Implementasi Power Line Communication Pada Jaringan Listrik Arus Searah Sebagai Sistem Kendali Terpusat.

ABSTRAK 

Dengan  meningkatnya  kebutuhan  jalur  komunikasi  data,  khususnya  pada 
komunikasi  dengan  bandwidth  rendah,  PLC  menjadi  metode  alternatif  untuk 
komunikasi  sinyal  kendali.  Sistem  PLC  dalam  Tugas  Akhir  ini  telah  dirancang 
dan  direalisasi  dengan  menggunakan  modulasi  FSK  sebagai  physical  layer,  dan 
menggunakan  protokol  komunikasi  UART.  Sebagai  pengendali  digunakan 
mikrokontroler  MCS­51.  Sistem  PLC  pada  Tugas  Akhir  ini  dibuat  dengan 
konfigurasi satu master dua slave. 
Sistem  PLC  yang  telah  dibuat  diimplementasikan  sebagai  pengandali  on 
off  dengan jumlah output  yang dikendalikan  sebanyak 48  output. Dari pengujian 
yang  telah  dilakukan  didapatkan  kesimpulan  bahwa  sistem  ini  dapat  bekerja 
dengan  baik  dengan  sensitivitas  sinyal  data  sebesar  10  mVpp  dan  dengan 
ketahanan terhadap noise sampai dengan 200 mVpp.



ABSTRACT 

Within  increasing  demand  in  data  communication  line,  especially  in 
narrow  band  communication,  PLC  can  be  alternative  for  control  signal 

communication. PLC system for this final project use FSK modulation as physical 
layer, and use UART as communication protocol.  Microcontroller MCS­51 used 
as controller. PLC system in this task uses one master two slave configuration. 
This PLC system has been implemented as on off control with 48 outputs. 
From the test has been held, these systems can work excellent with 10  mV pp  data 
signal sensitivity, and noise resistant up to 200 mV pp  .

ii 

DAFTAR ISI 
Halaman 
ABSTRAK ................................................................................................... 



ABSTRACT ................................................................................................. 

ii 

KATA PENGANTAR .................................................................................  iii 

DAFTAR ISI ................................................................................................ 



DAFTAR GAMBAR ....................................................................................  viii 
DAFTAR TABEL ........................................................................................ 



BAB I  PENDAHULUAN 
I.1 

Latar Belakang ................................................................................. 



I.2 

Perumusan Masalah ......................................................................... 




I.3 

Tujuan .............................................................................................. 



I.4 

Pembatasan Masalah ........................................................................ 



I.5 

Alat yang digunakan ........................................................................ 




I.6 

Sistematika Pembahasan .................................................................. 



BAB II  TEORI PENUNJANG 
II.1  UART  (Universal Asynchronous Receive/Transmit) ..................... 



II.2  Modulasi FSK (Frequency Shift Keying) ........................................ 



II.2.1 

Modulasi Langsung .................................................... 




II.2.2 

Modulasi dengan Fractional­N Synthesizer ..........…. 



II.3  Demodulator FSK Exar XR­2211.................................................... 



II.4  LPF (Low Pass Filter) …….............................................................  13 
II.5  BPF (Band Pass Filter) ……...........................................................  14 
II.6  Rangkaian Dasar Mikrokontroler …................................................  15 
II.7  Rele ………...…………..................................................................  16



BAB III PERANCANGAN 
III.1  Perancangan Dan Realisasi LPF ................................................... 


19 

III.2  Perancangan Dan Realisasi BPF .................................................... 

21 

III.3  Perancangan Dan Realisasi Modulator FSK .................................. 

22 

III.4  Perancangan Dan Realisasi Demodulator FSK ..............................  23 
III.5  Perancangan Dan Realisasi Rangkaian Mikrokontroler ................ 

25 

III.5.1 

Rangkaian Mikrokontroler Master ............................  25 


III.5.2 

Rangkaian Mikrokontroler Slave ...............................  26 

III.6  Penggabungan Modul – Modul PLC Master Controller ................  27 
III.7  Penggabungan Modul – Modul PLC Slave Controller ...................  28 
III.8  Perancangan Dan Realisasi Program Mikrokontroler .....................  28 
BAB IV  UJI COBA ALAT 
IV.1  Karakteristik LPF ............................................................................  34 
IV.2  Karakteristik BPF ............................................................................  35 
IV.3  Karakteristik Modulator FSK ..........................................................  35 
IV.4  Karakteristik Demodulator FSK ......................................................  36 
IV.5  Karakteristik Sinyal FSK Di Jalur Listrik DC .................................  37 
IV.6  Karakteristik Noise Di Jalur Listrik DC ..........................................  38 
IV.7  Pengujian Sistem PLC .....................................................................  38 
BAB V  KESIMPULAN DAN SARAN 
V.1  Kesimpulan .................................................................................... 

40 


V.2  Saran .............................................................................................. 

40 

DAFTAR PUSTAKA ................................................................................. 

xi

vi 

LAMPIRAN 
Lampiran  A 
Listing Program Mikrokontroler Master ....................................... 

A­1 

Listing Program Mikrokontroler Slave A ...................................... 

A­6 


Listing Program Mikrokontroler Slave B ...................................... 

A­10 

Lampiran  B 
Rangkaian Keseluruhan Sistem PLC ...........................................  B­1 
Layout PCB Mikrokontroler Master ............................................  B­2 
Layout PCB Mikrokontroler Slave ...............................................  B­3 
Layout PCB FSK modulator .........................................................  B­4 
Layout PCB FSK demodulator .....................................................  B­4 
Lampiran  C 
IC LM 555 ....................................................................................  C­1 
IC Exar XR ­ 2211 ........................................................................  C­11 
Lampiran  D 
Foto alat ........................................................................................  D­1

