
68β 74
61β 67
54β 60
Total
9
6
17
4
4
βF = 40
Mid
Point
(X)
85
78
71
64
57
Xβ
Fxβ
Xβ2
Fxβ2
2
1
0
-1
-2
18
6
0
-4
-8
βFxβ= 12
4
1
0
1
4
36
6
0
4
16
βFxβ2= 62
Standard Deviation
SD = π
=7
βππ₯ β² 2
π
62
40
β
-
β(ππ₯ )2
(12)2
π
40
= 7 1,55 β 0,32
= 7 1,55 β 0,09
= 7 1,371
= 7 x 1,170897092
= 8,196
The tabulation above shows that the value of standard deviation is
8,196. Standard deviation used to measure the dissemination of the students
mean score, the result of the standard deviation is 8,196. It means that the
students mean score is dissemination.
b. The Description of the Data of Students in Natural Science Class
The data presentation of the score of the students Nature Science is
shows the table frequency distribution, the measurement of central tendency
(mean, median, and mode) and the measurement of deviation standard.In
order to analyze the vocabulary mastery by students Natural Science, it can
be first distributed by the following table:
Table 4.6 Description Data of Natural Science Class
No
1
2
3
4
5
6
7
8
9
10
11
12
13
Name
ARA
H
SR
TDS
MB
IK
OH
TO
Y
DLP
M
IPA
WA
Value
66
74
78
64
60
58
80
58
62
76
72
76
74
Range
C
B
B
C
C
D
A
D
C
B
B
B
B
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
No
36
37
38
39
40
Total
CA
T
NS
AD
NSK
L
RG
SHN
A
WWA
Y
P
I
NH
S
N
W
MA
GAT
SJ
YA
W
Name
KA
JL
MP
AK
SA
78
60
68
74
76
50
54
66
64
62
68
64
56
80
56
60
84
80
82
50
70
70
Value
66
70
72
70
82
2730
B
C
C
B
B
D
D
C
C
C
C
C
D
A
D
C
A
A
A
D
B
B
Range
C
B
B
B
A
Based on the data above, it can be seen that the studentsβ highest
score is 84 and the studentβs lowest score is 50. To determine the range of
score, the class interval, and interval of temporary, the writer calculated
using formula as follows:
The Highest Score (H)
= 84
The Lowest Score (L)
= 50
The Range of Score (R)
=HβL+1
= 84 β50 + 1
= 35
The Class Interval (K)
= 1 + (3.3) x Log n
= 1 + (3.3) x Log 40
= 1 + 4,293399
= 5,293399
=5
π
= =
Interval of Temporary (I)
πΎ
35
5
=7
Thus, the range of score is 35, the class interval is 5, and interval of
temporary is 7. It is presented using frequency distribution in the following
table:
Table 4.7 Frequency Distribution of Natural Science Class Test
Score
Clas
s
(K)
1
Interval
(I)
Frequenc
y
(F)
Mid
Point
(X)
Limitation
of Each
Group
Frequency
Relative
(%)
78-84
8
81
77,5-84,5
40
Frequency
Cumulativ
e
(%)
40
2
3
4
5
71-77
64-70
57-63
50-56
Total
8
14
5
5
βF = 40
74
67
60
53
70,5-77,5
63,5-70,5
56,5-63,5
59,5-56,5
40
70
25
25
βP = 200
80
150
175
200
The distribution of the score of students Nature Science can also be
seen in the following Chart.
Figure 4.8The Frequency Distribution of the Score of Students
in Natura Science Class
Frequency
The Frequency Distribution of the Score of Students Natural
Science Class
16
14
12
10
8
6
4
2
0
14
8
8
77,5 - 84,5
70,5 - 77,5
63,5 - 70,5
5
5
56,5 - 63,5
59,5 - 56,5
Limitation of Each Group
According to the chart, the writer found that there are five kinds of
frequency in distribution score of students in social science class, there are
77,5-84,5. 70,5-77,5. 63,5-70,5. 56,5-63,5 and 59,5-56,5. There are 8
students who get the score 77,5-84,5, there are 8 students who get the score
in 70,5-77,5, there are 14 students who get the score in 63,5-70,5, there are
5 students who get score in 56,5-63,5, and there are 5 students who get the
score 59,5-56,5. It means that the frequency distribution of the score of
students in nature class mostly occurred in 63,5-70,5.
The next step, the writer tabulated the scores into the table for the
calculation of mean, median and modus as follows :
Table 4.9 The Calculation of Mean, Median and Modus of
Students in Natural Science Class
Interval
(I)
Frequency
(F)
78-84
71-77
64-70
57-63
50-56
Total
8
8
14
5
5
βF = 40
Mid
Point
(X)
81
74
67
60
53
1) Mean
Mx
=
=
βfx
π
2731
40
= 68,27
2) Median
1
Mdn
= β +2
πβπππ
ππ
= 63,5 +
20β5
14
= 63,5 + 7,5
= 71
ππ
π7
Fx
X'
Fka
Fkb
648
592
938
300
265
βFx=2731
2
1
0
-1
-2
8
16
30
35
40
40
32
24
10
5
3) Modus
Mo
=u-
ππ
ππ +ππ
= 63,5 = 63,5 -
5
π₯π
8+5
35
13
π₯7
π₯7
= 63,5-18,84615384615385
= 44,654
4) Reliability
rxx
=
πΎπ π₯2 βπ (πΎβπ)
=
50 86,2982 β68,575 (50β68,575)
=
π π₯2 (πΎβ1))
86,2982 (50β1)
372367 ,2402 +1273 ,780625
364919 ,895396
= 1,024
The calculation above shows thatthe mean value was 68,5, median
value was 71, modus value was 44,65, and reliabilty value was 1,024. So,
the test is reliable because rtest = 1,024 and rtable is 0,312. So rtest 1,024 > rtable
0,312 and the test is reliable.
Then, the writer tabulated the scores of studentβs Nature Science
Class into the table for the calculation of standard deviation as follows:
Table 4.1.1 The Calculation of the Standard Deviation of
Students in Natural Science Class
Mid
Interval Frequency
Point
(I)
(F)
(X)
78-84
8
81
71-77
8
74
X'
Fx'
X'2
Fx'2
2
1
16
8
4
1
32
8
64-70
57-63
50-56
Total
14
5
5
βF = 40
67
60
53
0
-1
-2
0
-5
-10
βFxβ= 9
0
1
4
0
5
20
βFxβ2 = 65
Standard Deviation
SD = π
=7
βππ₯ β² 2
π
65
40
-
-
(9)2
β(ππ₯ )2
π
40
= 7x 1,625 β 0,2252
= 7x 1,625 β 0,050625
= 7 x 1,674375
= 7 x 1,2939764295
= 9,057
The tabulation above shows that the value of standard deviation is
9,057. Standard deviation used to measure the dissemination of the students
mean score, the result of the standard deviation is 9,057. It means that the
students mean score is dissemination.
1. The Differences and Similarities English Vocabulary Mastery Between
The Social Science Class and Natural Science Class Eleventh of Graders
at SMAN 1 Kapuas Hilir
a.
Description Data of Social Science Class Based on the Vocabulary
Mastery of Proper Noun, Verb, Adjective, Adverb
Table 4.1.2 Description Data of Social Science Class Based on the
Vocabulary Mastery of Proper Noun, Verb, Adjective, Adverb
No
Name
1
2
3
4
5
6
7
DEPRY
JEFFRY SANTOS
SELDY
INTAN RANTIAN
MUHAMMAD RIFKI
ANDIANTO
JULIADI RAHMADI
RIDWAN
MAULANA
ANDRI RAMADAN
NOR ADIANSYAH
TAWUN BUDI
YOKOB
TRY KUN. S
MARKANI
ADITYA ARISTO
YUSRAN HASANI
SUPIANI
ZAINAL
YAN KRISNA
ANTON PRAYOGO
CINDY SHINTYA
DITHA
YOHANES F.A
WAWAN
KRISTIANTO
JEFRYANTO
SURYADI
AGUNG P
M. RAFI'I
MACHDI
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Proper
Noun
100
89
84
94
84
94
100
Verb
Adjective
Adverb
63
72
72
63
45
54
45
77
88
33
11
66
55
77
18
36
18
27
72
45
18
100
63
77
18
89
100
54
63
88
88
18
63
94
81
100
45
100
94
89
94
94
94
94
84
81
72
54
72
54
63
54
63
77
100
77
66
77
100
77
100
9
18
36
27
54
45
72
81
84
63
55
72
94
63
55
9
94
72
77
9
100
100
100
100
68
72
54
63
90
72
88
77
88
66
22
81
100
36
27
36
28
29
30
31
32
33
34
35
36
37
38
39
40
HENGKY
MEGA HASANAH
EKA OCTAVIA
LEVIA DEVINIANTI
ALPIANOR
TRIWIRA
DONI MARTIN
WETIE ERLIANTI
MUHAJIRI
IGO SUSANTO
RIDUAN
SANTY
DESSY ADELINA
Total
100
100
94
100
100
100
94
100
100
100
100
84
89
3772
63
72
81
72
81
81
54
45
90
90
72
54
90
2682
77
88
55
77
100
77
77
66
77
66
44
33
88
2887
36
54
9
27
36
54
81
54
18
100
27
36
63
1685
Table 4.1.3Description Data of Social Science Class Based on the
Vocabulary Mastery of Proper Noun
No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Name
DEPRY
JEFFRY SANTOS
SELDY
INTAN RANTIAN
MUHAMMAD RIFKI
ANDIANTO
JULIADI RAHMADI
RIDWAN MAULANA
ANDRI RAMADAN
NOR ADIANSYAH
TAWUN BUDI
YOKOB
TRY KUN. S
MARKANI
ADITYA ARISTO
YUSRAN HASANI
SUPIANI
ZAINAL
YAN KRISNA
Proper Noun
100
89
84
94
84
94
100
100
89
100
94
100
94
89
94
94
94
94
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
ANTON PRAYOGO
CINDY SHINTYA
DITHA
YOHANES F.A
WAWAN
KRISTIANTO
JEFRYANTO
SURYADI
AGUNG P
M. RAFI'I
MACHDI
HENGKY
MEGA HASANAH
EKA OCTAVIA
LEVIA DEVINIANTI
ALPIANOR
TRIWIRA
DONI MARTIN
WETIE ERLIANTI
MUHAJIRI
IGO SUSANTO
RIDUAN
SANTY
DESSY ADELINA
Total
84
84
94
94
100
100
100
100
68
100
100
94
100
100
100
94
100
100
100
100
84
89
3772
Based on the data above, it can be seen that the studentsβ highest
score of proper noun was 100 and the studentsβ lowest score of proper noun
was 68. To determine the range of score, the class interval, and interval of
temporary, the calculed using formula as follows:
The Highest Score (H)
=100
The Lowest Score (L)
= 68
The Range of Score (R)
=HβL+1
= 100 β 68 + 1
= 33
The Class Interval (K)
= 1 + (3,3) x Log n
= 1 + (3,3) x Log 40
= 1 + 5,9020599913
= 6,9020599913
=7
Interval of Temporary (I)
=
π
πΎ
=
33
7
=5
Thus, the range of score was 33, the class interval was 7, and interval
of temporary was 5. It was presented using frequency distribution in the
following table:
Table 4.1.4The Calculationof Mean of Social Science Class Based
on the Vocabulary Mastery of Proper Noun Score
No
1
2
3
4
5
6
7
Interval
(I)
98 β 102
93 β 97
88 β 92
83 β 87
78 β 82
73 β 77
68 β 72
Total
Mean
Mx
=
βFx
N
Frequency
(F)
18
12
4
5
0
0
1
βF = 40
Mid point
(X)
100
95
90
85
80
75
70
Fx
1,800
1,140
360
425
0
0
70
βFx = 4,055
=
4,055
40
= 101,375
Table 4.1.5Description Data of Social Science Class Based on the
Vocabulary Mastery of Verb
No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Name
DEPRY
JEFFRY SANTOS
SELDY
INTAN RANTIAN
MUHAMMAD RIFKI
ANDIANTO
JULIADI RAHMADI
RIDWAN MAULANA
ANDRI RAMADAN
NOR ADIANSYAH
TAWUN BUDI YOKOB
TRY KUN. S
MARKANI
ADITYA ARISTO
YUSRAN HASANI
SUPIANI
ZAINAL
YAN KRISNA
ANTON PRAYOGO
CINDY SHINTYA
DITHA
YOHANES F.A
WAWAN KRISTIANTO
JEFRYANTO
SURYADI
AGUNG P
M. RAFI'I
MACHDI
HENGKY
MEGA HASANAH
EKA OCTAVIA
Verb
63
72
72
63
45
54
45
63
54
63
81
81
72
54
72
54
63
54
63
63
63
72
72
54
63
90
72
63
72
81
31
32
33
34
35
36
37
38
39
40
LEVIA DEVINIANTI
ALPIANOR
TRIWIRA
DONI MARTIN
WETIE ERLIANTI
MUHAJIRI
IGO SUSANTO
RIDUAN
SANTY
DESSY ADELINA
Total
72
81
81
54
45
90
90
72
54
90
2682
Based on the data above, it can be seen that the studentsβ highest
score of verb was 90 and the studentsβ lowest score of verb was 45. To
determine the range of score, the class interval, and interval of temporary, the
calculed using formula as follows:
The Highest Score (H)
= 90
The Lowest Score (L)
= 45
The Range of Score (R)
=HβL+1
= 90 β 45 + 1
= 46
The Class Interval (K)
= 1 + (3,3) x Log n
= 1 + (3,3) x Log 40
= 1 + 5,9020599913
= 6,9020599913
=7
Interval of Temporary (I)
=
π
πΎ
=
46
7
=7
Thus, the range of score was 46, the class interval was 7, and interval
of temporary was 7. It was presented using frequency distribution in the
following table:
Table 4.1.6The Calculation of Mean of Social Science Class
Based on the Vocabulary Mastery of Verb Score
No
1
2
3
4
5
6
7
Interval
(I)
87 β 93
80 β 86
73 β 79
66 β 72
59 β 65
52 β 58
45 β 51
Total
Frequency
(F)
4
5
0
10
10
8
3
βF = 40
Mid point
(X)
90
83
76
69
62
55
48
Fx
360
415
0
690
620
440
144
βFx = 2,669
Mean
Mx
=
=
βFx
N
2,669
40
= 66,725
Table 4.1.7Description Data of Social Science Class Based on the
Vocabulary Mastery of Adjective
No
1
Name
DEPRY
Adjective
77
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
JEFFRY SANTOS
SELDY
INTAN RANTIAN
MUHAMMAD RIFKI
ANDIANTO
JULIADI RAHMADI
RIDWAN MAULANA
ANDRI RAMADAN
NOR ADIANSYAH
TAWUN BUDI
YOKOB
TRY KUN. S
MARKANI
ADITYA ARISTO
YUSRAN HASANI
SUPIANI
ZAINAL
YAN KRISNA
ANTON PRAYOGO
CINDY SHINTYA
DITHA
YOHANES F.A
WAWAN
KRISTIANTO
JEFRYANTO
SURYADI
AGUNG P
M. RAFI'I
MACHDI
HENGKY
MEGA HASANAH
EKA OCTAVIA
LEVIA DEVINIANTI
ALPIANOR
TRIWIRA
DONI MARTIN
WETIE ERLIANTI
MUHAJIRI
IGO SUSANTO
RIDUAN
SANTY
88
33
11
66
55
77
77
88
88
100
77
100
77
66
77
100
77
100
55
55
77
88
77
88
66
22
77
88
55
77
100
77
77
66
77
66
44
33
40
DESSY ADELINA
Total
88
2887
Based on the data above, it can be seen that the studentsβ highest
score of adjective was 100 and the studentsβ lowest score of adjective was 11.
