Regresi dengan Heteroskedastisitas
Heteroskedastisitas
• Penyimpangan asumsi ketika ragam galat tidak konstan
• Ragam galat populasi di setiap Xi tidak sama
• Terkadang naik seiring dengan nilai Xi
• Terkadang turun seiring dengan nilai Xi
• Sering terjadi pada data cross section
Ilustrasi grafis asumsi Homokesdastisitas
var ui X i E ui2 X i
2
Ilustrasi grafis asumsi Heterokesdastisitas
var ui X i E ui2 X i i
2
X1 X 2 X 3
12 22 32
Contoh-contoh kasus dengan Heteroskedastisitas
Error learning models
Kesalahan semakin sedikit seiring waktu
Pada kasus menduga jumlah kesalahan ketik berdasarkan lama
jam latihan.
Semakin lama jam latihan, rata-rata maupun ragam kesalahan
ketik semakin kecil
Pada kasus pendapatan dan saving
Semakin banyak pendapatan semakin banyak pilihan jumlah uang
yang ingin ditabung
Semakin banyak pendapatan semakin beragam jumlah saving
Adanya pencilan atau sebaran salah satu peubah eksogen
yang menjulur
Pendapatan , tingkat pendidikan
• Kesalahan dalam spesifikasi model
– Tidak menggunakan peubah eksogen yang sesuai
• Bentuk fungsional yang kurang tepat
Efek dari Heterokesdastisitas
• Penduga OLS bagi β tetap tidak bias dan konsisten.
• Heterokesdastisitas meningkatkan ragam dari sebaran
penduga β
– Penduga β bukan lagi penduga yang paling efisien
• Pada uji t dan uji F terjadi underestimation bagi ragam atau
simpangan baku penduga parameter
•
– Statistik uji t atau statistik uji F menjadi lebih besar dari yang
sebenarnya
– Lebih sering terjadi penolakan H0 pada uji koefisien parameter
– Uji-uji tersebut menjadi kurang terpercaya
Efek secara matematis terhadap struktur
ragam penduga koefisien
Untuk regresi linier sederhana:
var ˆ2 2
X
i X
2
2
1
2
x
i
Dengan modifikasi:
1
2
ˆ
var 2
2
x
i
1
2
2
i
x
x
Jika ragam tidak konstan maka:
2 2
i
2 2
x
i
x
2 2
i
var ˆ2
2 2
x
i i
x
2 2
i
var ˆ 2
2
i
2
i
2 2
i
x
x
(*)
•
•
Pada kasus heterokesdastisitas, ragam berfluktuasi seiring nilai X
Ragam penduga β menjadi lebih besar → penduga yang tidak efisien
Jika heterokesdastisitas tidak terdeteksi:
pada uji t dan uji F digunakan satu nilai penduga
ragam, dan dipakai hubunganx 2berikut:
i
var ˆ2 ˆ 2
2 2
x
i
Nilai tersebut akan jauh lebih kecil daripada nilai ragam
sebenarnya sesuai hubungan di (*)
• Underestimated variance or standard deviation:
– Memberikan nilai statistik uji t atau F yang terlalu
besar
– Lebih sering menghasilkan penolakan H0
Cara mendeteksi
Secara grafis
Berdasarkan plot residual
Dengan uji statistik
1.
2.
3.
4.
5.
6.