vii 

DAFTAR GAMBAR 
Halaman 

1.  Gambar II­1 Timing diagram UART ................................................. 



2.  Gambar II­2 Spektrum frekuensi FSK ................................................ 



3.  Gambar II­3 Sinyal FSK ..................................................................... 



4.  Gambar II­4 Modulasi langsung dengan VCO .................................. 



5.  Gambar II­5 IC 555 sebagai FSK modulator ..................................... 




6.  Gambar II­6 Fractional­N Synthesizer .............................................. 



7.  Gambar II­7 FSK demodulator .......................................................... 



8.  Gambar II­8 Tracking Frequency ....................................................... 

11 

9.  Gambar II­9 Low pass filter................................................................. 

13 

10.  Gambar II­10 High pass filter.............................................................. 

14 

11.  Gambar II­11 Diagram Blok mikrokontroler AT89S52 ..................... 

15 

12.  Gambar II­12 Rangkaian dasar mikrokontroler AT89S52  ................ 

16 

13.  Gambar II­13 SPST (Single Pole Single Throw) ............................... 

17 

14.  Gambar II­14 SPDT (Single Pole Double Throw) .............................. 

17 

15.  Gambar II­15 DPST (Double Pole Single Throw) .............................. 

18 

16.  Gambar II­16 DPDT (Double Pole Double Throw) ........................... 

18 

17.  Gambar III­1 Blok diagram PLC ....................................................... 

19 

18.  Gambar III­2 Low Pass Filter.............................................................. 

20 

19.  Gambar III­3 High Pass Filter ............................................................ 

21 

20.  Gambar III­4 Voltage Controlled Oscillator dengan IC 555 ............. 

23 

21.  Gambar III­5 FSK Demodulator......................................................... 

25 

22.  Gambar III­6 Master Controller ......................................................... 

26 

23.  Gambar III­7 Slave Controller ............................................................ 

27 

24.  Gambar III­8 Master PLC controller ................................................. 

27 

25.  Gambar III­9 Slave PLC controller  ................................................... 

28 

26.  Gambar III­10 Flowchart program master controller ........................ 

29 

27.  Gambar III­11 Flowchart program slave controller ........................... 

29 

28.  Gambar III­12 SFR Timer Mode......................................................... 

30 

29.  Gambar III­13 initialisasi TMOD...................................................... 

30

viii 

30.  Gambar III­14 SFR Serial Port Control........................................... 

31 

31.  Gambar III­15Frame data ............................................................... 

33 

32.  Gambar IV­1 Karakteristik LPF (logaritmis)................................... 

34 

33.  Gambar IV­2 Karakteristik BPF (logaritmis)................................... 

35 

34.  Gambar IV­3 Respon PLL demodulator FSK.................................. 

35 

35.  Gambar IV­4 Pemasangan beban di jalur listrik DC........................ 

35

ix 

DAFTAR TABEL 
Halaman 
1.  Tabel III­1 SFR serial mode............................................................... 

32 

2.  Tabel IV­1 Karakteristik LPF (Low Pass Filter) ............................... 

34 

3.  Tabel IV­2 Karakteristik BPF (Band Pass Filter) .............................. 

35 

4.  Tabel IV­3 Karakteristik modulator FSK ........................................... 

35 

5.  Tabel IV­4 Karakteristik FSK demodulator terhadap frekuensi ......... 

36 

6.  Tabel IV­5 Karakteristik demodulator FSK terhadap tegangan ......... 

37 

7.  Tabel IV­6 Karakteristik sinyal FSK Di Jalur Listrik DC terhadap 
beban terpasang .................................................................................... 

37 

8.  Tabel IV­7 Karakteristik sinyal FSK Di Beban terhadap 
beban terpasang .................................................................................... 

38 

9.  Tabel IV­8 Karakteristik noise di jalur listrik DC ............................... 

38 

10.  Tabel IV­9 Pengujian Sistem PLC ...................................................... 

39



LAMPIRAN A 

­­Listing Program PLC Controller­­

Lampiran 

Listing program  master controller 
$mod51 
CALL INIT 
LAGI: 
MOV A,P1 
MOV R5,A 
MOV P0,#11111110B 
JB P0.4,NO2 
MOV R0,#01H 
NO2: 
JB P0.5,NO3 
MOV R0,#03H 
NO3: 
JB P0.6,NOA 
MOV R0,#05H 
NOA: 
JB P0.7,NO4 
MOV A,R5 
ANL A,#0FH 
ADD A,#0F0H 
MOV R4,A 
MOV A,R0 
RR A 
RR A 
RR A 
RR A 
ADD A,#0FH 
ANL A,R4 
MOV P2,A 
CALL KIRIM 
CALL DELAY

A ­ 1 

Lampiran 

MOV A,R5 
ANL A,#0F0H 
RL A 
RL A 
RL A 
RL A 
ADD A,#0F0H 
MOV R4,A 
MOV A,R0 
INC A 
RR A 
RR A 
RR A 
RR A 
ADD A,#0FH 
ANL A,R4 
MOV P2,A 
CALL KIRIM 
NO4: 
MOV P0,#11111101B 
JB P0.4,NO5 
MOV R0,#07H 
NO5: 
JB P0.5,NO6 
MOV R0,#09H 
NO6: 
JB P0.6,NOB 
MOV R0,#0BH 
NOB: 
JB P0.7,NO7 
NO7:

A ­ 2 

Lampiran 

MOV P0,#11111011B 
JB P0.4,NO8 
NO8: 
MOV R0,#0DH 
JB P0.5,NO9 
NO9: 
MOV R0,#0FH 
JB P0.6,NOC 
NOC: 
JB P0.7,NOSTARR 
NOSTARR: 
MOV P0,#11110111B 
JB P0.4,NO0 
MOV R4,#0F0H 
MOV A,R0 
RR A 
RR A 
RR A 
RR A 
ADD A,#0FH 
ANL A,R4 
MOV P2,A 
CALL KIRIM 
CALL DELAY 
MOV R4,#0F0H 
MOV A,R0 
INC A 
RR A 
RR A 
RR A 
RR A

A ­ 3 

Lampiran 

ADD A,#0FH 
ANL A,R4 
MOV P2,A 
CALL KIRIM 
NO0: 
JB P0.5,NOKRESS 
NOKRESS: 
JB P0.6,NOD 
MOV R4,#0FFH 
MOV A,R0 
RR A 
RR A 
RR A 
RR A 
ADD A,#0FH 
ANL A,R4 
MOV P2,A 
CALL KIRIM 
CALL DELAY 
MOV R4,#0FFH 
MOV A,R0 
INC A 
RR A 
RR A 
RR A 
RR A 
ADD A,#0FH 
ANL A,R4 
MOV P2,A 
CALL KIRIM 
NOD:

A ­ 4 

Lampiran 

JB P0.7,NON 
NON: 
LJMP LAGI 
INIT: 
MOV P0,#00H 
MOV P1,#00H 
MOV P2,#00H 
MOV  SP, #30H 
MOV  SCON, #50H 
;inisialisasi baud rate (9600 bps) 
MOV  TMOD, #20H 
MOV  TL1, #0FDH 
MOV  TH1, #0FDH 
MOV  PCON, #00H 
SETB  TR1 
RET 
KIRIM: 
CLR TI 
MOV SBUF,A 
JNB TI,$ 
RET 
DELAY: 
DLY0: 
MOV R6,#0FFH 
DLY1: 
DJNZ R6,DLY1 
RET 
END

A ­ 5 

Lampiran 

Listing program  slave controler 
SLAVE A 
$mod51 
MOV  R0,#00H 
MOV  R1,#00H 
MOV  R2,#00H 
MOV  R3,#00H 
MOV  R4,#00H 
MOV  R5,#00H 
MOV  R6,#00H 
MOV  R7,#00H 
MOV  P0,00H 
MOV  P1,00H 
MOV  P2,00H 
LJMP  START 
TERIMA: 
JNB 