To determine the range of score, the class interval, and interval of temporary,
the calculed using formula as follows:
The Highest Score (H)
= 100
The Lowest Score (L)
= 11
The Range of Score (R)
=HβL+1
= 100 β 11 + 1
= 90
The Class Interval (K)
= 1 + (3,3) x Log n
= 1 + (3,3) x Log 40
= 1 + 5,9020599913
= 6,9020599913
=7
Interval of Temporary (I)
=
π
πΎ
=
90
7
= 13
Thus, the range of score was 90, the class interval was 7, and interval
of temporary was 13. It was presented using frequency distribution in the
following table:
Table 4.1.8The Calculation of Mean of Social Science Class
Based on the Vocabulary Mastery of Adjective Score
No
1
2
3
4
5
6
7
Interval
(I)
89 β 101
76 β 88
63 β 75
50 β 62
37 β 49
24 β 36
11 β 23
Total
Frequency
(F)
5
21
5
4
1
2
2
βF = 40
Mid point
(X)
95
82
69
58
43
30
17
Fx
475
1,722
345
232
43
60
34
βFx = 2,911
Mean
Mx
=
=
βFx
N
2,911
40
= 72,775
Table 4.1.9Description Data of Social Science Class Based on the
Vocabulary Mastery of Adverb
No
1
2
3
4
5
6
7
8
9
10
Name
DEPRY
JEFFRY SANTOS
SELDY
INTAN RANTIAN
MUHAMMAD RIFKI
ANDIANTO
JULIADI RAHMADI
RIDWAN
MAULANA
ANDRI RAMADAN
NOR ADIANSYAH
Adverb
18
36
18
27
72
45
18
18
18
63
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
TAWUN BUDI
YOKOB
TRY KUN. S
MARKANI
ADITYA ARISTO
YUSRAN HASANI
SUPIANI
ZAINAL
YAN KRISNA
ANTON PRAYOGO
CINDY SHINTYA
DITHA
YOHANES F.A
WAWAN
KRISTIANTO
JEFRYANTO
SURYADI
AGUNG P
M. RAFI'I
MACHDI
HENGKY
MEGA HASANAH
EKA OCTAVIA
LEVIA DEVINIANTI
ALPIANOR
TRIWIRA
DONI MARTIN
WETIE ERLIANTI
MUHAJIRI
IGO SUSANTO
RIDUAN
SANTY
DESSY ADELINA
Total
45
9
18
36
27
54
45
72
81
72
9
9
81
100
36
27
36
36
54
9
27
36
54
81
54
18
100
27
36
63
1685
Based on the data above, it can be seen that the studentsβ highest
score of adverb was 100 and the studentsβ lowest score of adverb was 9. To
determine the range of score, the class interval, and interval of temporary, the
calculed using formula as follows:
The Highest Score (H)
= 100
The Lowest Score (L)
=9
The Range of Score (R)
=HβL+1
= 100 β 9 + 1
= 92
The Class Interval (K)
= 1 + (3,3) x Log n
= 1 + (3,3) x Log 40
= 1 + 5,9020599913
= 6,9020599913
=7
Interval of Temporary (I)
π
=πΎ=
92
7
= 15
Thus, the range of score was 92, the class interval was 7, and interval
of temporary was 15. It was presented using frequency distribution in the
following table:
Table 4.2.1The Calculation of Mean of Social Science Class
Based on the Vocabulary Mastery of Adverb Score
No
1
2
3
Interval
(I)
99 β 203
84 β 98
69 β 83
Frequency
(F)
2
0
6
Mid point
(X)
151
91
76
Fx
302
0
456
54 β 68
39 β 53
24 β 38
9 β 23
Total
4
5
6
7
6
3
12
11
βF = 40
61
46
31
16
366
138
372
176
βFx = 1,810
Mean
Mx
=
=
βFx
N
1,810
40
= 45,25
b. Description Data of Natural Science Class Based on the Vocabulary
Mastery of Proper Noun, Verb, Adjective, and Adverb
Table 4.2.2 Description Data of Natural Science Class Based on
the Vocabulary Mastery of Proper Noun, Verb, Adjective, and Adverb
No
1
2
3
4
5
6
7
8
9
10
11
12
Name
ANDRE RESTU
ADITIA
HANDOKO
SANDRO RIANTO
TRI DAUD
SAPUTRA
MONICA
BERLIANA
ISTI KOMAH
OKTAVI HARRY
TAMA OKTANIA
YULIANA
DESY LESTARI P.
MEGAWATI
INNES PUSPITA
APRILY
Proper
Noun
Verb
Adjective
Adverb
94
81
33
27
94
100
100
100
55
55
27
36
94
72
33
27
84
54
33
45
100
94
94
78
100
94
45
90
31
63
81
81
11
44
11
11
55
55
36
81
36
81
45
36
94
90
22
72
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
WIDYA ASTUTI
CAHYA
ARIYANTI
TINTE
NOVITA SARI
ANA DELIMA
NINA SEPTIN
KRISTINA
LOLIANA
REBECKA
GLORIA
SUSAN HELDA
NATALIA
APRIANTO
WIRA WATI
ARISMA
YUNITA
PITALOKA
IDA
NURUL
HIDAYAH
SELLIN
NOVIA
WINARTI
MONA AUDIEA
GRESSELIN A.
TIARA
SITI JULEHA
YULIANI
ANGGRAINI
WINDA
KASPUL A.
JUNYALBY
LENGKEY
MEIDRIE
PRANATA
APRILIANO. K
SANTY AMIRA
Total
100
81
44
45
100
90
22
72
84
94
100
72
81
90
33
44
33
27
27
45
100
90
33
54
57
45
33
54
89
63
11
18
100
90
11
27
84
90
11
45
100
72
11
27
89
89
89
100
81
36
11
11
11
45
45
54
57
81
100
100
73
84
94
84
72
63
100
63
22
11
88
100
36
54
45
72
89
100
88
45
68
63
11
36
78
63
77
63
68
68
81
100
66
22
63
63
89
100
22
45
89
100
22
63
94
100
3530
90
100
3145
22
55
1443
36
54
1909
Table 4.2.3 Description Data of Natural Science Class Based on
the Vocabulary Mastery of Proper Noun
No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Name
ANDRE RESTU
ADITIA
HANDOKO
SANDRO RIANTO
TRI DAUD
SAPUTRA
MONICA
BERLIANA
ISTI KOMAH
OKTAVI HARRY
TAMA OKTANIA
YULIANA
DESY LESTARI P.
MEGAWATI
INNES PUSPITA
APRILY
WIDYA ASTUTI
CAHYA
ARIYANTI
TINTE
NOVITA SARI
ANA DELIMA
NINA SEPTIN
KRISTINA
LOLIANA
REBECKA
GLORIA
SUSAN HELDA
NATALIA
APRIANTO
WIRA WATI
ARISMA
YUNITA
PITALOKA
IDA
Proper
Noun
94
94
100
94
84
100
94
94
78
100
94
94
100
100
84
94
100
100
57
89
100
84
100
89
89
89
27
28
29
30
31
32
33
34
35
36
37
38
39
40
NURUL
HIDAYAH
SELLIN
NOVIA
WINARTI
MONA AUDIEA
GRESSELIN A.
TIARA
SITI JULEHA
YULIANI
ANGGRAINI
WINDA
KASPUL A.
JUNYALBY
LENGKEY
MEIDRIE
PRANATA
APRILIANO. K
SANTY AMIRA
Total
57
73
84
94
84
89
68
78
68
68
89
89
94
100
3530
Based on the data above, it can be seen that the studentsβ highest
score of proper noun was 100 and the studentsβ lowest score of proper noun
was 57. To determine the range of score, the class interval, and interval of
temporary, the calculed using formula as follows:
The Highest Score (H)
=100
The Lowest Score (L)
= 57
The Range of Score (R)
=HβL+1
= 100 β 57 + 1
= 44
The Class Interval (K)
= 1 + (3,3) x Log n
= 1 + (3,3) x Log 40
= 1 + 5,9020599913
= 6,9020599913
=7
Interval of Temporary (I)
=
π
πΎ
=
44
7
=7
Thus, the range of score was 44, the class interval was 7, and interval
of temporary was 7. It was presented using frequency distribution in the
following table:
Table 4.2.4The Calculation of Mean of Natural Science Class
Based on the Vocabulary Mastery of Proper Noun Score
No
1
2
3
4
5
6
7
Interval
(I)
99 - 105
92 β 98
85 β 91
78 β 84
71 β 77
64 β 70
57 β 63
Total
Mean
Mx
=
=
βFx
N
3,548
40
= 88,7
Frequency
(F)
10
10
7
7
1
3
2
βF = 40
Mid point
(X)
102
95
88
81
74
67
60
Fx
1,020
950
616
567
74
201
120
βFx = 3,548
Table 4.2.5Description Data of Natural Science Class Based on
the Vocabulary Mastery of Verb
No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Name
ANDRE RESTU
ADITIA
HANDOKO
SANDRO RIANTO
TRI DAUD
SAPUTRA
MONICA
BERLIANA
ISTI KOMAH
OKTAVI HARRY
TAMA OKTANIA
YULIANA
DESY LESTARI P.