Breusch-Pagan LM test
Glesjer LM test
Harvey-Godfrey LM test
Park LM test
Goldfeld-Quant test
White test
Pada 1, 2, 3, 4, 6, dibentuk auxiliary regression dengan residual sebagai peubah endogen
dan X sebagai peubah eksogen
Koefisien determinasi dari auxiliary regression dipakai sebagai statistik uji
Pada 5 dilakukan sub sampling berdasarkan nilai X yang menyebabkan heterokesdastisitas
Pendeteksian Heteroskedastisitas secara grafis
u^2
no heteroscedasticity
u^2
^
Y
u^2
yes
yes
^
Y
u^2
^
Y
u^2
yes
yes
^
Y
u^2
^
Y
yes
^
Y
Breusch-Pagan LM test
Yi 1 2 X 2 i 3 X 3i ... k X ki u i
• Langkah 1: duga model regresi di atas dan dapatkan penduga
residualnya
uˆ i Yˆi Yi
Langkah 2: menduga auxiliary regression berikut di mana peubah bebas yang
digunakan adalah peubah-peubah yang mungkin mempengaruhi ragam galat
Peubah eksogen X
uˆ i2 a1 a 2 X 2 i ... a 2 X pi vi
Langkah 3: formulasikan hipotesis nol dan alternatif
Hipotesis nol: kasus homokesdastisitas, tidak ada hubungan antara X
dan residual
Hipotesis alternatif: kasus heterokesdastisitas, terdapat hubungan
antara X dan residual
H 0 a1 a 2 ... a p
H 1 : paling sedikit satu a i 0
Langkah 4: Dapatkan statistik uji berdasarkan koefisien
determinasi dari auxiliary regression R2
2
LM nR ~
2
p 1
Derajat bebas adalah
jumlah X yang
digunakan di dalam
auxiliary regression
Langkah 5: Tolak H0 jika ada bukti yang nyata dari statistik uji
Glesjer LM test
Yi 1 2 X 2 i 3 X 3i ... k X ki u i
• Langkah 1: duga model regresi di atas dan dapatkan penduga
residualnya
uˆ i Yˆi Yi
Langkah 2: menduga auxiliary regression berikut di mana peubah bebas yang
digunakan adalah peubah-peubah yang mungkin mempengaruhi ragam galat
Peubah eksogen X
uˆ i a1 a 2 X 2 i ... a 2 X pi vi
Langkah 3: formulasikan hipotesis nol dan alternatif
Hipotesis nol: kasus homokesdastisitas, tidak ada hubungan antara X
dan residual
Hipotesis alternatif: kasus heterokesdastisitas, terdapat hubungan
antara X dan residual
H 0 a1 a 2 ... a p
H 1 : paling sedikit satu a i 0
Langkah 4: Dapatkan statistik uji berdasarkan koefisien
determinasi dari auxiliary regression R2
2
LM nR ~
2
p 1
Derajat bebas adalah
jumlah X yang
digunakan di dalam
auxiliary regression
Langkah 5: Tolak H0 jika ada bukti yang nyata dari statistik uji
Harvey-Godfrey LM test
Yi 1 2 X 2 i 3 X 3i ... k X ki u i
• Langkah 1: duga model regresi di atas dan dapatkan penduga
residualnya
uˆ i Yˆi Yi
Langkah 2: menduga auxiliary regression berikut di mana peubah bebas yang
digunakan adalah peubah-peubah yang mungkin mempengaruhi ragam galat
Peubah eksogen X
ln uˆ i2 a1 a 2 X 2 i ... a 2 X pi vi
Langkah 3: formulasikan hipotesis nol dan alternatif
Hipotesis nol: kasus homokesdastisitas, tidak ada hubungan antara X
dan residual
Hipotesis alternatif: kasus heterokesdastisitas, terdapat hubungan
antara X dan residual
H 0 a1 a 2 ... a p
H 1 : paling sedikit satu a i 0
Langkah 4: Dapatkan statistik uji berdasarkan koefisien
determinasi dari auxiliary regression R2
2
LM nR ~
2
p 1
Derajat bebas adalah
jumlah X yang
digunakan di dalam
auxiliary regression
Langkah 5: Tolak H0 jika ada bukti yang nyata dari statistik uji
Park LM test
Yi 1 2 X 2 i 3 X 3i ... k X ki u i
• Langkah 1: duga model regresi di atas dan dapatkan penduga
residualnya
uˆ i Yˆi Yi
Langkah 2: menduga auxiliary regression berikut di mana peubah bebas yang
digunakan adalah peubah-peubah yang mungkin mempengaruhi ragam galat
Peubah eksogen X
ln uˆ i2 a1 a 2 ln X 2 i ... a 2 ln X pi vi
Langkah 3: formulasikan hipotesis nol dan alternatif
Hipotesis nol: kasus homokesdastisitas, tidak ada hubungan antara X
dan residual
Hipotesis alternatif: kasus heterokesdastisitas, terdapat hubungan
antara X dan residual
H 0 a1 a 2 ... a p
H 1 : paling sedikit satu a i 0
Langkah 4: Dapatkan statistik uji berdasarkan koefisien
determinasi dari auxiliary regression R2
2
LM nR ~
2
p 1
Derajat bebas adalah
jumlah X yang
digunakan di dalam
auxiliary regression
Langkah 5: Tolak H0 jika ada bukti yang nyata dari statistik uji
Goldfeld-Quant Test
Ide dasar: jika ragam sama untuk seluruh pengamatan (homoskedastic)
maka:
Ragam dari sub sampel pertama akan sama dengan ragam dari sub
sampel kedua
Uji dapat dilakukan jika diketahui peubah mana yang paling berhubungan
dengan galat residual
Dari plot antara residual dengan masing-masing peubah eksogen
Kelemahan:
Jika heteroskedastisitas disebabkan oleh lebih dari satu peubah eksogen
Tidak dapat dilakukan pada data deret waktu
Lebih sesuai untuk regresi linier sederhana dengan satu peubah eksogen
Langkah 1:
Tentukan peubah eksogen yang paling berhubungan dengan ragam
galat.