RI,$ 

MOV  A,SBUF 
MOV  R1,A 
CLR  RI 
MOV A,#11110000B 
ANL A,R1 
MOV R2,A 
MOV A,#00001111B 
ANL A,R1 
MOV R3,A 
RR  A 
RR  A 
RR  A 
RR  A 
MOV R4,A

A ­ 6 

Lampiran 

RETI 
START: 

MOV  SP, #30H 
MOV  SCON, #50H 

;inisialisasi baud rate (9600 bps) 
MOV  TMOD, #20H 
MOV  TL1, #0FDH 
MOV  TH1, #0FDH 
MOV  PCON, #00H 
SETB  TR1 
ULANG: 
CALL TERIMA 
CJNE R2,#10H,ADDB 
MOV A,R3 
ORL A,#0F0H 
MOV R5,A 
MOV A,P0 
ANL A,R5 
ORL A,R3 
MOV P0,A 
ADDB: 
CJNE R2,#20H,ADDCO 
MOV A,R4 
ORL A,#0FH 
MOV R5,A 
MOV A,P0 
ANL A,R5 
ORL A,R4 
MOV P0,A 
ADDCO: 
CJNE R2,#30H,ADDD 
MOV A,R3

A ­ 7 

Lampiran 

ORL A,#0F0H 
MOV R5,A 
MOV A,P1 
ANL A,R5 
ORL A,R3 
MOV P1,A 
ADDD: 
CJNE R2,#40H,ADDE 
MOV A,R4 
ORL A,#0FH 
MOV R5,A 
MOV A,P1 
ANL A,R5 
ORL A,R4 
MOV P1,A 
ADDE: 
CJNE R2,#50H,ADDF 
MOV A,R3 
ORL A,#0F0H 
MOV R5,A 
MOV A,P2 
ANL A,R5 
ORL A,R3 
MOV P2,A 
ADDF: 
CJNE R2,#60H,ADDG 
MOV A,R4 
ORL A,#0FH 
MOV R5,A 
MOV A,P2 
ANL A,R5

A ­ 8 

Lampiran 

ORL A,R4 
MOV P2,A 
ADDG: 
LJMP ULANG: 
DELAY: 
MOV R0,#0FH 
DLY1: 
MOV R1,#0FFH 
DLY0: 
DJNZ R1,DLY0 
DJNZ R0,DLY1 
END

A ­ 9 

Lampiran 

SLAVE B 
$mod51 
MOV  R0,#00H 
MOV  R1,#00H 
MOV  R2,#00H 
MOV  R3,#00H 
MOV  R4,#00H 
MOV  R5,#00H 
MOV  R6,#00H 
MOV  R7,#00H 
MOV  P0,00H 
MOV  P1,00H 
MOV  P2,00H 
LJMP  START 
TERIMA: 
JNB 

RI,$ 

MOV  A,SBUF 
MOV  R1,A 
CLR  RI 
MOV A,#11110000B 
ANL A,R1 
MOV R2,A 
MOV A,#00001111B 
ANL A,R1 
MOV R3,A 
RR  A 
RR  A 
RR  A 
RR  A 
MOV R4,A 
RETI

A ­10 

Lampiran 

START: 

MOV  SP, #30H 
MOV  SCON, #50H 

;inisialisasi baud rate (9600 bps) 
MOV  TMOD, #20H 
MOV  TL1, #0FDH 
MOV  TH1, #0FDH 
MOV  PCON, #00H 
SETB  TR1 
ULANG: 
CALL TERIMA 
CJNE R2,#70H,ADDB 
MOV A,R3 
ORL A,#0F0H 
MOV R5,A 
MOV A,P0 
ANL A,R5 
ORL A,R3 
MOV P0,A 
ADDB: 
CJNE R2,#80H,ADDCO 
MOV A,R4 
ORL A,#0FH 
MOV R5,A 
MOV A,P0 
ANL A,R5 
ORL A,R4 
MOV P0,A 
ADDCO: 
CJNE R2,#90H,ADDD 
MOV A,R3 
ORL A,#0F0H

A ­11 

Lampiran 

MOV R5,A 
MOV A,P1 
ANL A,R5 
ORL A,R3 
MOV P1,A 
ADDD: 
CJNE R2,#A0H,ADDE 
MOV A,R4 
ORL A,#0FH 
MOV R5,A 
MOV A,P1 
ANL A,R5 
ORL A,R4 
MOV P1,A 
ADDE: 
CJNE R2,#B0H,ADDF 
MOV A,R3 
ORL A,#0F0H 
MOV R5,A 
MOV A,P2 
ANL A,R5 
ORL A,R3 
MOV P2,A 
ADDF: 
CJNE R2,#C0H,ADDG 
MOV A,R4 
ORL A,#0FH 
MOV R5,A 
MOV A,P2 
ANL A,R5 
ORL A,R4

A ­12 

Lampiran 

MOV P2,A 
ADDG: 
LJMP ULANG: 
DELAY: 
MOV R0,#0FH 
DLY1: 
MOV R1,#0FFH 
DLY0: 
DJNZ R1,DLY0 
DJNZ R0,DLY1 
END

A ­13 

Lampiran 

LAMPIRAN B 

­­Rangkaian Dan PCB­­

A ­14 

Lampiran 

100 nF 

12 V

.615 mH 

Jalur Listrik DC 

Skema Keseluruhan Sistem PLC 

A ­15 

Lampiran 

PCB MASTER CONTROLLER 
PCB Bottom 

PCB Layout

A ­16 

Lampiran 

PCB SLAVE CONTROLLER 
PCB Bottom 

PCB Layout

A ­17 

Lampiran 

PCB FSK MODULATOR 

PCB FSK DEMODULATOR

A ­18 

Lampiran 

A ­19

XR-2211
...the analog plus

FSK Demodulator/
Tone Decoder

company TM

June 1997-3

APPLICATIONS

FEATURES
D Wide Frequency Range, 0.01Hz to 300kHz

D Caller Identification Delivery

D Wide Supply Voltage Range, 4.5V to 20V

D FSK Demodulation

D HCMOS/TTL/Logic Compatibility

D Data Synchronization

D FSK Demodulation, with Carrier Detection
D Wide Dynamic Range, 10mV to 3V rms

D Tone Decoding

D Adjustable Tracking Range, +1% to 80%

D FM Detection

D Excellent Temp. Stability, +50ppm/°C, max.

D Carrier Detection

GENERAL DESCRIPTION
quadrature phase detector which provides carrier
detection, and an FSK voltage comparator which provides
FSK demodulation. External components are used to
independently set center frequency, bandwidth, and output
delay. An internal voltage reference proportional to the
power supply is provided at an output pin.