MEGAWATI
INNES PUSPITA
APRILY
WIDYA ASTUTI
CAHYA
ARIYANTI
TINTE
NOVITA SARI
ANA DELIMA
NINA SEPTIN
KRISTINA
LOLIANA
REBECKA
GLORIA
SUSAN HELDA
NATALIA
Verb
81
100
100
72
54
45
90
31
63
81
81
90
81
90
72
81
90
90
45
63
90
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
APRIANTO
WIRA WATI
ARISMA
YUNITA
PITALOKA
IDA
NURUL
HIDAYAH
SELLIN
NOVIA
WINARTI
MONA AUDIEA
GRESSELIN A.
TIARA
SITI JULEHA
YULIANI
ANGGRAINI
WINDA
KASPUL A.
JUNYALBY
LENGKEY
MEIDRIE
PRANATA
APRILIANO. K
SANTY AMIRA
Total
90
72
100
81
36
81
72
63
100
63
100
63
63
81
100
100
100
90
100
3145
Based on the data above, it can be seen that the studentsβ highest
score of verb was 100 and the studentsβ lowest score of verb was 31. To
determine the range of score, the class interval, and interval of temporary, the
calculed using formula as follows:
The Highest Score (H)
=100
The Lowest Score (L)
= 31
The Range of Score (R)
=HβL+1
= 100 β 31 + 1
= 70
The Class Interval (K)
= 1 + (3,3) x Log n
= 1 + (3,3) x Log 40
= 1 + 5,9020599913
= 6,9020599913
=7
Interval of Temporary (I)
=
π
πΎ
=
70
7
= 11
Thus, the range of score was 70, the class interval was 7, and interval
of temporary was 11. It was presented using frequency distribution in the
following table:
Table 4.2.6The Calculation of Mean of Natural Science Class
Based on the Vocabulary Mastery of Verb Score
No
1
2
3
4
5
6
7
Interval
(I)
97 - 107
86 β 96
75 β 85
64 β 74
53 β 63
42 β 52
31 β 41
Total
Mean
Mx
=
βFx
N
Frequency
(F)
9
8
8
4
7
2
2
βF = 40
Mid point
(X)
102
91
80
69
58
47
36
Fx
918
728
640
276
406
94
72
βFx = 3,134
=
3,134
40
= 78,35
Table 4.2.7Description Data of Natural Science Class Based on
the Vocabulary Mastery of Adjective
No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Name
ANDRE RESTU
ADITIA
HANDOKO
SANDRO RIANTO
TRI DAUD
SAPUTRA
MONICA
BERLIANA
ISTI KOMAH
OKTAVI HARRY
TAMA OKTANIA
YULIANA
DESY LESTARI P.
MEGAWATI
INNES PUSPITA
APRILY
WIDYA ASTUTI
CAHYA
ARIYANTI
TINTE
NOVITA SARI
ANA DELIMA
NINA SEPTIN
KRISTINA
LOLIANA
REBECKA
GLORIA
SUSAN HELDA
NATALIA
APRIANTO
WIRA WATI
Adjective
33
55
55
33
33
11
44
11
11
55
55
22
44
22
33
44
33
33
33
11
11
11
11
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
ARISMA
YUNITA
PITALOKA
IDA
NURUL
HIDAYAH
SELLIN
NOVIA
WINARTI
MONA AUDIEA
GRESSELIN A.
TIARA
SITI JULEHA
YULIANI
ANGGRAINI
WINDA
KASPUL A.
JUNYALBY
LENGKEY
MEIDRIE
PRANATA
APRILIANO. K
SANTY AMIRA
Total
11
11
11
100
22
11
88
100
88
11
77
66
22
22
22
22
55
1443
Based on the data above, it can be seen that the studentsβ highest
score of adjective was 100 and the studentsβ lowest score of adjective was 11.
To determine the range of score, the class interval, and interval of temporary,
the calculed using formula as follows:
The Highest Score (H)
= 100
The Lowest Score (L)
= 11
The Range of Score (R)
=HβL+1
= 100 β 11 + 1
= 90
The Class Interval (K)
= 1 + (3,3) x Log n
= 1 + (3,3) x Log 40
= 1 + 5,9020599913
= 6,9020599913
=7
Interval of Temporary (I)
=
π
πΎ
=
90
7
= 13
Thus, the range of score was 90, the class interval was 7, and interval
of temporary was 13. It was presented using frequency distribution in the
following table:
Table 4.2.8The Calculation of Mean of Natural Science Class
Based on the Vocabulary Mastery of Adjective Score
No
1
2
3
4
5
6
7
Interval
(I)
89 β 101
76 β 88
63 β 75
50 β 62
37 β 49
24 β 36
11 β 23
Total
Mean
Mx
=
βFx
N
Frequency
(F)
5
21
5
4
1
2
2
βF = 40
Mid point
(X)
95
82
69
58
43
30
17
Fx
475
1,722
345
232
43
60
34
βFx = 2,911
=
2,911
40
= 72,775
Table 4.2.9Description Data of Natural Science Class Based on
the Vocabulary Mastery of Adverb
No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Name
ANDRE RESTU
ADITIA
HANDOKO
SANDRO RIANTO
TRI DAUD
SAPUTRA
MONICA
BERLIANA
ISTI KOMAH
OKTAVI HARRY
TAMA OKTANIA
YULIANA
DESY LESTARI P.
MEGAWATI
INNES PUSPITA
APRILY
WIDYA ASTUTI
CAHYA
ARIYANTI
TINTE
NOVITA SARI
ANA DELIMA
NINA SEPTIN
KRISTINA
LOLIANA
REBECKA
GLORIA
SUSAN HELDA
NATALIA
APRIANTO
WIRA WATI
Adverb
27
27
36
27
45
36
81
36
81
45
36
72
45
72
27
27
45
54
54
18
27
45
27
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
ARISMA
YUNITA
PITALOKA
IDA
NURUL
HIDAYAH
SELLIN
NOVIA
WINARTI
MONA AUDIEA
GRESSELIN A.
TIARA
SITI JULEHA
YULIANI
ANGGRAINI
WINDA
KASPUL A.
JUNYALBY
LENGKEY
MEIDRIE
PRANATA
APRILIANO. K
SANTY AMIRA
Total
45
45
54
100
36
54
45
72
45
36
63
63
63
45
63
36
54
1909
Based on the data above, it can be seen that the studentsβ highest
score of adverb was 100 and the studentsβ lowest score of adverb was 18. To
determine the range of score, the class interval, and interval of temporary, the
calculed using formula as follows:
The Highest Score (H)
= 100
The Lowest Score (L)
= 18
The Range of Score (R)
=HβL+1
= 100 β 18 + 1
= 83
The Class Interval (K)
= 1 + (3,3) x Log n
= 1 + (3,3) x Log 40
= 1 + 5,9020599913
= 6,9020599913
=7
Interval of Temporary (I)
=
π
πΎ
=
83
7
= 13
Thus, the range of score was 83, the class interval was 7, and interval
of temporary was 13. It was presented using frequency distribution in the
following table:
Table 4.3.1The Calculation of Mean of Natural Science Class
Based on the Vocabulary Mastery of Adverb Score
No
1
2
3
4
5
6
7
Interval
(I)
96 β 108
83 β 95
70 β 82
57 β 69
44 β 56
31 β 43
18 β 30
Frequency
(F)
1
0
5
4
15
7
8
Mid point
(X)
102
89
76
63
50
37
24
Fx
102
0
380
252
750
259
192
Total
βF = 40
βFx = 1,935
Mean
Mx
=
=
βFx
N
1,935
40
= 48,375
Based on the calculation above, the mean score of Social Scince
Class and Natural Science Class according to the types of test is the mean of
proper noun for social science class was 101,3 and natural science class was
89. So, the social science class got higher score than natural science class in
proper noun test. Then for the mean verb of social science class was 67 and
natural science class was 78,3. So, the natural science class was higher than
social science class in verb test. Next, the mean score of social science class
in adjective was 73 and natural science class 73. So, the social science class
and natural science class get similar score. The last the mean score of adverb
for social science class was 45,2 and natural science class was 48,3. So, the
naural science class higher than social science class.
B. Test of the Statistical Analysis
Meanwhile, the calculation of Ttest using SPSS 17.0 Program can be
seen in the following table :
Group Statistics
Group
Social Science Class
N
Mean
40
72.80
Std.
Deviation
8.200
Std. Error
Mean
1.297
Group Statistics
Group
Social Science Class
Natural Science Class
N
Mean
40
40
72.80
68.25
Std.
Deviation
8.200
9.173
Std. Error
Mean
1.297
1.450
Independent Samples Test
Nilai Ujian
Levene's Test
for Equality of
Variances
t-test for
Equality of
Means
F
Sig.
T
Df
Sig. (2-tailed)
Mean Difference
Std. Error Difference
95% Confidence Lower
Interval of the
Upper
Difference
Equal variances
assumed
1.101
.297
2.339
78
.022
4.550
1.945
.677
8.423
Equal
variances
not
assumed
2.339
77.040
.022
4.550
1.945
.676
8.424
The result of t test using SPSS 17.0 supported the interpretation of t-test
result from manual calculation. It shows from the table above that the tobservedwas
2,339. It was also higher than ttable at 5% (1,991) level of significance. Therefore,
it could be interpreted that Ho stating that there is no significant difference in
English vocabulary mastery between eleventh graders of social science class and
natural science class was rejected and Ha stating that there is
a significant
difference in English vocabulary mastery between eleventh graders of social
science class and natural science class at SMAN-1 Kapuas Hilir was accepted at
5% level of significance.
C. Result of the Data Analysis
In order tocalculate the ttest, the writer used both manual calculation.
Both results are expected to support the correct calculation each other.
After knowing Standard Deviation of group I and group II, the writer
calculated the βtoβ value to examine the hypothesis. But, first of all the writer
calculated the variance homogeneity in order to adjust the formula in calculating
the βtoβ value, becausesome formula used to examine the comparative hypothesis
with two sample,thereis Fisher formula.Furthermore, in order to ease the
calculation of test of variance homogeneity and test of hypothesis, the writer
makes a table to compare the N (number of sample), mean, variance, and
deviation standard of two groups.
Table. 4.3.2 The Data of Test Scores of Eleventh Graders of Social
Science Class and Natural Science Class at SMAN-1 Kapuas Hilir
No
1
2
3
4
The studentsβ score in social
science class
70
74
58
58
The studentsβ score in natural
science class
66
74
78
64
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
70
68
66
70
66
82
82
72
74
68
70
74
78
78
82
72
62
68
88
86
76
76
54
74
82
66
74
82
84
80
72
76
70
68
58
84
60
58
80
58
62
76
72
76
74
78
60
68
74
76
50
54
66
64
62
68
64
56
80
56
60
84
80
82
50
70
70
66
70
72
70
82
N
Mx
S1
S12
40
72,85
8,196
68,965
40
68,27
9,057
86,298
1. Variance Homogeneity
F=
=
πππ π΅πππππ π‘ ππππππππ
πππ πππππππ π‘ ππππππππ
86,298
68,965
= 1,251
Moreover, the result variance homogeneity was compared with Ftable on numerator df ( 40-1 = 39) and denominator df (40-1= 39). Based on
those df with significant 5%, than the percentage of F table was 1,75. It found
that Fvalue was smaller than Ftable (1,251< 1,75). Therefore, it can be said that
the variance of those two groups was homogeneous.
Since the number of sample of those two groups was same ( N1 =
N2 ), and the variance was homogen. Thus, the testing of t observed was used
Fisherformula.