Urutkan pengamatan untuk peubah ini dari yang terbesar ke yang
terkecil
Langkah 2:
Bagi pengamatan terurut menjadi dua sub sampel yang sama besar
c pengamatan di tengah dihilangkan
2 sub sampel beranggotakan ½(n - c) pengamatan
Sub sampel I beranggotakan pengamatan dengan nilai-nilai besar
Sub sampel II beranggotakan pengamatan dengan nilai-nilai kecil
Langkah 3:
Lakukan analisis regresi untuk Y terhadap semua variabel X, pada
masing-masing sub sampel
Dapatkan JK Residual untuk masing-masing model
Langkah 4:
Hitung statistik uji F sbb:
JKG 1
F
~ F 1 n c k , 1 n c k
2
2
JKG 2
JKG1 adalah JK Galat
dengan nilai terbesar.
k jumlah parameter
yang diduga
Langkah 5: Tolak H0 jika ada bukti yang nyata dari statistik uji
• Bagaimana menentukan nilai c, jumlah
pengamatan di tengah yang dihapuskan?
• Umumnya digunakan 1/6 atau 1/3 dari jumlah
pengamatan
White’s test
Uji LM yang mempunyai kelebihan dari uji-uji yang lain
Tidak memerlukan pengetahuan awal tentang peubah eksogen
penyebab heteroskedastisitas
Tidak sensitif terhadap asumsi kenormalan
Dapat dipakai untuk regresi dengan k parameter (k-1 peubah
eksogen)
Untuk ilustrasi digunakan regresi dengan 2 peubah eksogen
White’s test
Yi 1 2 X 2 i 3 X 3i ui
• Langkah 1: duga model regresi di atas dan dapatkan penduga
residualnya
uˆ i Yˆi Yi
Langkah 2: menduga auxiliary regression berikut
Semua peubah eksogen digunakan
Digunakan pangkat dua dari semua peubah eksogen
Interaksi yang mungkin antara semua peubah eksogen
uˆ i2 a1 a 2 X 2 i a 3 X 3i a 4 X 22i a 5 X 32i a 6 X 2 i X 3i vi
Langkah 3: formulasikan hipotesis nol dan alternatif
Hipotesis nol: kasus homokesdastisitas, tidak ada hubungan antara X
dan residual
Hipotesis alternatif: kasus heterokesdastisitas, terdapat hubungan
antara X dan residual
H 0 a1 a 2 ... a 6
H 1 : paling sedikit satu a i 0
Langkah 4: Dapatkan statistik uji berdasarkan koefisien
determinasi dari auxiliary regression R2
LM nR 2 ~ 62 1
Langkah 5: Tolak H0 jika ada bukti yang nyata dari statistik uji
Metode mengatasinya
• Weighted least square
Weighted Least Square
Jika penyebab heterokesdastisitas diketahui, informasi ini dapat
digunakan untuk menerapkan metode Weighted Least Square (WLS)
Sebagai ilustrasi dari penerapan WLS: misalkan ragam galat
berhubungan dengan suatu peubah zi
var ui 2 zi2
Bagi persamaan regresi dengan zt
yi
1
x2 i
x3i
1 2
3
vi
zi
zi
zi
zi
vt
ut
zt
Dengan hubungan tersebut, dapat dibentuk ragam yang konstan, sbb:
ui var ui 2 zi2
var vi var 2 2 2
zi
zi
zi
Parameter diperoleh dari model dengan peubah yang sudah diboboti oleh zt
• Penyimpangan asumsi ketika ragam galat tidak konstan
• Ragam galat populasi di setiap Xi tidak sama
• Terkadang naik seiring dengan nilai Xi
• Terkadang turun seiring dengan nilai Xi
• Sering terjadi pada data cross section
Ilustrasi grafis asumsi Homokesdastisitas
var ui X i E ui2 X i
2
Ilustrasi grafis asumsi Heterokesdastisitas
var ui X i E ui2 X i i
2
X1 X 2 X 3
12 22 32
Contoh-contoh kasus dengan Heteroskedastisitas
Error learning models
Kesalahan semakin sedikit seiring waktu
Pada kasus menduga jumlah kesalahan ketik berdasarkan lama
jam latihan.