The XR-2211 is a monolithic phase-locked loop (PLL)
system especially designed for data communications
applications. It is particularly suited for FSK modem
applications. It operates over a wide supply voltage range
of 4.5 to 20V and a wide frequency range of 0.01Hz to
300kHz. It can accommodate analog signals between
10mV and 3V, and can interface with conventional DTL,
TTL, and ECL logic families. The circuit consists of a basic
PLL for tracking an input signal within the pass band, a

The XR-2211 is available in 14 pin packages specified for
military and industrial temperature ranges.

ORDERING INFORMATION
Part No.

Package

Operating
Temperature Range

XR-2211M

14 Pin CDIP (0.300”)

-55°C to +125°C

XR-2211N

14 Pin CDIP (0.300”)

-40°C to +85°C

XR-2211P

14 Pin PDIP (0.300”)

-40°C to +85°C

XR-2211ID

14 Lead SOIC (Jedec, 0.150”)

-40°C to +85°C

Rev. 3.01
E1992

EXAR Corporation, 48720 Kato Road, Fremont, CA 94538 z (510) 668-7000 z FAX (510) 668-7017
1

XR-2211
BLOCK DIAGRAM
VCC

GND

NC

1

4

9

Pre Amplifier
INP

TIM C1

2

Loop
q-Det

14

Lock
Detect
Comparator

VCO
TIM C2

13

TIM R

12

Quad
q-Det

11

LDO

3

LDF

6

LDOQ

5

LDOQN

7

DO

Internal
VREF

10

VREF
FSK Comp

Reference
COMP I

8

Figure 1. XR-2211 Block Diagram

Rev. 3.01
2

XR-2211
PIN CONFIGURATION

VCC
INP
LDF
GND
LDOQN
LDOQ
DO

1

14

2

13

3

12

4

11

5

10

6

9

7

8

VCC
INP
LDF
GND
LDOQN
LDOQ
DO

TIM C1
TIM C2
TIM R
LDO
VREF
NC
COMP I

14 Lead CDIP, PDIP (0.300”)

1

14

2

13

3

12

4

11

5

10

6

9

7

8

TIM C1
TIM C2
TIM R
LDO
VREF
NC
COMP I

14 Lead SOIC (Jedec, 0.150”)

PIN DESCRIPTION
Pin #

Symbol

Type

Description

1

VCC

2

INP

I

Receive Analog Input.

3

LDF

O

Lock Detect Filter.

4

GND

5

LDOQN

O

Lock Detect Output Not. This output will be low if the VCO is in the capture range.

6

LDOQ

O

Lock Detect Output. This output will be high if the VCO is in the capture range.

7

DO

O

Data Output. Decoded FSK output.

8

COMP I

I

FSK Comparator Input.

9

NC

10

VREF

O

Internal Voltage Reference. The value of VREF is VCC/2 - 650mV.

11

LDO

O

Loop Detect Output. This output provides the result of the quadrature phase detection.

12

TIM R

I

Timing Resistor Input. This pin connects to the timing resistor of the VCO.

13

TIM C2

I

Timing Capacitor Input. The timing capacitor connects between this pin and pin 14.

14

TIM C1

I

Timing Capacitor Input. The timing capacitor connects between this pin and pin 13.

Positive Power Supply.

Ground Pin.

Not Connected.

Rev. 3.01
3

XR-2211
ELECTRICAL CHARACTERISTICS
Test Conditions: VCC = 12V, TA = +25°C, RO = 30KW, CO = 0.033mF, unless otherwise specified.
Parameter

Min.

Typ.

Max.

Unit

Conditions

20

V

4

7

mA

R0 > 10KW. See Figure 4.

+1

+3

%

Deviation from fO = 1/R0 C0

Temperature

+20

+50

ppm/°C

Power Supply

0.05

0.5

%/V

VCC = 12 +1V. See Figure 7.

0.2

%/V

VCC = + 5V. See Figure 7.

300

kHz

R0 = 8.2KW, C0 = 400pF

0.01

Hz

R0 = 2MW, C0 = 50mF

2000

KW

General
Supply Voltage

4.5

Supply Current
Oscillator Section
Frequency Accuracy
Frequency Stability

Upper Frequency Limit

100

Lowest Practical Operating
Frequency

See Figure 8.

Timing Resistor, R0 - See
Figure 5
Operating Range

5

Recommended Range

5

KW

See Figure 7 and Figure 8.

mA

Measured at Pin 11

Loop Phase Dectector Section
Peak Output Current

+150

+200

+300

Output Offset Current

1

mA

Output Impedance

1

MW

+5

V

Maximum Swing

+4

Quadrature Phase Detector
Peak Output Current

Measured at Pin 3
100

300

mA

Output Impedance

1

MW

Maximum Swing

11

VPP

Input Preampt Section
Input Impedance

Referenced to Pin 10

Measured at Pin 2
20

KW

Input Signal
Voltage Required to
Cause Limiting

2

10

mV rms

Notes
Parameters are guaranteed over the recommended operating conditions, but are not 100% tested in production.
Bold face parameters are covered by production test and guaranteed over operating temperature range.

Rev. 3.01
4

XR-2211
DC ELECTRICAL CHARACTERISTICS (CONT’D)
Test Conditions: VCC = 12V, TA = +25°C, RO = 30KW, CO = 0.033mF, unless otherwise specified.
Parameter

Min.

Typ.

Max.

Unit

Conditions

2

MW

Measured at Pins 3 and 8

100

nA

70

dB

RL = 5.1KW

Voltage Comparator Section
Input Impedance
Input Bias Current
Voltage Gain

55

Output Voltage Low

300

500

mV

IC = 3mA

Output Leakage Current

0.01

10

mA

VO = 20V

5.3

5.7

V

Measured at Pin 10
AC Small Signal

Internal Reference
Voltage Level

4.9

Output Impedance

100

W

Maximum Source Current

80

mA

Notes
Parameters are guaranteed over the recommended operating conditions, but are not 100% tested in production.
Bold face parameters are covered by production test and guaranteed over operating temperature range.
Specifications are subject to change without notice

ABSOLUTE MAXIMUM RATINGS
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20V
Input Signal Level . . . . . . . . . . . . . . . . . . . . . . . . 3V rms
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . 900mW

Package Power Dissipation Ratings
CDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750mW
Derate Above TA = 25°C . . . . . . . . . . . . . . . 8mW/°C
PDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800mW
Derate Above TA = 25°C . . . . . . . . . . . . . . 60mW/°C
SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390mW
Derate Above TA = 25°C . . . . . . . . . . . . . . . 5mW/°C

SYSTEM DESCRIPTION
The main PLL within the XR-2211 is constructed from an
input preamplifier, analog multiplier used as a phase
detector and a precision voltage controlled oscillator
(VCO). The preamplifier is used as a limiter such that
input signals above typically 10mV rms are amplified to a
constant high level signal. The multiplying-type phase
detector acts as a digital exclusive or gate. Its output
(unfiltered) produces sum and difference frequencies of
the input and the VCO output. The VCO is actually a
current controlled oscillator with its normal input current
(fO) set by a resistor (R0) to ground and its driving current
with a resistor (R1) from the phase detector.