2. Testing of Normality test
Normality test is a test to know about what the writing test had given
to the students normally, it shows about:
1) Normality test of Students in Social Science Class
Table 4.3.3 Normality test of Students in Social Science Class
No
X
Z
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
54
58
58
58
62
66
66
66
68
68
68
68
70
70
70
70
70
72
72
72
74
74
74
74
74
76
76
76
78
78
80
82
82
82
82
82
-2,2227
-1,7498
-1,7498
-1,7498
-1,2768
-0,8039
-0,8039
-0,8039
-0,5675
-0,5675
-0,5675
-0,5675
-0,3310
-0,3310
-0,3310
-0,3310
-0,3310
-0,0945
-0,0945
-0,0945
0,1418
0,1418
0,1418
0,1418
0,1418
0,3783
0,3783
0,3783
0,6148
0,6148
0,8512
1,0877
1,0877
1,0877
1,0877
1,0877
Table
Z
0,5040
0,5000
0,5000
0,5000
0,4168
0,3058
0,3058
0,3058
0,2119
0,2119
0,2119
0,2119
0,1151
0,1151
0,1151
0,1151
0,1151
0,0158
0,0158
0,0158
0,1357
0,1357
0,1357
0,1357
0,1357
0,2420
0,2420
0,2420
0,3446
0,3446
0,3594
0,4440
0,4440
0,4440
0,4440
0,4440
F(Zi)
F(kum)
S(Zi)
0,0122
0,0401
0.0401
0,0401
0,1056
0,1977
0,1977
0,1977
0,2912
0,2912
0,2912
0,2912
0,3632
0,3632
0,3632
0,3632
0,3632
0,4801
0,4801
0,4801
0,5596
0,5596
0,5596
0,5596
0,5596
0,6368
0,6368
0,6368
0,7422
0,7422
0,8023
0,8531
0,8531
0,8531
0,8531
0,8531
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
0,025
0,05
0,075
0,1
0,125
0,15
0,175
0,2
0,225
0,25
0,275
0,3
0,325
0,35
0,375
0,4
0,425
0,45
0,475
0,5
0,525
0,55
0,575
0,6
0,625
0,65
0,675
0,7
0,725
0,75
0,775
0,8
0,825
0,85
0,875
0,9
F(zi)S(zi)
-0,0128
-0,0099
-0,0349
-0,0599
-0,0194
0,0477
0,0227
-0,0023
0,0662
0,0412
0,0162
-0,0088
0,0382
0,0132
-0,0118
-0,0368
-0,0618
0,0301
0,0051
-0,0199
0,0346
0,0096
-0,0154
-0,0404
-0,0654
-0,0132
-0,0382
-0,0632
0,0172
-0,0078
0,0273
0,0531
0,0281
0,0031
-0,0219
-0,0469
37
38
39
40
Total
Mean
STDEV
Ltest
Ltable
84
84
86
88
2912
72,80
8,196
0,0662
0,139
1,3241
1,3241
1,5606
1,7971
0,4562
0,4562
0,4522
0,4602
0,9115
0,9115
0,9394
0,9599
37
38
39
40
0,925
0,95
0,975
1
-0,0135
-0,0385
-0,0356
-0,0401
The table shows that Ltest= 0,0662< Ltable= 0,139, then the data of
students social science class distributed normally.
2) Normality test of Studentsin Natural Science Class
Table 4.3.4 Normality test of Students in Natural Science Class
No
X
Z
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
50
50
54
56
56
58
58
60
60
60
62
62
64
64
64
66
66
66
-2,0778
-2,0778
-1,6224
-1,3947
-1,3947
-1,1670
-1,1670
-0,9393
-0,9393
-0,9393
-0,7116
-0,7116
-0,4838
-0,4838
-0,4838
-0,2561
-0,2561
-0,2561
Table
Z
0,4325
0,4325
0,4207
0,4129
0,4129
0,4052
0,4052
0,3409
0,3409
0,3409
0,2327
0,2327
0,1131
0,1131
0,1131
0,0228
0,0228
0,0228
F(Zi)
F(kum)
S(Zi)
0,0202
0,0202
0,0495
0,0885
0,0885
0,1251
0,1251
0,1711
0,1711
0,1711
0,2266
0,2266
0,3264
0,3264
0,3264
0,4013
0,4013
0,4013
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
0,025
0,05
0,075
0,1
0,125
0,15
0,175
0,2
0,225
0,25
0,275
0,3
0,325
0,35
0,375
0,4
0,425
0,45
F(zi)S(zi)
-0,0048
-0,0298
-0,0255
-0,0115
-0,0365
-0,0249
-0,0499
-0,0289
-0,0539
-0,0789
-0,0484
-0,0734
0,0014
-0,0236
-0,0486
0,0013
-0,0237
-0,0487
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Total
Mean
STDEV
Ltest
Ltable
68
68
70
70
70
70
72
72
74
74
74
76
76
76
78
78
80
80
80
82
82
84
2730
68,25
9,057
0,0672
0,139
-0,0284
-0,0284
0,1992
0,1992
0,1992
0,1992
0,4269
0,4269
0,6546
0,6546
0,6546
0,8823
0,8823
0,8823
1,1100
1,1100
1,3378
1,3378
1,3378
1,5655
1,5655
1,7932
0,0179
0,0179
0,1093
0,1093
0,1093
0,1093
0,2033
0,2033
0,3015
0,3015
0,3015
0,3121
0,3121
0,3121
0,3228
0,3228
0,4052
0,4052
0,4052
0,4190
0,4190
0,4247
0,4801
0,4801
0,5596
0,5596
0,5596
0,5596
0,6736
0,6736
0,7422
0,7422
0,7422
0,8023
0,8023
0,8023
0,8749
0,8749
0,9115
0,9115
0,9115
0,9394
0,9394
0,9599
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
0,475
0,5
0,525
0,55
0,575
0,6
0,625
0,65
0,675
0,7
0,725
0,75
0,775
0,8
0,825
0,85
0,875
0,9
0,925
0,95
0,975
1
0,0051
-0,0199
0,0346
0,0346
-0,0154
-0,0404
0,0486
0,0236
0,0672
0,0422
0,0172
0,0523
0,0273
0,0023
0,0499
0,0249
0,0365
0,0115
-0,0135
-0,0106
-0,0356
-0,0401
The table shows that Ltest= 0,0672 < Ltable= 0,139, then the data of
students nature science class distributed normally.
3. Testing of tobserved (to)
Table. 4.3.5 The Data of Test Scores of Students Eleventh
Graders of Social Science Class and Natural Science Class at SMAN-1
Kapuas Hilir
Scores
X1
70
74
58
58
70
68
66
70
66
82
82
72
74
68
70
74
78
78
82
72
62
68
88
86
76
76
54
74
82
66
74
82
84
X2
66
74
78
64
60
58
80
58
62
76
72
76
74
78
60
68
74
76
50
64
66
64
62
68
64
56
80
56
60
84
80
82
50
X1
-2,8
+1,2
-14,8
-14,8
-2,8
-4,8
-6,8
-2,8
-6,8
+9,2
+9,2
-0,8
+1,2
-4,8
-2,8
+1,2
+5,2
+5,2
+9,2
-0,8
-10,8
-4.8
15.2
13,2
3,2
3,2
-18,8
+1,2
+9,2
-6,8
+1,2
+9,2
+11,2
X2
-2,25
+5,75
+9,75
-4,25
-8,25
-10,25
+11,75
-10,25
-6,25
+7,75
+3,75
+7,75
+5,75
+9,75
-8,25
-0,25
+5,75
+7,75
-18,25
-14,25
-2,25
-4,25
-6,25
-0,25
-4,25
-12,25
+11,75
-12,25
-8,25
+15,75
+11,75
+13,75
-18,25
X12
7,84
1,44
219,04
219,04
7,84
23,04
46,24
7,84
46,24
84,64
84,64
0,64
1,44
23,04
7,84
1,44
27,04
27,04
84,64
0,64
116,64
23,04
231,04
174,24
10,24
10,24
353,44
1,44
84,64
46,24
1,44
84,64
125,44
X22
5,0625
33,0625
95,0625
18,0625
68,0625
105,0625
138,0625
105,0625
39,0625
60,0625
14,0625
60,0625
33,0625
95,0625
68,0625
0,0625
33,0625
60,0625
333,0625
203,0625
5,0625
18,0625
39,0625
0,0625
18,0625
150,0625
138,0625
150,0625
68,0625
248,0625
138,0625
189,0625
333,0625
80
72
76
70
68
58
84
βX= 2912
t0 =
t=
t=
t=
t=
t=
70
70
66
70
72
70
82
βY= 2730
ππ β ππ
β π π + βπ π
π
π
ππ + ππ βπ
+7,2
-0,8
+3,2
-2,8
-4,8
-14,8
+11,2
βX1=
249E,14
ππ + ππ
ππ . ππ
72,8β 68,25
2622 ,4 +3281 ,5
40 + 40 β2
40 + 40
40 . 40
4,55
5903 ,9
78
X
80
1600
4,55
75,691 X 0,05
4,55
3,78455
4,55
1,945
t = 2,339
The degree of Freedom
Df = N1 + N2 β 2
= 40 + 40 β 2
= 78
Df 78 at 5% level of significant = 1,991
T0 = 2,339> Ttable = 1,991
+1,75
+1,75
-2,25
+1,75
+3,75
+1,75
+13,75
βX2= 0
51,58
0,64
10,24
7,84
23,04
219,04
125,44
βX12=
2622,4
3,0635
3,0625
5,0625
3,0625
14,0625
3,0625
189,0625
βX22=
3281,5
(Ha was accepted)
Based on the result above, it can be presented by the following table:
Table 4.3.6 The Result of Tobserved
t0
tt
Df
2,339
1,991
78
Where :
to : The value of tobserved
tt : The value of ttable
Since the calculated value of tobserved (2,339) was higher than ttable at 5%
(1,991) significant level or 2,339>1,991, it could be interpreted that there is no
significant difference in English vocabulary mastery between eleventh graders of
social science class and natural science class, thus Ho (Null Hypotesis) was
rejected and there isa significant difference in English vocabulary mastery
between eleventh graders of social science class and natural science class, thus the
Ha (Alternative hypotesis) was accepted. It means that there is a significant
difference in English vocabulary mastery between eleventh graders of social
science class and natural science class at SMAN-1 Kapuas Hilir.
RESULT OF THE STUDY
This chapter discussed the result of the studywhich consist of the data
finding and discussion.
A. Description of the Data
This section described the obtained data of the difference in the english
vocabulary mastery by Eleventh Graders of Social Science Class and Natural
Science Class at SMAN-1 Kapuas Hilir. The presented data consistof Mean,
Median, Modus, reliability value, and Standard Deviation.
1.
The Mastery of Students on English Vocabulary Between Social Science
Class and Natural Science Class of Eleveth Graders of SMAN 1 Kapuas
Hilir
a. The Description of the Data of Students in Social ScienceClass
The data presentation of the score of the students Social
Scienceshows in the table frequency distribution, the chart of frequency
distribution, the measurement of central tendency (mean, median, and mode)
and the measurement of deviation standard.
Table. 4.1 Description Data of Social Science Class
No
1
2
3
4
Name
D
JS
S
IR
Value
70
74
58
58
Range
B
B
D
D
5
6
7
No
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
MR
A
JR
Name
RM
AR
NA
TBY
TKS
M
AR
YH
S
Z
YK
AP
CSD
YFA
WK
J
S
AP
MR
M
H
MH
EO
LD
A
T
DM
WE
M
IS
R
S
70
68
66
Value
70
66
82
82
72
74
68
70
74
78
78
82
72
62
68
88
86
76
76
54
74
82
66
74
82
84
80
72
76
70
68
58
B
C
C
Range
B
44
C
A
A
B
B
C
B
B
B
B
A
B
C
C
A
A
B
B
D
B
A
C
B
A
A
A
B
B
B
C
D
40
Total
DA
84
2912
A
Based on the data above, it can be seen that the studentsβ highest
score was 88 and the studentβs lowest score was 54. To determine the range
of score, the class interval, and interval of temporary, the writer calculated
using formula as follows:
The Highest Score (H) = 88
The Lowest Score (L) = 54
The Range of Score (R) = H β L + 1
= 88 β 54 + 1
= 35
The Class Interval (K)
= 1 + (3.3) x Log n
= 1 + (3.3) x Log 40
= 1 + 4,293399
= 5,293399
=5
π
Interval of Temporary (I)= =
πΎ
35
5
=7
Thus, the range of score was 35, the class interval was 5, and
interval of temporary was 7. It was presented using frequency distribution in
the following table:
Table 4.2 Frequency Distribution of Social Science Class Test Score
Class Interval Frequency
(K)
(I)
(F)
Mid
Point
Limitation
of Each
Frequency Frequency
Relative Cumulative
1
2
3
4
5
82β 88
75β 81
68β 74
61β 67
54β 60
Total
9
6
17
4
4
βF = 40
(X)
85
78
71
64
57
Group
81,5 β 88,5
74,5 β 81,5
67,5 β 74,5
60,5 β 67,5
53,5 β 60,5
(%)
45
30
85
20
20
βP = 200
(%)
45
75
160
180
200
The distribution of the score of students Social Science can also be
seen in the following Chart.