Semakin lama jam latihan, rata-rata maupun ragam kesalahan
ketik semakin kecil
Pada kasus pendapatan dan saving
Semakin banyak pendapatan semakin banyak pilihan jumlah uang
yang ingin ditabung
Semakin banyak pendapatan semakin beragam jumlah saving
Adanya pencilan atau sebaran salah satu peubah eksogen
yang menjulur
Pendapatan , tingkat pendidikan
• Kesalahan dalam spesifikasi model
– Tidak menggunakan peubah eksogen yang sesuai
• Bentuk fungsional yang kurang tepat
Efek dari Heterokesdastisitas
• Penduga OLS bagi β tetap tidak bias dan konsisten.
• Heterokesdastisitas meningkatkan ragam dari sebaran
penduga β
– Penduga β bukan lagi penduga yang paling efisien
• Pada uji t dan uji F terjadi underestimation bagi ragam atau
simpangan baku penduga parameter
•
– Statistik uji t atau statistik uji F menjadi lebih besar dari yang
sebenarnya
– Lebih sering terjadi penolakan H0 pada uji koefisien parameter
– Uji-uji tersebut menjadi kurang terpercaya
Efek secara matematis terhadap struktur
ragam penduga koefisien
Untuk regresi linier sederhana:
var ˆ2 2
X
i X
2
2
1
2
x
i
Dengan modifikasi:
1
2
ˆ
var 2
2
x
i
1
2
2
i
x
x
Jika ragam tidak konstan maka:
2 2
i
2 2
x
i
x
2 2
i
var ˆ2
2 2
x
i i
x
2 2
i
var ˆ 2
2
i
2
i
2 2
i
x
x
(*)
•
•
Pada kasus heterokesdastisitas, ragam berfluktuasi seiring nilai X
Ragam penduga β menjadi lebih besar → penduga yang tidak efisien
Jika heterokesdastisitas tidak terdeteksi:
pada uji t dan uji F digunakan satu nilai penduga
ragam, dan dipakai hubunganx 2berikut:
i
var ˆ2 ˆ 2
2 2
x
i
Nilai tersebut akan jauh lebih kecil daripada nilai ragam
sebenarnya sesuai hubungan di (*)
• Underestimated variance or standard deviation:
– Memberikan nilai statistik uji t atau F yang terlalu
besar
– Lebih sering menghasilkan penolakan H0
Cara mendeteksi
Secara grafis
Berdasarkan plot residual
Dengan uji statistik
1.
2.
3.
4.
5.
6.