(internally connected). When in lock, these frequencies
are fIN+ fVCO (2 times fIN when in lock) and fIN - fVCO (0Hz
when lock). By adding a capacitor to the phase detector
output, the 2 times fIN component is reduced, leaving a
DC voltage that represents the phase difference between
the two frequencies. This closes the loop and allows the
VCO to track the input frequency.
The FSK comparator is used to determine if the VCO is
driven above or below the center frequency (FSK
comparator). This will produce both active high and
active low outputs to indicate when the main PLL is in lock
(quadrature phase detector and lock detector
comparator).

The output of the phase detector produces sum and
difference of the input and the VCO frequencies
Rev. 3.01
5

XR-2211
PRINCIPLES OF OPERATION
Signal Input (Pin 2): Signal is AC coupled to this
terminal. The internal impedance at pin 2 is 20KW.
Recommended input signal level is in the range of 10mV
rms to 3V rms.

10 must be bypassed to ground with a 0.1mF capacitor for
proper operation of the circuit.
Loop Phase Detector Output (Pin 11): This terminal
provides a high impedance output for the loop phase
detector. The PLL loop filter is formed by R1 and C1
connected to pin 11 (see Figure 3.) With no input signal, or
with no phase error within the PLL, the DC level at pin 11 is
very nearly equal to VREF. The peak to peak voltage swing
available at the phase detector output is equal to 2 x VREF.

Quadrature Phase Detector Output (Pin 3): This is the
high impedance output of quadrature phase detector and
is internally connected to the input of lock detect voltage
comparator. In tone detection applications, pin 3 is
connected to ground through a parallel combination of RD
and CD (see Figure 3) to eliminate the chatter at lock
detect outputs. If the tone detect section is not used, pin 3
can be left open.

VCO Control Input (Pin 12): VCO free-running
frequency is determined by external timing resistor, R0,
connected from this terminal to ground. The VCO
free-running frequency, fO, is:

Lock Detect Output, Q (Pin 6): The output at pin 6 is at
“low” state when the PLL is out of lock and goes to “high”
state when the PLL is locked. It is an open collector type
output and requires a pull-up resistor, RL, to VCC for
proper operation. At “low” state, it can sink up to 5mA of
load current.

fO +

1
Hz
R 0·C 0

where C0 is the timing capacitor across pins 13 and 14.
For optimum temperature stability, R0 must be in the
range of 10KW to 100KW (see Figure 9.)

Lock Detect Complement, (Pin 5): The output at pin 5 is
the logic complement of the lock detect output at pin 6.
This output is also an open collector type stage which can
sink 5mA of load current at low or “on” state.

This terminal is a low impedance point, and is internally
biased at a DC level equal to VREF. The maximum timing
current drawn from pin 12 must be limited to < 3mA for
proper operation of the circuit.

FSK Data Output (Pin 7): This output is an open collector
logic stage which requires a pull-up resistor, RL, to VCC for
proper operation. It can sink 5mA of load current. When
decoding FSK signals, FSK data output is at “high” or “off”
state for low input frequency, and at “low” or “on” state for
high input frequency. If no input signal is present, the logic
state at pin 7 is indeterminate.

VCO Timing Capacitor (Pins 13 and 14): VCO
frequency is inversely proportional to the external timing
capacitor, C0, connected across these terminals (see
Figure 6.) C0 must be non-polar, and in the range of
200pF to 10mF.
VCO Frequency Adjustment: VCO can be fine-tuned by
connecting a potentiometer, RX, in series with R0 at pin 12
(see Figure 10.)

FSK Comparator Input (Pin 8): This is the high
impedance input to the FSK voltage comparator.
Normally, an FSK post-detection or data filter is
connected between this terminal and the PLL phase
detector output (pin 11). This data filter is formed by RF
and CF (see Figure 3.) The threshold voltage of the
comparator is set by the internal reference voltage, VREF,
available at pin 10.

VCO Free-Running Frequency, fO: XR-2211 does not
have a separate VCO output terminal. Instead, the VCO
outputs are internally connected to the phase detector
sections of the circuit. For set-up or adjustment purposes,
the VCO free-running frequency can be tuned by using
the generalized circuit in Figure 3, and applying an
alternating bit pattern of O’s and 1’s at the known mark
and space frequencies. By adjusting R0, the VCO can
then be tuned to obtain a 50% duty cycle on the FSK
output (pin 7). This will ensure that the VCO fO value is
accurately referenced to the mark and space frequencies.

Reference Voltage, VREF (Pin 10): This pin is internally
biased at the reference voltage level, VREF: VREF = VCC /2
- 650mV. The DC voltage level at this pin forms an internal
reference for the voltage levels at pins 5, 8, 11 and 12. Pin
Rev. 3.01
6

XR-2211

ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎ ÎÎÎ
ÎÎ
ÎÎÎÎÎÎ ÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ ÎÎÎ
Loop
Filter

Data
Filter

FSK
Output

φ Det

FSK
Comp

φ

VCO

Input

Preamp

ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
φ

φ Det

Lock Detect
Filter

ÎÎ
ÎÎ
ÎÎÎ
ÎÎ

Lock Detect
Outputs

Lock Detect
Comp

Figure 2. Functional Block Diagram of a Tone and FSK
Decoding System Using XR-2211

VCC
RB
Loop
Phase
Detect

2

Input
Signal

11

RF

Rl

8

7

+
C1

CF
10

R1

12

VCO

FSK
Comp.
Internal
Reference

0.1mF
0.1mF

14

13

R0
6

C0

+

Quad
Phase
Detect

LDOQ
LDOQN

3

RD

Lock
Detect
Comp.
CD

Figure 3. Generalized Circuit Connection for
FSK and Tone Detection

Rev. 3.01
7

5

XR-2211
DESIGN EQUATIONS
(All resistance in W, all frequency in Hz and all capacitance in farads, unless otherwise specified)
(See Figure 3 for definition of components)
1. VCO Center Frequency, fO:

fO +

1
R 0·C 0

2. Internal Reference Voltage, VREF (measured at pin 10):

V REF +

ǒV2 Ǔ–650mV in volts
CC

3. Loop Low-Pass Filter Time Constant, t:
t + C 1·R PP (seconds)
where:

R PP +

ǒRR)·RR Ǔ
1

F

1

F

if RF is 1 or CF reactance is 1, then RPP = R1
4. Loop Damping, j:
z+

Ǹǒ

1250·C 0
R 1·C 1

Ǔ

Note: For derivation/explanation of this equation, please see TAN-011.