Figure 4.3The Frequency Distribution of the Score of Students
in Social Science Class
Frequency
The Frequency Distribution of the Score of Students Social
Science Class
18
16
14
12
10
8
6
4
2
0
17
9
6
81,5 - 88,5
74,5 - 81,5
67,5 - 74,5
4
4
60,5 - 67,5
53,5 - 60,5
Limitation of Each Group
According to the chart, the writer found that there are five kinds of
frequency in distribution score of students in social science class, there are
53,5 β 60,5. 60,5 β 67,5.67,5 β 74,5. 74,5 β 81,5. 81,5 β 88,5. There are 9
students who get the score 81,5 β 88,5, there are 6 students who get the
score in 74,5 β 81,5, there are 17 students who get the score in 67,5 β 74,5,
there are 4 students who get score in 60,5 β 67,5, and there are 4 students
who get the score in 53,5 β 60,5. It means that the frequency distribution of
the score of students in social class mostly occurred in 67,5 β 74,5.
The next step, the writer tabulated the scores into the table for the
calculation of mean, median and modus as follows :
Table 4.4 The Calculation of Mean, Median and Modus of
Students in Social Science Class Test Score
Mid
Point
(x)
85
78
71
64
57
Interval Frequency
(I)
(F)
82β 88
75β 81
68β 74
61β 67
54β 60
9
6
17
4
4
N=40
Fx
Xβ
FXβ
Fka
Fkb
765
468
1207
256
228
βFx=2914
2
1
0
-1
-2
18
6
0
-4
-8
βFXβ= 12
9
15
32
36
40
40
31
25
8
4
1) Mean
Mx
=
=
βfx
π
2914
40
= 72,85
2) Median
1
Mdn
= β +2
πβπππ
ππ
= 67,5 +
ππ
20β8
17
12
π7
= 67,5 + 17 X 7
= 67,5+ 4,941
= 72,441
3) Modus
Mo
=uβ
ππ
ππ +ππ
= 74,5 β
= 74,5 β
4
6+4
28
10
π₯π
π₯7
= 74,5 β 2,8
= 71,7
4) Reliability
=
rxx
=
=
πΎπ π₯2 β π (πΎβπ)
π π₯2 (πΎβ1))
50 β68,9652 β73,1(50β73,1)
68,9652 (50β1)
237808 ,56125 +1,688,61
233052 ,390025
= 1,020
The calculation above shows thatthe mean value was 73,1, median
value was 72,441, modus value was 71,7, and reliabilty value was 1,020. So,
the test is reliable because rtest = 1,020 and rtable is 0,312. So rtest 1,020 > rtable
0,312 and the test is reliable.
Then, the writer tabulated the scores of studentβs Social Science
Class into the table for the calculation of standard deviation as follows:
Table 4.5 The Calculation of Standard Deviation of the
Students in Social Science Class Test Score
Interval
(I)
Frequency
(F)
82β 88
75β 81
68β 74
61β 67
54β 60
Total
9
6
17
4
4
βF = 40
Mid
Point
(X)
85
78
71
64
57
Xβ
Fxβ
Xβ2
Fxβ2
2
1
0
-1
-2
18
6
0
-4
-8
βFxβ= 12
4
1
0
1
4
36
6
0
4
16
βFxβ2= 62
Standard Deviation
SD = π
=7
βππ₯ β² 2
π
62
40
β
-
β(ππ₯ )2
(12)2
π
40
= 7 1,55 β 0,32
= 7 1,55 β 0,09
= 7 1,371
= 7 x 1,170897092
= 8,196
The tabulation above shows that the value of standard deviation is
8,196. Standard deviation used to measure the dissemination of the students
mean score, the result of the standard deviation is 8,196. It means that the
students mean score is dissemination.
b. The Description of the Data of Students in Natural Science Class
The data presentation of the score of the students Nature Science is
shows the table frequency distribution, the measurement of central tendency
(mean, median, and mode) and the measurement of deviation standard.In
order to analyze the vocabulary mastery by students Natural Science, it can
be first distributed by the following table:
Table 4.6 Description Data of Natural Science Class
No
1
2
3
4
5
6
7
8
9
10
11
12
13
Name
ARA
H
SR
TDS
MB
IK
OH
TO
Y
DLP
M
IPA
WA
Value
66
74
78
64
60
58
80
58
62
76
72
76
74
Range
C
B
B
C
C
D
A
D
C
B
B
B
B
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
No
36
37
38
39
40
Total
CA
T
NS
AD
NSK
L
RG
SHN
A
WWA
Y
P
I
NH
S
N
W
MA
GAT
SJ
YA
W
Name
KA
JL
MP
AK
SA
78
60
68
74
76
50
54
66
64
62
68
64
56
80
56
60
84
80
82
50
70
70
Value
66
70
72
70
82
2730
B
C
C
B
B
D
D
C
C
C
C
C
D
A
D
C
A
A
A
D
B
B
Range
C
B
B
B
A
Based on the data above, it can be seen that the studentsβ highest
score is 84 and the studentβs lowest score is 50. To determine the range of
score, the class interval, and interval of temporary, the writer calculated
using formula as follows:
The Highest Score (H)
= 84
The Lowest Score (L)
= 50
The Range of Score (R)
=HβL+1
= 84 β50 + 1
= 35
The Class Interval (K)
= 1 + (3.3) x Log n
= 1 + (3.3) x Log 40
= 1 + 4,293399
= 5,293399
=5
π
= =
Interval of Temporary (I)
πΎ
35
5
=7
Thus, the range of score is 35, the class interval is 5, and interval of
temporary is 7. It is presented using frequency distribution in the following
table:
Table 4.7 Frequency Distribution of Natural Science Class Test
Score
Clas
s
(K)
1
Interval
(I)
Frequenc
y
(F)
Mid
Point
(X)
Limitation
of Each
Group
Frequency
Relative
(%)
78-84
8
81
77,5-84,5
40
Frequency
Cumulativ
e
(%)
40
2
3
4
5
71-77
64-70
57-63
50-56
Total
8
14
5
5
βF = 40
74
67
60
53
70,5-77,5
63,5-70,5
56,5-63,5
59,5-56,5
40
70
25
25
βP = 200
80
150
175
200
The distribution of the score of students Nature Science can also be
seen in the following Chart.
Figure 4.8The Frequency Distribution of the Score of Students
in Natura Science Class
Frequency
The Frequency Distribution of the Score of Students Natural
Science Class
16
14
12
10
8
6
4
2
0
14
8
8
77,5 - 84,5
70,5 - 77,5
63,5 - 70,5
5
5
56,5 - 63,5
59,5 - 56,5
Limitation of Each Group
According to the chart, the writer found that there are five kinds of
frequency in distribution score of students in social science class, there are
77,5-84,5. 70,5-77,5. 63,5-70,5. 56,5-63,5 and 59,5-56,5. There are 8
students who get the score 77,5-84,5, there are 8 students who get the score
in 70,5-77,5, there are 14 students who get the score in 63,5-70,5, there are
5 students who get score in 56,5-63,5, and there are 5 students who get the
score 59,5-56,5. It means that the frequency distribution of the score of
students in nature class mostly occurred in 63,5-70,5.
The next step, the writer tabulated the scores into the table for the
calculation of mean, median and modus as follows :
Table 4.9 The Calculation of Mean, Median and Modus of
Students in Natural Science Class
Interval
(I)
Frequency
(F)
78-84
71-77
64-70
57-63
50-56
Total
8
8
14
5
5
βF = 40
Mid
Point
(X)
81
74
67
60
53
1) Mean
Mx
=
=
βfx
π
2731
40
= 68,27
2) Median
1
Mdn
= β +2
πβπππ
ππ
= 63,5 +
20β5
14
= 63,5 + 7,5
= 71
ππ
π7
Fx
X'
Fka
Fkb
648
592
938
300
265
βFx=2731
2
1
0
-1
-2
8
16
30
35
40
40
32
24
10
5
3) Modus
Mo
=u-
ππ
ππ +ππ
= 63,5 = 63,5 -
5
π₯π
8+5
35
13
π₯7
π₯7
= 63,5-18,84615384615385
= 44,654
4) Reliability
rxx
=
πΎπ π₯2 βπ (πΎβπ)
=
50 86,2982 β68,575 (50β68,575)
=
π π₯2 (πΎβ1))
86,2982 (50β1)
372367 ,2402 +1273 ,780625
364919 ,895396
= 1,024
The calculation above shows thatthe mean value was 68,5, median
value was 71, modus value was 44,65, and reliabilty value was 1,024. So,
the test is reliable because rtest = 1,024 and rtable is 0,312. So rtest 1,024 > rtable
0,312 and the test is reliable.
Then, the writer tabulated the scores of studentβs Nature Science
Class into the table for the calculation of standard deviation as follows:
Table 4.1.1 The Calculation of the Standard Deviation of
Students in Natural Science Class
Mid
Interval Frequency
Point
(I)
(F)
(X)
78-84
8
81
71-77
8
74
X'
Fx'
X'2
Fx'2
2
1
16
8
4
1
32
8
64-70
57-63
50-56
Total
14
5
5
βF = 40
67
60
53
0
-1
-2
0
-5
-10
βFxβ= 9
0
1
4
0
5
20
βFxβ2 = 65
Standard Deviation
SD = π
=7
βππ₯ β² 2
π
65
40
-
-
(9)2
β(ππ₯ )2
π
40
= 7x 1,625 β 0,2252
= 7x 1,625 β 0,050625
= 7 x 1,674375
= 7 x 1,2939764295
= 9,057
The tabulation above shows that the value of standard deviation is
9,057. Standard deviation used to measure the dissemination of the students
mean score, the result of the standard deviation is 9,057. It means that the
students mean score is dissemination.
1. The Differences and Similarities English Vocabulary Mastery Between
The Social Science Class and Natural Science Class Eleventh of Graders
at SMAN 1 Kapuas Hilir
a.