Breusch-Pagan LM test
Glesjer LM test
Harvey-Godfrey LM test
Park LM test
Goldfeld-Quant test
White test
Pada 1, 2, 3, 4, 6, dibentuk auxiliary regression dengan residual sebagai peubah endogen
dan X sebagai peubah eksogen
Koefisien determinasi dari auxiliary regression dipakai sebagai statistik uji
Pada 5 dilakukan sub sampling berdasarkan nilai X yang menyebabkan heterokesdastisitas
Pendeteksian Heteroskedastisitas secara grafis
u^2
no heteroscedasticity
u^2
^
Y
u^2
yes
yes
^
Y
u^2
^
Y
u^2
yes
yes
^
Y
u^2
^
Y
yes
^
Y
Breusch-Pagan LM test
Yi 1 2 X 2 i 3 X 3i ... k X ki u i
• Langkah 1: duga model regresi di atas dan dapatkan penduga
residualnya
uˆ i Yˆi Yi
Langkah 2: menduga auxiliary regression berikut di mana peubah bebas yang
digunakan adalah peubah-peubah yang mungkin mempengaruhi ragam galat
Peubah eksogen X
uˆ i2 a1 a 2 X 2 i ... a 2 X pi vi
Langkah 3: formulasikan hipotesis nol dan alternatif
Hipotesis nol: kasus homokesdastisitas, tidak ada hubungan antara X
dan residual
Hipotesis alternatif: kasus heterokesdastisitas, terdapat hubungan
antara X dan residual
H 0 a1 a 2 ... a p
H 1 : paling sedikit satu a i 0
Langkah 4: Dapatkan statistik uji berdasarkan koefisien
determinasi dari auxiliary regression R2
2
LM nR ~
2
p 1
Derajat bebas adalah
jumlah X yang
digunakan di dalam
auxiliary regression
Langkah 5: Tolak H0 jika ada bukti yang nyata dari statistik uji
Glesjer LM test
Yi 1 2 X 2 i 3 X 3i ... k X ki u i
• Langkah 1: duga model regresi di atas dan dapatkan penduga
residualnya
uˆ i Yˆi Yi
Langkah 2: menduga auxiliary regression berikut di mana peubah bebas yang
digunakan adalah peubah-peubah yang mungkin mempengaruhi ragam galat
Peubah eksogen X
uˆ i a1 a 2 X 2 i ... a 2 X pi vi
Langkah 3: formulasikan hipotesis nol dan alternatif
Hipotesis nol: kasus homokesdastisitas, tidak ada hubungan antara X
dan residual
Hipotesis alternatif: kasus heterokesdastisitas, terdapat hubungan
antara X dan residual
H 0 a1 a 2 ... a p
H 1 : paling sedikit satu a i 0
Langkah 4: Dapatkan statistik uji berdasarkan koefisien
determinasi dari auxiliary regression R2
2
LM nR ~
2
p 1
Derajat bebas adalah
jumlah X yang
digunakan di dalam
auxiliary regression
Langkah 5: Tolak H0 jika ada bukti yang nyata dari statistik uji
Harvey-Godfrey LM test
Yi 1 2 X 2 i 3 X 3i ... k X ki u i
• Langkah 1: duga model regresi di atas dan dapatkan penduga
residualnya
uˆ i Yˆi Yi
Langkah 2: menduga auxiliary regression berikut di mana peubah bebas yang
digunakan adalah peubah-peubah yang mungkin mempengaruhi ragam galat
Peubah eksogen X
ln uˆ i2 a1 a 2 X 2 i ... a 2 X pi vi
Langkah 3: formulasikan hipotesis nol dan alternatif
Hipotesis nol: kasus homokesdastisitas, tidak ada hubungan antara X
dan residual
Hipotesis alternatif: kasus heterokesdastisitas, terdapat hubungan
antara X dan residual
H 0 a1 a 2 ... a p
H 1 : paling sedikit satu a i 0
Langkah 4: Dapatkan statistik uji berdasarkan koefisien
determinasi dari auxiliary regression R2
2
LM nR ~
2
p 1
Derajat bebas adalah
jumlah X yang
digunakan di dalam
auxiliary regression
Langkah 5: Tolak H0 jika ada bukti yang nyata dari statistik uji
Park LM test
Yi 1 2 X 2 i 3 X 3i ... k X ki u i
• Langkah 1: duga model regresi di atas dan dapatkan penduga
residualnya
uˆ i Yˆi Yi
Langkah 2: menduga auxiliary regression berikut di mana peubah bebas yang
digunakan adalah peubah-peubah yang mungkin mempengaruhi ragam galat
Peubah eksogen X
ln uˆ i2 a1 a 2 ln X 2 i ... a 2 ln X pi vi
Langkah 3: formulasikan hipotesis nol dan alternatif
Hipotesis nol: kasus homokesdastisitas, tidak ada hubungan antara X
dan residual
Hipotesis alternatif: kasus heterokesdastisitas, terdapat hubungan
antara X dan residual
H 0 a1 a 2 ... a p
H 1 : paling sedikit satu a i 0
Langkah 4: Dapatkan statistik uji berdasarkan koefisien
determinasi dari auxiliary regression R2
2
LM nR ~
2
p 1
Derajat bebas adalah
jumlah X yang
digunakan di dalam
auxiliary regression
Langkah 5: Tolak H0 jika ada bukti yang nyata dari statistik uji
Goldfeld-Quant Test
Ide dasar: jika ragam sama untuk seluruh pengamatan (homoskedastic)
maka:
Ragam dari sub sampel pertama akan sama dengan ragam dari sub
sampel kedua
Uji dapat dilakukan jika diketahui peubah mana yang paling berhubungan
dengan galat residual
Dari plot antara residual dengan masing-masing peubah eksogen
Kelemahan:
Jika heteroskedastisitas disebabkan oleh lebih dari satu peubah eksogen
Tidak dapat dilakukan pada data deret waktu
Lebih sesuai untuk regresi linier sederhana dengan satu peubah eksogen
Langkah 1:
Tentukan peubah eksogen yang paling berhubungan dengan ragam
galat.