5. Loop-tracking
Df
bandwidth, "+ f
0
Df + R 0
R1
f0
Tracking
Bandwidth
Df

fLL

f1

Df

fO

f2

fLH

Rev. 3.01
8

XR-2211
6. FSK Data filter time constant, tF:
tF +

RB · RF
·C (seconds)
( R B ) R F) F

7. Loop phase detector conversion gain, Kd: (Kd is the differential DC voltage across pin 10 and pin11, per unit of
phase error at phase detector input):

Kd +

ƪ

ƫ

V REF · R 1 volt
10, 000·p radian

Note: For derivation/explanation of this equation, please see TAN-011.

8. VCO conversion gain, Ko: (Ko is the amount of change in VCO frequency, per unit of DC voltage change at pin 11):

K0 +

–2p
+
V REF ·C 0 · R 1

ńsecond
ǒradianvolt
Ǔ

9. The filter transfer function:

F(s) +

1
at 0 Hz.
1 ) SR 1·C 1

S = Jw and w = 0

10. Total loop gain. KT:

K T + K O·K d·F(s) +

1
ƫ
ǒ5, 000·C R·(R ) R )Ǔƪseconds
F

0

1

F

11. Peak detector current IA:

IA +

V REF
(V REF in volts and I A in amps)
20, 000

Note: For derivation/explanation of this equation, please see TAN-011.

Rev. 3.01
9

XR-2211
APPLICATIONS INFORMATION
FSK Decoding

Figure 10 shows the basic circuit connection for FSK decoding. With reference to Figure 3 and Figure 10, the functions
of external components are defined as follows: R0 and C0 set the PLL center frequency, R1 sets the system bandwidth,
and C1 sets the loop filter time constant and the loop damping factor. CF and RF form a one-pole post-detection filter for
the FSK data output. The resistor RB from pin 7 to pin 8 introduces positive feedback across the FSK comparator to
facilitate rapid transition between output logic states.
Design Instructions:
The circuit of Figure 10 can be tailored for any FSK decoding application by the choice of five key circuit components: R0,
R1, C0, C1 and CF. For a given set of FSK mark and space frequencies, fO and f1, these parameters can be calculated as
follows:
(All resistance in W’s, all frequency in Hz and all capacitance in farads, unless otherwise specified)
a) Calculate PLL center frequency, fO:

f O + ǸF 1·F 2
b) Choose value of timing resistor R0, to be in the range of 10KW to 100KW. This choice is arbitrary. The recommended
value is R0 = 20KW. The final value of R0 is normally fine-tuned with the series potentiometer, RX.

RO + RO )

RX
2

c) Calculate value of C0 from design equation (1) or from Figure 7:

CO +

1
R0 · f0

d) Calculate R1 to give the desired tracking bandwidth (See design equation 5).

R1 +

R 0·f 0
·2
(f 1–f 2)

e) Calculate C1 to set loop damping. (See design equation 4):
Normally, j = 0.5 is recommended.

C1 +

1250·C 0
R1 · j2

Rev. 3.01
10

XR-2211
f)

The input to the XR-2211 may sometimes be too sensitive to noise conditions on the input line. Figure 4 illustrates
a method of de-sensitizing the XR-2211 from such noisy line conditions by the use of a resistor, Rx, connected
from pin 2 to ground. The value of Rx is chosen by the equation and the desired minimum signal threshold level.

V IN minimum (peak) + V a–V b + DV " 2.8mV offset + V REF

ǒ

V
20, 000
or R X + 20, 000 REF –1
(20, 000 ) R X)
DV

Ǔ

VIN minimum (peak) input voltage must exceed this value to be detected (equivalent to adjusting V threshold)

VCC

Input

ÎÎ

To Phase
Detector
Va

Vb

2

20K

Rx

20K

ÎÎ
ÎÎ

VREF 10

Figure 4. Desensitizing Input Stage

g) Calculate Data Filter Capacitance, CF:

R sum +

CF +

(R F ) R 1)·R B
( R 1 ) R F ) R B)

0.25
(R sum·Baud Rate)

Baud rate in

1
seconds

Note: All values except R0 can be rounded to nearest standard value.

Rev. 3.01
11

XR-2211
1.0

ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
R0=5KW

15

R0=10KW

R0=5KΩ

C0( mF)

Supply vs. Current (mA)

20

10

0.1

R0=10KΩ

R0=20KW
R0=40KW

5

R0=80KW

R0>100K

R0=160KW

0
4

6

8 10

12 14 16

Supply Voltage,

0.01
100

18 20 22 24

1000
fO(HZ)

V+ (Volts)

Figure 5. Typical Supply Current vs. V+
(Logic Outputs Open Circuited)

10000

Figure 6. VCO Frequency vs. Timing Resistor

ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ

1,000

C0=0.001mF

Normalized Frequency

1.02

R0(KW )

C0=0.0033mF

100

C0=0.01mF

C0=0.1mF

C0=0.0331mF

10

1000

4

4

2
0.98
1

0.97
4

6

8

10

fO(Hz)

Normalized Frequency Drift (% of f O)

12

14

Figure 8. Typical fO vs. Power Supply
Characteristics

+1.0

1MΩ

R0=10K
+0.5

500K
R0=50K
50K
R0=500K

10K
V+ = 12V
R1 = 10 R0
fO = 1 kHz

R0=1MΩ
-1.0
-50

-25

0

R0
Curve
5K
1
10K
2
30K
3
100K
4
300K
5
16 18
20 22

V+ (Volts)

-0.5

25

50

75

100

125

Temperature (°C)

Figure 9. Typical Center Frequency Drift vs. Temperature
Rev. 3.01
12

3

3

0.99

Figure 7. VCO Frequency vs. Timing Capacitor

5

2

10000

0

1

1.00

C0=0.33mF

0

fO = 1kHz
RF = 10R0

5

1.01

24

XR-2211
Design Example:
1200 Baud FSK demodulator with mark and space frequencies of 1200/2200.
Step 1: Calculate fO: from design instructions
(a) f O + Ǹ1200·2200 =1624
Step 2: Calculate R0 : R0 =10K with a potentiometer of 10K. (See design instructions (b))

ǒ Ǔ

(b) R T + 10 ) 10 + 15K
2
Step 3: Calculate C0 from design instructions
(c) C O +

1
+ 39nF
15000·1624

Step 4: Calculate R1 : from design instructions
(d) R 1 + 20000·1624·2 + 51, 000
(2200–1200)
Step 5: Calculate C1 : from design instructions
(e) C 1 + 1250·39nF2 + 3.9nF
51000·0.5
Step 6: Calculate RF : RF should be at least five times R1, RF = 51,000⋅5 = 255 KW
Step 7: Calculate RB : RB should be at least five times RF, RB = 255,000⋅5 = 1.2 MW
Step 8: Calculate RSUM :

R SUM +

(R F ) R 1)·R B
+ 240KW
(R F ) R 1 ) R B )

Step 9: Calculate CF :

CF +

0.25
+ 1nF
ǒ R SUM·Baud Rate Ǔ

Note: All values except R0 can be rounded to nearest standard value.