Description Data of Social Science Class Based on the Vocabulary
Mastery of Proper Noun, Verb, Adjective, Adverb
Table 4.1.2 Description Data of Social Science Class Based on the
Vocabulary Mastery of Proper Noun, Verb, Adjective, Adverb
No
Name
1
2
3
4
5
6
7
DEPRY
JEFFRY SANTOS
SELDY
INTAN RANTIAN
MUHAMMAD RIFKI
ANDIANTO
JULIADI RAHMADI
RIDWAN
MAULANA
ANDRI RAMADAN
NOR ADIANSYAH
TAWUN BUDI
YOKOB
TRY KUN. S
MARKANI
ADITYA ARISTO
YUSRAN HASANI
SUPIANI
ZAINAL
YAN KRISNA
ANTON PRAYOGO
CINDY SHINTYA
DITHA
YOHANES F.A
WAWAN
KRISTIANTO
JEFRYANTO
SURYADI
AGUNG P
M. RAFI'I
MACHDI
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Proper
Noun
100
89
84
94
84
94
100
Verb
Adjective
Adverb
63
72
72
63
45
54
45
77
88
33
11
66
55
77
18
36
18
27
72
45
18
100
63
77
18
89
100
54
63
88
88
18
63
94
81
100
45
100
94
89
94
94
94
94
84
81
72
54
72
54
63
54
63
77
100
77
66
77
100
77
100
9
18
36
27
54
45
72
81
84
63
55
72
94
63
55
9
94
72
77
9
100
100
100
100
68
72
54
63
90
72
88
77
88
66
22
81
100
36
27
36
28
29
30
31
32
33
34
35
36
37
38
39
40
HENGKY
MEGA HASANAH
EKA OCTAVIA
LEVIA DEVINIANTI
ALPIANOR
TRIWIRA
DONI MARTIN
WETIE ERLIANTI
MUHAJIRI
IGO SUSANTO
RIDUAN
SANTY
DESSY ADELINA
Total
100
100
94
100
100
100
94
100
100
100
100
84
89
3772
63
72
81
72
81
81
54
45
90
90
72
54
90
2682
77
88
55
77
100
77
77
66
77
66
44
33
88
2887
36
54
9
27
36
54
81
54
18
100
27
36
63
1685
Table 4.1.3Description Data of Social Science Class Based on the
Vocabulary Mastery of Proper Noun
No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Name
DEPRY
JEFFRY SANTOS
SELDY
INTAN RANTIAN
MUHAMMAD RIFKI
ANDIANTO
JULIADI RAHMADI
RIDWAN MAULANA
ANDRI RAMADAN
NOR ADIANSYAH
TAWUN BUDI
YOKOB
TRY KUN. S
MARKANI
ADITYA ARISTO
YUSRAN HASANI
SUPIANI
ZAINAL
YAN KRISNA
Proper Noun
100
89
84
94
84
94
100
100
89
100
94
100
94
89
94
94
94
94
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
ANTON PRAYOGO
CINDY SHINTYA
DITHA
YOHANES F.A
WAWAN
KRISTIANTO
JEFRYANTO
SURYADI
AGUNG P
M. RAFI'I
MACHDI
HENGKY
MEGA HASANAH
EKA OCTAVIA
LEVIA DEVINIANTI
ALPIANOR
TRIWIRA
DONI MARTIN
WETIE ERLIANTI
MUHAJIRI
IGO SUSANTO
RIDUAN
SANTY
DESSY ADELINA
Total
84
84
94
94
100
100
100
100
68
100
100
94
100
100
100
94
100
100
100
100
84
89
3772
Based on the data above, it can be seen that the studentsβ highest
score of proper noun was 100 and the studentsβ lowest score of proper noun
was 68. To determine the range of score, the class interval, and interval of
temporary, the calculed using formula as follows:
The Highest Score (H)
=100
The Lowest Score (L)
= 68
The Range of Score (R)
=HβL+1
= 100 β 68 + 1
= 33
The Class Interval (K)
= 1 + (3,3) x Log n
= 1 + (3,3) x Log 40
= 1 + 5,9020599913
= 6,9020599913
=7
Interval of Temporary (I)
=
π
πΎ
=
33
7
=5
Thus, the range of score was 33, the class interval was 7, and interval
of temporary was 5. It was presented using frequency distribution in the
following table:
Table 4.1.4The Calculationof Mean of Social Science Class Based
on the Vocabulary Mastery of Proper Noun Score
No
1
2
3
4
5
6
7
Interval
(I)
98 β 102
93 β 97
88 β 92
83 β 87
78 β 82
73 β 77
68 β 72
Total
Mean
Mx
=
βFx
N
Frequency
(F)
18
12
4
5
0
0
1
βF = 40
Mid point
(X)
100
95
90
85
80
75
70
Fx
1,800
1,140
360
425
0
0
70
βFx = 4,055
=
4,055
40
= 101,375
Table 4.1.5Description Data of Social Science Class Based on the
Vocabulary Mastery of Verb
No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Name
DEPRY
JEFFRY SANTOS
SELDY
INTAN RANTIAN
MUHAMMAD RIFKI
ANDIANTO
JULIADI RAHMADI
RIDWAN MAULANA
ANDRI RAMADAN
NOR ADIANSYAH
TAWUN BUDI YOKOB
TRY KUN. S
MARKANI
ADITYA ARISTO
YUSRAN HASANI
SUPIANI
ZAINAL
YAN KRISNA
ANTON PRAYOGO
CINDY SHINTYA
DITHA
YOHANES F.A
WAWAN KRISTIANTO
JEFRYANTO
SURYADI
AGUNG P
M. RAFI'I
MACHDI
HENGKY
MEGA HASANAH
EKA OCTAVIA
Verb
63
72
72
63
45
54
45
63
54
63
81
81
72
54
72
54
63
54
63
63
63
72
72
54
63
90
72
63
72
81
31
32
33
34
35
36
37
38
39
40
LEVIA DEVINIANTI
ALPIANOR
TRIWIRA
DONI MARTIN
WETIE ERLIANTI
MUHAJIRI
IGO SUSANTO
RIDUAN
SANTY
DESSY ADELINA
Total
72
81
81
54
45
90
90
72
54
90
2682
Based on the data above, it can be seen that the studentsβ highest
score of verb was 90 and the studentsβ lowest score of verb was 45. To
determine the range of score, the class interval, and interval of temporary, the
calculed using formula as follows:
The Highest Score (H)
= 90
The Lowest Score (L)
= 45
The Range of Score (R)
=HβL+1
= 90 β 45 + 1
= 46
The Class Interval (K)
= 1 + (3,3) x Log n
= 1 + (3,3) x Log 40
= 1 + 5,9020599913
= 6,9020599913
=7
Interval of Temporary (I)
=
π
πΎ
=
46
7
=7
Thus, the range of score was 46, the class interval was 7, and interval
of temporary was 7. It was presented using frequency distribution in the
following table:
Table 4.1.6The Calculation of Mean of Social Science Class
Based on the Vocabulary Mastery of Verb Score
No
1
2
3
4
5
6
7
Interval
(I)
87 β 93
80 β 86
73 β 79
66 β 72
59 β 65
52 β 58
45 β 51
Total
Frequency
(F)
4
5
0
10
10
8
3
βF = 40
Mid point
(X)
90
83
76
69
62
55
48
Fx
360
415
0
690
620
440
144
βFx = 2,669
Mean
Mx
=
=
βFx
N
2,669
40
= 66,725
Table 4.1.7Description Data of Social Science Class Based on the
Vocabulary Mastery of Adjective
No
1
Name
DEPRY
Adjective
77
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
JEFFRY SANTOS
SELDY
INTAN RANTIAN
MUHAMMAD RIFKI
ANDIANTO
JULIADI RAHMADI
RIDWAN MAULANA
ANDRI RAMADAN
NOR ADIANSYAH
TAWUN BUDI
YOKOB
TRY KUN. S
MARKANI
ADITYA ARISTO
YUSRAN HASANI
SUPIANI
ZAINAL
YAN KRISNA
ANTON PRAYOGO
CINDY SHINTYA
DITHA
YOHANES F.A
WAWAN
KRISTIANTO
JEFRYANTO
SURYADI
AGUNG P
M. RAFI'I
MACHDI
HENGKY
MEGA HASANAH
EKA OCTAVIA
LEVIA DEVINIANTI
ALPIANOR
TRIWIRA
DONI MARTIN
WETIE ERLIANTI
MUHAJIRI
IGO SUSANTO
RIDUAN
SANTY
88
33
11
66
55
77
77
88
88
100
77
100
77
66
77
100
77
100
55
55
77
88
77
88
66
22
77
88
55
77
100
77
77
66
77
66
44
33
40
DESSY ADELINA
Total
88
2887
Based on the data above, it can be seen that the studentsβ highest
score of adjective was 100 and the studentsβ lowest score of adjective was 11.
To determine the range of score, the class interval, and interval of temporary,
the calculed using formula as follows:
The Highest Score (H)
= 100
The Lowest Score (L)
= 11
The Range of Score (R)
=HβL+1
= 100 β 11 + 1
= 90
The Class Interval (K)
= 1 + (3,3) x Log n
= 1 + (3,3) x Log 40
= 1 + 5,9020599913
= 6,9020599913
=7
Interval of Temporary (I)
=
π
πΎ
=
90
7
= 13
Thus, the range of score was 90, the class interval was 7, and interval
of temporary was 13. It was presented using frequency distribution in the
following table:
Table 4.1.8The Calculation of Mean of Social Science Class
Based on the Vocabulary Mastery of Adjective Score
No
1
2
3
4
5
6
7
Interval
(I)
89 β 101
76 β 88
63 β 75
50 β 62
37 β 49
24 β 36
11 β 23
Total
Frequency
(F)
5
21
5
4
1
2
2
βF = 40
Mid point
(X)
95
82
69
58
43
30
17
Fx
475
1,722
345
232
43
60
34
βFx = 2,911
Mean
Mx
=
=
βFx
N
2,911
40
= 72,775
Table 4.1.9Description Data of Social Science Class Based on the
Vocabulary Mastery of Adverb
No
1
2
3
4
5
6
7
8
9
10
Name
DEPRY
JEFFRY SANTOS
SELDY
INTAN RANTIAN
MUHAMMAD RIFKI
ANDIANTO
JULIADI RAHMADI
RIDWAN
MAULANA
ANDRI RAMADAN
NOR ADIANSYAH
Adverb
18
36
18
27
72
45
18
18
18
63
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
TAWUN BUDI
YOKOB
TRY KUN. S
MARKANI
ADITYA ARISTO
YUSRAN HASANI
SUPIANI
ZAINAL
YAN KRISNA
ANTON PRAYOGO
CINDY SHINTYA
DITHA
YOHANES F.A
WAWAN
KRISTIANTO
JEFRYANTO
SURYADI
AGUNG P
M. RAFI'I
MACHDI
HENGKY
MEGA HASANAH
EKA OCTAVIA
LEVIA DEVINIANTI
ALPIANOR
TRIWIRA
DONI MARTIN
WETIE ERLIANTI
MUHAJIRI
IGO SUSANTO
RIDUAN
SANTY
DESSY ADELINA
Total
45
9
18
36
27
54
45
72
81
72
9
9
81
100
36
27
36
36
54
9
27
36
54
81
54
18
100
27
36
63
1685
Based on the data above, it can be seen that the studentsβ highest
score of adverb was 100 and the studentsβ lowest score of adverb was 9. To
determine the range of score, the class interval, and interval of temporary, the
calculed using formula as follows:
The Highest Score (H)
= 100
The Lowest Score (L)
=9
The Range of Score (R)
=HβL+1
= 100 β 9 + 1
= 92
The Class Interval (K)
= 1 + (3,3) x Log n
= 1 + (3,3) x Log 40
= 1 + 5,9020599913
= 6,9020599913
=7
Interval of Temporary (I)
π
=πΎ=
92
7
= 15
Thus, the range of score was 92, the class interval was 7, and interval
of temporary was 15. It was presented using frequency distribution in the
following table:
Table 4.2.1The Calculation of Mean of Social Science Class
Based on the Vocabulary Mastery of Adverb Score
No
1
2
3
Interval
(I)
99 β 203
84 β 98
69 β 83
Frequency
(F)
2
0
6
Mid point
(X)
151
91
76
Fx
302
0
456
54 β 68
39 β 53
24 β 38
9 β 23
Total
4
5
6
7
6
3
12
11
βF = 40
61
46
31
16
366
138
372
176
βFx = 1,810
Mean
Mx
=
=
βFx
N
1,810
40
= 45,25
b. Description Data of Natural Science Class Based on the Vocabulary
Mastery of Proper Noun, Verb, Adjective, and Adverb
Table 4.2.2 Description Data of Natural Science Class Based on
the Vocabulary Mastery of Proper Noun, Verb, Adjective, and Adverb
No
1
2
3
4
5
6
7
8
9
10
11
12
Name
ANDRE RESTU
ADITIA
HANDOKO
SANDRO RIANTO
TRI DAUD
SAPUTRA
MONICA
BERLIANA
ISTI KOMAH
OKTAVI HARRY
TAMA OKTANIA
YULIANA
DESY LESTARI P.
MEGAWATI
INNES PUSPITA
APRILY
Proper
Noun
Verb
Adjective
Adverb
94
81
33
27
94
100
100
100
55
55
27
36
94
72
33
27
84
54
33
45
100
94
94
78
100
94
45
90
31
63
81
81
11
44
11
11
55
55
36
81
36
81
45
36
94
90
22
72
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
WIDYA ASTUTI
CAHYA
ARIYANTI
TINTE
NOVITA SARI
ANA DELIMA
NINA SEPTIN
KRISTINA
LOLIANA
REBECKA
GLORIA
SUSAN HELDA
NATALIA
APRIANTO
WIRA WATI
ARISMA
YUNITA
PITALOKA
IDA
NURUL
HIDAYAH
SELLIN
NOVIA
WINARTI
MONA AUDIEA
GRESSELIN A.
TIARA
SITI JULEHA
YULIANI
ANGGRAINI
WINDA
KASPUL A.
JUNYALBY
LENGKEY
MEIDRIE
PRANATA
APRILIANO. K
SANTY AMIRA
Total
100
81
44
45
100
90
22
72
84
94
100
72
81
90
33
44
33
27
27
45
100
90
33
54
57
45
33
54
89
63
11
18
100
90
11
27
84
90
11
45
100
72
11
27
89
89
89
100
81
36
11
11
11
45
45
54
57
81
100
100
73
84
94
84
72
63
100
63
22
11
88
100
36
54
45
72
89
100
88
45
68
63
11
36
78
63
77
63
68
68
81
100
66
22
63
63
89
100
22
45
89
100
22
63
94
100
3530
90
100
3145
22
55
1443
36
54
1909
Table 4.2.3 Description Data of Natural Science Class Based on
the Vocabulary Mastery of Proper Noun
No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Name
ANDRE RESTU
ADITIA
HANDOKO
SANDRO RIANTO
TRI DAUD
SAPUTRA
MONICA
BERLIANA
ISTI KOMAH
OKTAVI HARRY
TAMA OKTANIA
YULIANA
DESY LESTARI P.