Urutkan pengamatan untuk peubah ini dari yang terbesar ke yang
terkecil
Langkah 2:
Bagi pengamatan terurut menjadi dua sub sampel yang sama besar
c pengamatan di tengah dihilangkan
2 sub sampel beranggotakan ½(n - c) pengamatan
Sub sampel I beranggotakan pengamatan dengan nilai-nilai besar
Sub sampel II beranggotakan pengamatan dengan nilai-nilai kecil
Langkah 3:
Lakukan analisis regresi untuk Y terhadap semua variabel X, pada
masing-masing sub sampel
Dapatkan JK Residual untuk masing-masing model
Langkah 4:
Hitung statistik uji F sbb:
JKG 1
F
~ F 1 n c k , 1 n c k
2
2
JKG 2
JKG1 adalah JK Galat
dengan nilai terbesar.
k jumlah parameter
yang diduga
Langkah 5: Tolak H0 jika ada bukti yang nyata dari statistik uji
• Bagaimana menentukan nilai c, jumlah
pengamatan di tengah yang dihapuskan?
• Umumnya digunakan 1/6 atau 1/3 dari jumlah
pengamatan
White’s test
Uji LM yang mempunyai kelebihan dari uji-uji yang lain
Tidak memerlukan pengetahuan awal tentang peubah eksogen
penyebab heteroskedastisitas
Tidak sensitif terhadap asumsi kenormalan
Dapat dipakai untuk regresi dengan k parameter (k-1 peubah
eksogen)
Untuk ilustrasi digunakan regresi dengan 2 peubah eksogen
White’s test
Yi 1 2 X 2 i 3 X 3i ui
• Langkah 1: duga model regresi di atas dan dapatkan penduga
residualnya
uˆ i Yˆi Yi
Langkah 2: menduga auxiliary regression berikut
Semua peubah eksogen digunakan
Digunakan pangkat dua dari semua peubah eksogen
Interaksi yang mungkin antara semua peubah eksogen
uˆ i2 a1 a 2 X 2 i a 3 X 3i a 4 X 22i a 5 X 32i a 6 X 2 i X 3i vi
Langkah 3: formulasikan hipotesis nol dan alternatif
Hipotesis nol: kasus homokesdastisitas, tidak ada hubungan antara X
dan residual
Hipotesis alternatif: kasus heterokesdastisitas, terdapat hubungan
antara X dan residual
H 0 a1 a 2 ... a 6
H 1 : paling sedikit satu a i 0
Langkah 4: Dapatkan statistik uji berdasarkan koefisien
determinasi dari auxiliary regression R2
LM nR 2 ~ 62 1
Langkah 5: Tolak H0 jika ada bukti yang nyata dari statistik uji
Metode mengatasinya
• Weighted least square
Weighted Least Square
Jika penyebab heterokesdastisitas diketahui, informasi ini dapat
digunakan untuk menerapkan metode Weighted Least Square (WLS)
Sebagai ilustrasi dari penerapan WLS: misalkan ragam galat
berhubungan dengan suatu peubah zi
var ui 2 zi2
Bagi persamaan regresi dengan zt
yi
1
x2 i
x3i
1 2
3
vi
zi
zi
zi
zi
vt
ut
zt
Dengan hubungan tersebut, dapat dibentuk ragam yang konstan, sbb:
ui var ui 2 zi2
var vi var 2 2 2
zi
zi
zi
Parameter diperoleh dari model dengan peubah yang sudah diboboti oleh zt