Rev. 3.01
13

XR-2211
VCC
RB
11

Loop
Phase
Detect

13

14
27nF

CO

8

1.8m

5%
Rx
20K

RL
5.1K
5%

5%
7

CF
10%

Data
Output

FSK
Comp.

R1
35.2K
10
1%
0.1µF
R0
20K
1%

12

VCO

0.1µF

5%
1nF

C1
2.7nF
5%

2

Input
Signal

RF 178K

Internal
Reference

VCO
Fine
Tune
6
LDOQ

+

Quad
Phase
Detect

LDOQN
Lock
Detect
Comp.

5

Figure 10. Circuit Connection for FSK Decoding of Caller Identification Signals
(Bell 202 Format)

VCC
RB
11

Loop
Phase
Detect

2

Input
Signal
0.1µF

RF

14

7

+

C1

VCO

8
CF

R1

12

10
0.1µF

13

RL
5.1k

FSK
Comp.
Internal
Reference

R0

C0
Rx
6 LDOQ
Quad
Phase
Detect

3
RD

CD

Lock
Detect
Comp.

5 LDOQN

Between 400K and 600K

Figure 11. External Connectors for FSK Demodulation with Carrier
Detect Capability

Rev. 3.01
14

XR-2211
VCC
Loop
Phase
Detect

8

11

12

2

VCO

0.1µF

14

FSK
Comp.

R1
200K
10
1%
0.1µF

Internal
Reference

R0
20K
1%

13
C0 5%
50nF

Tone
Input

7

+
C1
220pF
5%

Rx
5K

VCC
VCO
Fine
Tune
6 LDOQ
+

Quad
Phase
Detect

RL2
5.1K

RL3
5.1K
Logic Output

5 LDOQN

3
CD
80nF

RD
470K

Lock
Detect
Comp.

Figure 12. Circuit Connection for Tone Detection
FSK Decoding with Carrier Detect
frequency approaches the capture bandwidth.
Excessively large values of CD will slow the response time
of the lock detect output. For Caller I.D. applications
choose CD = 0.1mF.

The lock detect section of XR-2211 can be used as a
carrier detect option for FSK decoding.
The
recommended circuit connection for this application is
shown in Figure 11. The open collector lock detect output,
pin 6, is shorted to data output (pin 7). Thus, data output
will be disabled at “low” state, until there is a carrier within
the detection band of the PLL and the pin 6 output goes
“high” to enable the data output.

Tone Detection

Figure 12 shows the generalized circuit connection for
tone detection. The logic outputs, LDOQN and LDOQ at
pins 5 and 6 are normally at “high” and “low” logic states,
respectively. When a tone is present within the detection
band of the PLL, the logic state at these outputs become
reversed for the duration of the input tone. Each logic
output can sink 5mA of load current.

Note: Data Output is “Low” When No Carrier is Present.

The minimum value of the lock detect filter capacitance
CD is inversely proportional to the capture range, +Dfc.
This is the range of incoming frequencies over which the
loop can acquire lock and is always less than the tracking
range. It is further limited by C1. For most applications, Dfc
> Df/2. For RD = 470KW, the approximate minimum value
of CD can be determined by:

Both outputs at pins 5 and 6 are open collector type
stages, and require external pull-up resistors RL2 and
RL3, as shown in Figure 12.

C D § 16 C in mF and f in Hz.
Df

With reference to Figure 3 and Figure 12, the functions of
the external circuit components can be explained as
follows: R0 and C0 set VCO center frequency; R1 sets the
detection bandwidth; C1 sets the low pass-loop filter time
constant and the loop damping factor.

C in mF and f in Hz.
With values of CD that are too small, chatter can be
observed on the lock detect output as an incoming signal
Rev. 3.01
15

XR-2211
Design Instructions:
The circuit of Figure 12 can be optimized for any tone detection application by the choice of the 5 key circuit components:
R0, R1, C0, C1 and CD. For a given input, the tone frequency, fS, these parameters are calculated as follows:
(All resistance in W’s, all frequency in Hz and all capacitance in farads, unless otherwise specified)
a) Choose value of timing resistor R0 to be in the range of 10KW to 50KW. This choice is dictated by the max./min.
current that the internal voltage reference can deliver. The recommended value is R0 = 20KW. The final value of R0
is normally fine-tuned with the series potentiometer, RX.
b) Calculate value of C0 from design equation (1) or from Figure 7 fS = fO:

CO +

1
R 0·fs

c) Calculate R1 to set the bandwidth +Df (See design equation 5):

R1 +

R 0·f 0·2
Df

Note: The total detection bandwidth covers the frequency range of fO +Df

d) Calculate value of C1 for a given loop damping factor:
Normally, j = 0.5 is recommended.

C1 +

1250·C 0
R 1·j 2

Increasing C1 improves the out-of-band signal rejection, but increases the PLL capture time.
e) Calculate value of the filter capacitor CD . To avoid chatter at the logic output, with RD = 470KW, CD must be:

C D § 16
Df

C in mF

Increasing CD slows down the logic output response time.
Design Examples:
Tone detector with a detection band of + 100Hz:
a) Choose value of timing resistor R0 to be in the range of 10KW to 50KW. This choice is dictated by the max./min.
current that the internal voltage reference can deliver. The recommended value is R0 = 20 KW. The final value of R0
is normally fine-tuned with the series potentiometer, RX.
b) Calculate value of C0 from design equation (1) or from Figure 6 fS = fO:

C0 +

1 +
1
+ 50nF
20, 000·1, 000
R 0·f S

Rev. 3.01
16

XR-2211
c) Calculate R1 to set the bandwidth +Df (See design equation 5):

R1 +

R 0·f O·2
20, 000·1, 000·2
+
+ 400K
100
Df

Note: The total detection bandwidth covers the frequency range of fO +Df

d) Calculate value of C0 for a given loop damping factor:
Normally, j = 0.5 is recommended.

C1 +

–9
1250·C 0
+ 1250·50·10 2 + 6.25pF
400, 000·0.5
R 1·j 2

Increasing C1 improves the out-of-band signal rejection, but increases the PLL capture time.
e) Calculate value of the filter capacitor CD . To avoid chatter at the logic output, with RD = 470KW, CD must be:

C D + 16 w 16 w 80nF
200
Df
Increasing CD slows down the logic output response time.
f)

Fine tune center frequency with 5KW potentiometer, RX.

VCC
VCC
RF

0.1µF

100K
Loop
Phase
Detect

2
0.1µF
FM
Input

3

8

11

7

+
C1

12

VCO
14

13

R1

CF

FSK
Comp
.
Internal
Reference

10
0.1µF

4
+

1

2
11

LM324

R0
6

C0

LDOQ

+

Quad
Phase
Detect

LDOQN
Lock
Detect
Comp.