MEGAWATI
INNES PUSPITA
APRILY
WIDYA ASTUTI
CAHYA
ARIYANTI
TINTE
NOVITA SARI
ANA DELIMA
NINA SEPTIN
KRISTINA
LOLIANA
REBECKA
GLORIA
SUSAN HELDA
NATALIA
APRIANTO
WIRA WATI
ARISMA
YUNITA
PITALOKA
IDA
Proper
Noun
94
94
100
94
84
100
94
94
78
100
94
94
100
100
84
94
100
100
57
89
100
84
100
89
89
89
27
28
29
30
31
32
33
34
35
36
37
38
39
40
NURUL
HIDAYAH
SELLIN
NOVIA
WINARTI
MONA AUDIEA
GRESSELIN A.
TIARA
SITI JULEHA
YULIANI
ANGGRAINI
WINDA
KASPUL A.
JUNYALBY
LENGKEY
MEIDRIE
PRANATA
APRILIANO. K
SANTY AMIRA
Total
57
73
84
94
84
89
68
78
68
68
89
89
94
100
3530
Based on the data above, it can be seen that the studentsβ highest
score of proper noun was 100 and the studentsβ lowest score of proper noun
was 57. To determine the range of score, the class interval, and interval of
temporary, the calculed using formula as follows:
The Highest Score (H)
=100
The Lowest Score (L)
= 57
The Range of Score (R)
=HβL+1
= 100 β 57 + 1
= 44
The Class Interval (K)
= 1 + (3,3) x Log n
= 1 + (3,3) x Log 40
= 1 + 5,9020599913
= 6,9020599913
=7
Interval of Temporary (I)
=
π
πΎ
=
44
7
=7
Thus, the range of score was 44, the class interval was 7, and interval
of temporary was 7. It was presented using frequency distribution in the
following table:
Table 4.2.4The Calculation of Mean of Natural Science Class
Based on the Vocabulary Mastery of Proper Noun Score
No
1
2
3
4
5
6
7
Interval
(I)
99 - 105
92 β 98
85 β 91
78 β 84
71 β 77
64 β 70
57 β 63
Total
Mean
Mx
=
=
βFx
N
3,548
40
= 88,7
Frequency
(F)
10
10
7
7
1
3
2
βF = 40
Mid point
(X)
102
95
88
81
74
67
60
Fx
1,020
950
616
567
74
201
120
βFx = 3,548
Table 4.2.5Description Data of Natural Science Class Based on
the Vocabulary Mastery of Verb
No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Name
ANDRE RESTU
ADITIA
HANDOKO
SANDRO RIANTO
TRI DAUD
SAPUTRA
MONICA
BERLIANA
ISTI KOMAH
OKTAVI HARRY
TAMA OKTANIA
YULIANA
DESY LESTARI P.
MEGAWATI
INNES PUSPITA
APRILY
WIDYA ASTUTI
CAHYA
ARIYANTI
TINTE
NOVITA SARI
ANA DELIMA
NINA SEPTIN
KRISTINA
LOLIANA
REBECKA
GLORIA
SUSAN HELDA
NATALIA
Verb
81
100
100
72
54
45
90
31
63
81
81
90
81
90
72
81
90
90
45
63
90
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
APRIANTO
WIRA WATI
ARISMA
YUNITA
PITALOKA
IDA
NURUL
HIDAYAH
SELLIN
NOVIA
WINARTI
MONA AUDIEA
GRESSELIN A.
TIARA
SITI JULEHA
YULIANI
ANGGRAINI
WINDA
KASPUL A.
JUNYALBY
LENGKEY
MEIDRIE
PRANATA
APRILIANO. K
SANTY AMIRA
Total
90
72
100
81
36
81
72
63
100
63
100
63
63
81
100
100
100
90
100
3145
Based on the data above, it can be seen that the studentsβ highest
score of verb was 100 and the studentsβ lowest score of verb was 31. To
determine the range of score, the class interval, and interval of temporary, the
calculed using formula as follows:
The Highest Score (H)
=100
The Lowest Score (L)
= 31
The Range of Score (R)
=HβL+1
= 100 β 31 + 1
= 70
The Class Interval (K)
= 1 + (3,3) x Log n
= 1 + (3,3) x Log 40
= 1 + 5,9020599913
= 6,9020599913
=7
Interval of Temporary (I)
=
π
πΎ
=
70
7
= 11
Thus, the range of score was 70, the class interval was 7, and interval
of temporary was 11. It was presented using frequency distribution in the
following table:
Table 4.2.6The Calculation of Mean of Natural Science Class
Based on the Vocabulary Mastery of Verb Score
No
1
2
3
4
5
6
7
Interval
(I)
97 - 107
86 β 96
75 β 85
64 β 74
53 β 63
42 β 52
31 β 41
Total
Mean
Mx
=
βFx
N
Frequency
(F)
9
8
8
4
7
2
2
βF = 40
Mid point
(X)
102
91
80
69
58
47
36
Fx
918
728
640
276
406
94
72
βFx = 3,134
=
3,134
40
= 78,35
Table 4.2.7Description Data of Natural Science Class Based on
the Vocabulary Mastery of Adjective
No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Name
ANDRE RESTU
ADITIA
HANDOKO
SANDRO RIANTO
TRI DAUD
SAPUTRA
MONICA
BERLIANA
ISTI KOMAH
OKTAVI HARRY
TAMA OKTANIA
YULIANA
DESY LESTARI P.
MEGAWATI
INNES PUSPITA
APRILY
WIDYA ASTUTI
CAHYA
ARIYANTI
TINTE
NOVITA SARI
ANA DELIMA
NINA SEPTIN
KRISTINA
LOLIANA
REBECKA
GLORIA
SUSAN HELDA
NATALIA
APRIANTO
WIRA WATI
Adjective
33
55
55
33
33
11
44
11
11
55
55
22
44
22
33
44
33
33
33
11
11
11
11
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
ARISMA
YUNITA
PITALOKA
IDA
NURUL
HIDAYAH
SELLIN
NOVIA
WINARTI
MONA AUDIEA
GRESSELIN A.
TIARA
SITI JULEHA
YULIANI
ANGGRAINI
WINDA
KASPUL A.
JUNYALBY
LENGKEY
MEIDRIE
PRANATA
APRILIANO. K
SANTY AMIRA
Total
11
11
11
100
22
11
88
100
88
11
77
66
22
22
22
22
55
1443
Based on the data above, it can be seen that the studentsβ highest
score of adjective was 100 and the studentsβ lowest score of adjective was 11.
To determine the range of score, the class interval, and interval of temporary,
the calculed using formula as follows:
The Highest Score (H)
= 100
The Lowest Score (L)
= 11
The Range of Score (R)
=HβL+1
= 100 β 11 + 1
= 90
The Class Interval (K)
= 1 + (3,3) x Log n
= 1 + (3,3) x Log 40
= 1 + 5,9020599913
= 6,9020599913
=7
Interval of Temporary (I)
=
π
πΎ
=
90
7
= 13
Thus, the range of score was 90, the class interval was 7, and interval
of temporary was 13. It was presented using frequency distribution in the
following table:
Table 4.2.8The Calculation of Mean of Natural Science Class
Based on the Vocabulary Mastery of Adjective Score
No
1
2
3
4
5
6
7
Interval
(I)
89 β 101
76 β 88
63 β 75
50 β 62
37 β 49
24 β 36
11 β 23
Total
Mean
Mx
=
βFx
N
Frequency
(F)
5
21
5
4
1
2
2
βF = 40
Mid point
(X)
95
82
69
58
43
30
17
Fx
475
1,722
345
232
43
60
34
βFx = 2,911
=
2,911
40
= 72,775
Table 4.2.9Description Data of Natural Science Class Based on
the Vocabulary Mastery of Adverb
No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Name
ANDRE RESTU
ADITIA
HANDOKO
SANDRO RIANTO
TRI DAUD
SAPUTRA
MONICA
BERLIANA
ISTI KOMAH
OKTAVI HARRY
TAMA OKTANIA
YULIANA
DESY LESTARI P.
MEGAWATI
INNES PUSPITA
APRILY
WIDYA ASTUTI
CAHYA
ARIYANTI
TINTE
NOVITA SARI
ANA DELIMA
NINA SEPTIN
KRISTINA
LOLIANA
REBECKA
GLORIA
SUSAN HELDA
NATALIA
APRIANTO
WIRA WATI
Adverb
27
27
36
27
45
36
81
36
81
45
36
72
45
72
27
27
45
54
54
18
27
45
27
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
ARISMA
YUNITA
PITALOKA
IDA
NURUL
HIDAYAH
SELLIN
NOVIA
WINARTI
MONA AUDIEA
GRESSELIN A.
TIARA
SITI JULEHA
YULIANI
ANGGRAINI
WINDA
KASPUL A.
JUNYALBY
LENGKEY
MEIDRIE
PRANATA
APRILIANO. K
SANTY AMIRA
Total
45
45
54
100
36
54
45
72
45
36
63
63
63
45
63
36
54
1909
Based on the data above, it can be seen that the studentsβ highest
score of adverb was 100 and the studentsβ lowest score of adverb was 18. To
determine the range of score, the class interval, and interval of temporary, the
calculed using formula as follows:
The Highest Score (H)
= 100
The Lowest Score (L)
= 18
The Range of Score (R)
=HβL+1
= 100 β 18 + 1
= 83
The Class Interval (K)
= 1 + (3,3) x Log n
= 1 + (3,3) x Log 40
= 1 + 5,9020599913
= 6,9020599913
=7
Interval of Temporary (I)
=
π
πΎ
=
83
7
= 13
Thus, the range of score was 83, the class interval was 7, and interval
of temporary was 13. It was presented using frequency distribution in the
following table:
Table 4.3.1The Calculation of Mean of Natural Science Class
Based on the Vocabulary Mastery of Adverb Score
No
1
2
3
4
5
6
7
Interval
(I)
96 β 108
83 β 95
70 β 82
57 β 69
44 β 56
31 β 43
18 β 30
Frequency
(F)
1
0
5
4
15
7
8
Mid point
(X)
102
89
76
63
50
37
24
Fx
102
0
380
252
750
259
192
Total
βF = 40
βFx = 1,935
Mean
Mx
=
=
βFx
N
1,935
40
= 48,375
Based on the calculation above, the mean score of Social Scince
Class and Natural Science Class according to the types of test is the mean of
proper noun for social science class was 101,3 and natural science class was
89. So, the social science class got higher score than natural science class in
proper noun test. Then for the mean verb of social science class was 67 and
natural science class was 78,3. So, the natural science class was higher than
social science class in verb test. Next, the mean score of social science class
in adjective was 73 and natural science class 73. So, the social science class
and natural science class get similar score. The last the mean score of adverb
for social science class was 45,2 and natural science class was 48,3. So, the
naural science class higher than social science class.
B. Test of the Statistical Analysis
Meanwhile, the calculation of Ttest using SPSS 17.0 Program can be
seen in the following table :
Group Statistics
Group
Social Science Class
N
Mean
40
72.80
Std.
Deviation
8.200
Std. Error
Mean
1.297
Group Statistics
Group
Social Science Class
Natural Science Class
N
Mean
40
40
72.80
68.25
Std.
Deviation
8.200
9.173
Std. Error
Mean
1.297
1.450
Independent Samples Test
Nilai Ujian
Levene's Test
for Equality of
Variances
t-test for
Equality of
Means
F
Sig.
T
Df
Sig. (2-tailed)
Mean Difference
Std. Error Difference
95% Confidence Lower
Interval of the
Upper
Difference
Equal variances
assumed
1.101
.297
2.339
78
.022
4.550
1.945
.677
8.423
Equal
variances
not
assumed
2.339
77.040
.022
4.550
1.945
.676
8.424
The result of t test using SPSS 17.0 supported the interpretation of t-test
result from manual calculation. It shows from the table above that the tobservedwas
2,339. It was also higher than ttable at 5% (1,991) level of significance. Therefore,
it could be interpreted that Ho stating that there is no significant difference in
English vocabulary mastery between eleventh graders of social science class and
natural science class was rejected and Ha stating that there is
a significant
difference in English vocabulary mastery between eleventh graders of social
science class and natural science class at SMAN-1 Kapuas Hilir was accepted at
5% level of significance.
C. Result of the Data Analysis
In order tocalculate the ttest, the writer used both manual calculation.
Both results are expected to support the correct calculation each other.
After knowing Standard Deviation of group I and group II, the writer
calculated the βtoβ value to examine the hypothesis. But, first of all the writer
calculated the variance homogeneity in order to adjust the formula in calculating
the βtoβ value, becausesome formula used to examine the comparative hypothesis
with two sample,thereis Fisher formula.Furthermore, in order to ease the
calculation of test of variance homogeneity and test of hypothesis, the writer
makes a table to compare the N (number of sample), mean, variance, and
deviation standard of two groups.
Table. 4.3.2 The Data of Test Scores of Eleventh Graders of Social
Science Class and Natural Science Class at SMAN-1 Kapuas Hilir
No
1
2
3
4
The studentsβ score in social
science class
70
74
58
58
The studentsβ score in natural
science class
66
74
78
64
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
70
68
66
70
66
82
82
72
74
68
70
74
78
78
82
72
62
68
88
86
76
76
54
74
82
66
74
82
84
80
72
76
70
68
58
84
60
58
80
58
62
76
72
76
74
78
60
68
74
76
50
54
66
64
62
68
64
56
80
56
60
84
80
82
50
70
70
66
70
72
70
82
N
Mx
S1
S12
40
72,85
8,196
68,965
40
68,27
9,057
86,298
1. Variance Homogeneity
F=
=
πππ π΅πππππ π‘ ππππππππ
πππ πππππππ π‘ ππππππππ
86,298
68,965
= 1,251
Moreover, the result variance homogeneity was compared with Ftable on numerator df ( 40-1 = 39) and denominator df (40-1= 39). Based on
those df with significant 5%, than the percentage of F table was 1,75. It found
that Fvalue was smaller than Ftable (1,251< 1,75). Therefore, it can be said that
the variance of those two groups was homogeneous.
Since the number of sample of those two groups was same ( N1 =
N2 ), and the variance was homogen. Thus, the testing of t observed was used
Fisherformula.
2. Testing of Normality test
Normality test is a test to know about what the writing test had given
to the students normally, it shows about:
1) Normality test of Students in Social Science Class
Table 4.3.3 Normality test of Students in Social Science Class
No
X
Z
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
54
58
58
58
62
66
66
66
68
68
68
68
70
70
70
70
70
72
72
72
74
74
74
74
74
76
76
76
78
78
80
82
82
82
82
82
-2,2227
-1,7498
-1,7498
-1,7498
-1,2768
-0,8039
-0,8039
-0,8039
-0,5675
-0,5675
-0,5675
-0,5675
-0,3310
-0,3310
-0,3310
-0,3310
-0,3310
-0,0945
-0,0945
-0,0945
0,1418
0,1418
0,1418
0,1418
0,1418
0,3783
0,3783
0,3783
0,6148
0,6148
0,8512
1,0877
1,0877
1,0877
1,0877
1,0877
Table
Z
0,5040
0,5000
0,5000
0,5000
0,4168
0,3058
0,3058
0,3058
0,2119
0,2119
0,2119
0,2119
0,1151
0,1151
0,1151
0,1151
0,1151
0,0158
0,0158
0,0158
0,1357
0,1357
0,1357
0,1357
0,1357
0,2420
0,2420
0,2420
0,3446
0,3446
0,3594
0,4440
0,4440
0,4440
0,4440
0,4440
F(Zi)
F(kum)
S(Zi)
0,0122
0,0401
0.0401
0,0401
0,1056
0,1977
0,1977
0,1977
0,2912
0,2912
0,2912
0,2912
0,3632
0,3632
0,3632
0,3632
0,3632
0,4801
0,4801
0,4801
0,5596
0,5596
0,5596
0,5596
0,5596
0,6368
0,6368
0,6368
0,7422
0,7422
0,8023
0,8531
0,8531
0,8531
0,8531
0,8531
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
0,025
0,05
0,075
0,1
0,125
0,15
0,175
0,2
0,225
0,25
0,275
0,3
0,325
0,35
0,375
0,4
0,425
0,45
0,475
0,5
0,525
0,55
0,575
0,6
0,625
0,65
0,675
0,7
0,725
0,75
0,775
0,8
0,825
0,85
0,875
0,9
F(zi)S(zi)
-0,0128
-0,0099
-0,0349
-0,0599
-0,0194
0,0477
0,0227
-0,0023
0,0662
0,0412
0,0162
-0,0088
0,0382
0,0132
-0,0118
-0,0368
-0,0618
0,0301
0,0051
-0,0199
0,0346
0,0096
-0,0154
-0,0404
-0,0654
-0,0132
-0,0382
-0,0632
0,0172
-0,0078
0,0273
0,0531
0,0281
0,0031
-0,0219
-0,0469
37
38
39
40
Total
Mean
STDEV
Ltest
Ltable
84
84
86
88
2912
72,80
8,196
0,0662
0,139
1,3241
1,3241
1,5606
1,7971
0,4562
0,4562
0,4522
0,4602
0,9115
0,9115
0,9394
0,9599
37
38
39
40
0,925
0,95
0,975
1
-0,0135
-0,0385
-0,0356
-0,0401
The table shows that Ltest= 0,0662< Ltable= 0,139, then the data of
students social science class distributed normally.
2) Normality test of Studentsin Natural Science Class
Table 4.3.4 Normality test of Students in Natural Science Class
No
X
Z
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
50
50
54
56
56
58
58
60
60
60
62
62
64
64
64
66
66
66
-2,0778
-2,0778
-1,6224
-1,3947
-1,3947
-1,1670
-1,1670
-0,9393
-0,9393
-0,9393
-0,7116
-0,7116
-0,4838
-0,4838
-0,4838
-0,2561
-0,2561
-0,2561
Table
Z
0,4325
0,4325
0,4207
0,4129
0,4129
0,4052
0,4052
0,3409
0,3409
0,3409
0,2327
0,2327
0,1131
0,1131
0,1131
0,0228
0,0228
0,0228
F(Zi)
F(kum)
S(Zi)
0,0202
0,0202
0,0495
0,0885
0,0885
0,1251
0,1251
0,1711
0,1711
0,1711
0,2266
0,2266
0,3264
0,3264
0,3264
0,4013
0,4013
0,4013
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
0,025
0,05
0,075
0,1
0,125
0,15
0,175
0,2
0,225
0,25
0,275
0,3
0,325
0,35
0,375
0,4
0,425
0,45
F(zi)S(zi)
-0,0048
-0,0298
-0,0255
-0,0115
-0,0365
-0,0249
-0,0499
-0,0289
-0,0539
-0,0789
-0,0484
-0,0734
0,0014
-0,0236
-0,0486
0,0013
-0,0237
-0,0487
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Total
Mean
STDEV
Ltest
Ltable
68
68
70
70
70
70
72
72
74
74
74
76
76
76
78
78
80
80
80
82
82
84
2730
68,25
9,057
0,0672
0,139
-0,0284
-0,0284
0,1992
0,1992
0,1992
0,1992
0,4269
0,4269
0,6546
0,6546
0,6546
0,8823
0,8823
0,8823
1,1100
1,1100
1,3378
1,3378
1,3378
1,5655
1,5655
1,7932
0,0179
0,0179
0,1093
0,1093
0,1093
0,1093
0,2033
0,2033
0,3015
0,3015
0,3015
0,3121
0,3121
0,3121
0,3228
0,3228
0,4052
0,4052
0,4052
0,4190
0,4190
0,4247
0,4801
0,4801
0,5596
0,5596
0,5596
0,5596
0,6736
0,6736
0,7422
0,7422
0,7422
0,8023
0,8023
0,8023
0,8749
0,8749
0,9115
0,9115
0,9115
0,9394
0,9394
0,9599
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
0,475
0,5
0,525
0,55
0,575
0,6
0,625
0,65
0,675
0,7
0,725
0,75
0,775
0,8
0,825
0,85
0,875
0,9
0,925
0,95
0,975
1
0,0051
-0,0199
0,0346
0,0346
-0,0154
-0,0404
0,0486
0,0236
0,0672
0,0422
0,0172
0,0523
0,0273
0,0023
0,0499
0,0249
0,0365
0,0115
-0,0135
-0,0106
-0,0356
-0,0401
The table shows that Ltest= 0,0672 < Ltable= 0,139, then the data of
students nature science class distributed normally.
3. Testing of tobserved (to)
Table. 4.3.5 The Data of Test Scores of Students Eleventh
Graders of Social Science Class and Natural Science Class at SMAN-1
Kapuas Hilir
Scores
X1
70
74
58
58
70
68
66
70
66
82
82
72
74
68
70
74
78
78
82
72
62
68
88
86
76
76
54
74
82
66
74
82
84
X2
66
74
78
64
60
58
80
58
62
76
72
76
74
78
60
68
74
76
50
64
66
64
62
68
64
56
80
56
60
84
80
82
50
X1
-2,8
+1,2
-14,8
-14,8
-2,8
-4,8
-6,8
-2,8
-6,8
+9,2
+9,2
-0,8
+1,2
-4,8
-2,8
+1,2
+5,2
+5,2
+9,2
-0,8
-10,8
-4.8
15.2
13,2
3,2
3,2
-18,8
+1,2
+9,2
-6,8
+1,2
+9,2
+11,2
X2
-2,25
+5,75
+9,75
-4,25
-8,25
-10,25
+11,75
-10,25
-6,25
+7,75
+3,75
+7,75
+5,75
+9,75
-8,25
-0,25
+5,75
+7,75
-18,25
-14,25
-2,25
-4,25
-6,25
-0,25
-4,25
-12,25
+11,75
-12,25
-8,25
+15,75
+11,75
+13,75
-18,25
X12
7,84
1,44
219,04
219,04
7,84
23,04
46,24
7,84
46,24
84,64
84,64
0,64
1,44
23,04
7,84
1,44
27,04
27,04
84,64
0,64
116,64
23,04
231,04
174,24
10,24
10,24
353,44
1,44
84,64
46,24
1,44
84,64
125,44
X22
5,0625
33,0625
95,0625
18,0625
68,0625
105,0625
138,0625
105,0625
39,0625
60,0625
14,0625
60,0625
33,0625
95,0625
68,0625
0,0625
33,0625
60,0625
333,0625
203,0625
5,0625
18,0625
39,0625
0,0625
18,0625
150,0625
138,0625
150,0625
68,0625
248,0625
138,0625
189,0625
333,0625
80
72
76
70
68
58
84
βX= 2912
t0 =
t=
t=
t=
t=
t=
70
70
66
70
72
70
82
βY= 2730
ππ β ππ
β π π + βπ π
π
π
ππ + ππ βπ
+7,2
-0,8
+3,2
-2,8
-4,8
-14,8
+11,2
βX1=
249E,14
ππ + ππ
ππ . ππ
72,8β 68,25
2622 ,4 +3281 ,5
40 + 40 β2
40 + 40
40 . 40
4,55
5903 ,9
78
X
80
1600
4,55
75,691 X 0,05
4,55
3,78455
4,55
1,945
t = 2,339
The degree of Freedom
Df = N1 + N2 β 2
= 40 + 40 β 2
= 78
Df 78 at 5% level of significant = 1,991
T0 = 2,339> Ttable = 1,991
+1,75
+1,75
-2,25
+1,75
+3,75
+1,75
+13,75
βX2= 0
51,58
0,64
10,24
7,84
23,04
219,04
125,44
βX12=
2622,4
3,0635
3,0625
5,0625
3,0625
14,0625
3,0625
189,0625
βX22=
3281,5
(Ha was accepted)
Based on the result above, it can be presented by the following table:
Table 4.3.6 The Result of Tobserved
t0
tt
Df
2,339
1,991
78
Where :
to : The value of tobserved
tt : The value of ttable
Since the calculated value of tobserved (2,339) was higher than ttable at 5%
(1,991) significant level or 2,339>1,991, it could be interpreted that there is no
significant difference in English vocabulary mastery between eleventh graders of
social science class and natural science class, thus Ho (Null Hypotesis) was
rejected and there isa significant difference in English vocabulary mastery
between eleventh graders of social science class and natural science class, thus the
Ha (Alternative hypotesis) was accepted. It means that there is a significant
difference in English vocabulary mastery between eleventh graders of social
science class and natural science class at SMAN-1 Kapuas Hilir.