5

Figure 13. Linear FM Detector Using XR-2211 and an External Op Amp.
(See Section on Design Equation for Component Values.)

Rev. 3.01
17

Demodulated
Output

XR-2211
Linear FM Detection
XR-2211 can be used as a linear FM detector for a wide
range of analog communications and telemetry
applications. The recommended circuit connection for
this application is shown in Figure 13. The demodulated
output is taken from the loop phase detector output (pin
11), through a post-detection filter made up of RF and CF,
and an external buffer amplifier. This buffer amplifier is
necessary because of the high impedance output at pin
11. Normally, a non-inverting unity gain op amp can be
used as a buffer amplifier, as shown in Figure 13.

The FM detector gain, i.e., the output voltage change per
unit of FM deviation can be given as:

V OUT +

R 1·V REF
100·R 0

where VR is the internal reference voltage (VREF = VCC /2
- 650mV). For the choice of external components R1, R0,
CD, C1 and CF, see the section on design equations.

V+
1

REF
Voltage
Output

20K

Input
2

10

Lock
Detect
Filter

B
10K

10K

From
VCO
B’

3
6
Lock Detect
Outputs

20K

5

Internal Voltage
Reference

2K

Input Preamplifier
and Limiter

Lock Detect
Comparator

Quadrature
Phase Detector

2K

8
A

Timing
Capacitor

A’

13 C0 14
B’
B

11

A
From
VCO
A’

FSK
Comparator
Loop
Input
Detector
Output

7
FSK
Data
Output

4

12
R0 Timing
Resistor

8K

Ground
Voltage Controlled
Oscillator

Loop Phase Detector

Figure 14. Equivalent Schematic Diagram

Rev. 3.01
18

FSK Comparator

XR-2211
14 LEAD CERAMIC DUAL-IN-LINE
(300 MIL CDIP)
Rev. 1.00

14

8

1

7

E
E1

D
A1

Base
Plane
Seating
Plane

A
L
e

c

B

α

B1

INCHES
SYMBOL

MILLIMETERS

MIN

MAX

MIN

MAX

A

0.100

0.200

2.54

5.08

A1

0.015

0.060

0.38

1.52

B

0.014

0.026

0.36

0.66

B1

0.045

0.065

1.14

1.65

c

0.008

0.018

0.20

0.46

D

0.685

0.785

17.40

19.94

E1

0.250

0.310

6.35

7.87

E

0.300 BSC

7.62 BSC

e

0.100 BSC

2.54 BSC

L

0.125

0.200

3.18

5.08

α

15°

Note: The control dimension is the inch column

15°

Rev. 3.01
19

XR-2211
14 LEAD PLASTIC DUAL-IN-LINE
(300 MIL PDIP)
Rev. 1.00

14

8

1

7

E1
E

D

Seating
Plane

A2

A
L

α

A1
B

INCHES
SYMBOL

MIN

eA
eB

B1

e

MAX

MILLIMETERS
MIN

MAX

A

0.145

0.210

3.68

5.33

A1

0.015

0.070

0.38

1.78

A2

0.115

0.195

2.92

4.95

B

0.014

0.024

0.36

0.56

B1

0.030

0.070

0.76

1.78

C

0.008

0.014

0.20

0.38

D

0.725

0.795

18.42

20.19

E

0.300

0.325

7.62

8.26

E1

0.240

0.280

6.10

7.11

e

0.100 BSC

2.54 BSC

eA

0.300 BSC

7.62 BSC

eB

0.310

0.430

7.87

10.92

L

0.115

0.160

2.92

4.06

α



15°



15°

Note: The control dimension is the inch column

Rev. 3.01
20

C

XR-2211
14 LEAD SMALL OUTLINE
(150 MIL JEDEC SOIC)
Rev. 1.00

D

14

8

E

H

1
7

C
A

Seating
Plane

α
e

B

A1
L

INCHES
SYMBOL

MIN

MAX

MILLIMETERS
MIN

MAX

A

0.053

0.069

1.35

1.75

A1

0.004

0.010

0.10

0.25

B

0.013

0.020

0.33

0.51

C

0.007

0.010

0.19

0.25

D

0.337

0.344

8.55

8.75

E

0.150

0.157

3.80

4.00

e

0.050 BSC

1.27 BSC

H

0.228

0.244

5.80

6.20

L

0.016

0.050

0.40

1.27

α



Note: The control dimension is the millimeter column

Rev. 3.01
21



XR-2211
Notes

Rev. 3.01
22

XR-2211
Notes

Rev. 3.01
23

XR-2211

NOTICE
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are
free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary
depending upon a user’s specific application. While the information in this publication has been carefully checked;
no responsibility, however, is assumed for inaccuracies.
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or
malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly
affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the
user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.
Copyright 1995 EXAR Corporation
Datasheet June 1997
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

Rev. 3.01
24

LM555
Timer
General Description

Features

The LM555 is a highly stable device for generating accurate
time delays or oscillation. Additional terminals are provided
for triggering or resetting if desired. In the time delay mode of
operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator,
the free running frequency and duty cycle are accurately
controlled with two external resistors and one capacitor. The
circuit may be triggered and reset on falling waveforms, and
the output circuit can source or sink up to 200mA or drive
TTL circuits.

n
n
n
n
n
n
n
n
n

Direct replacement for SE555/NE555
Timing from microseconds through hours
Operates in both astable and monostable modes
Adjustable duty cycle
Output can source or sink 200 mA
Output and supply TTL compatible
Temperature stability better than 0.005% per ˚C
Normally on and normally off output
Available in 8-pin MSOP package

Applications
n
n
n
n
n
n
n

Precision timing
Pulse generation
Sequential timing
Time delay generation
Pulse width modulation
Pulse position modulation
Linear ramp generator

Schematic Diagram

DS007851-1

© 2000 National Semiconductor Corporation

DS007851

www.national.com

LM555 Timer

February 2000

LM555

Connection Diagram
Dual-In-Line, Small Outline
and Molded Mini Small Outline Packages

DS007851-3

Top View

Ordering Information
Package
8-Pin SOIC
8-Pin MSOP
8-Pin MDIP

www.national.com

Part Number

Package Marking

Media Transport

LM555CM

LM555CM

Rails

LM555CMX

LM555CM

2.5k Units Tape and Reel

LM555CMM

Z55

1k Units Tape and Reel

LM555CMMX

Z55

3.5k Units Tape and Reel

LM555CN

LM555CN

Rails

2

NSC Drawing
M08A
MUA08A
N08E

Soldering Information
Dual-In-Line Package
Soldering (10 Seconds)
260˚C
Small Outline Packages
(SOIC and MSOP)
Vapor Phase (60 Seconds)
215˚C
Infrared (15 Seconds)
220˚C
See AN-450 “Surface Mounting Methods and Their Effect
on Product Reliability” for other methods of soldering
surface mount devices.

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Supply Voltage
Power Dissi