LA.2 Vibrating Screen (VS-104) Fungsi: Menyaring batang jagung yang telah dihaluskan oleh Knife Cutter (KC)

  LAMPIRAN A PERHITUNGAN NERACA MASSA

  H

  Bio-oil = 60,0333 kg/kmol Lignoselulosa (C

  12 O 4 ) 10 = 1960 kg/kmol

  C = 12,0111 kg/kmol CO = 28,0105 kg/kmol CO

  2 = 44,0147 kg/kmol

  CH

  4 = 16,0427 kg/kmol

  2 = 2,0016 kg/kmol

  jam kg

  O

  2 = 32 kg/kmol

  N

  2 = 28,02 kg/kmol

  H

  (Perry,1999)

  Dari perhitungan alur mundur, untuk menghasilkan 242,4242 kg/jam bio-oil dibutuhkan bahan baku batang jagung halus sebanyak 560,4753 kg/jam. Jumlah batang jagung daur ulang 140,1188 kg/jam. Massa molekul realatif (kg/kmol):

  % 252 5252 , 96 = 242,4242

  Pra rancangan pabrik pembuatan bio-oil dengan proses fast pyrolisis (pirolisis cepat) menggunakan bahan baku batang jagung dengan ketentuan sebagai berikut. Kapasitas produksi : 2.000 ton/tahun. Basis perhitungan : 1 jam operasi. Waktu kerja per tahun : 330 hari. Satu hari operasi : 24 jam. Satuan perhitungan : kg/jam dan kmol/jam. Kapasitas Produksi Perjam =

    

    

    

    

    

    

    

     ton

  jam kg x

  1 1.000 kg x jam

  24 hari 1 x

  330 hari tahun 1 x tahun ton

  2000 = 252,5252

  

jam

kg

  Kemurnian Produk : 96 % Bio-oil sebagai produk ;

  =

10 H

2 O = 18,0016 kg/kmol

  kg

  242,4242

  jam

  Mol Bio-oil = = 4,0381 kmol

  kg

  60 , 0333

  kmol

  Komposisi Batang Jagung dalam % massa (Basis:100)

  • Lignoselulosa = 84%
  • Impuritis = 16 % (Hambali, dkk.,2007)

  LA.1 Knife cutter (KC-103)

  Fungsi: mengecilkan ukuran batang jagung sebelum masuk kedalam vibrating screen (VS-104)

  Gambar LA.1

  Diagram Alir Unit Persiapan Bahan Baku Persamaan Neraca Massa pada Unit Persiapan Bahan Baku

  1

  4

  2 F +F = F Efisiensi pengecilan ukuran batang jagung oleh Knife Cutter = 80%. (Walas, 1988).

  Dalam knife cutter ini hanya 80% batang jagung yang berhasil dikecilkan menjadi ukuran diameter 1 mm.

  Alur masuk Batang jagung yang harus disuplay setiap jam adalah 700,5941 kg/jam Didalam knife cutter hanya berhasil dihaluskan 80 % sehingga 20 % lagi akan di recycle kembali dari vibrating screen ke knife cutter.

  Batang jagung yang harus disuplai dari penyimpanan:

  700,5941 /

  = = 560,4753 kg/jam Batang jagung yang direcycle = 700,5941 / = 140,1188 kg/jam

  Alur keluar dari knife cutter (alur 3)

  • = = 560,4753 + 140,1188 = 700,5941

  kg/jam Tabel berikut adalah neraca massa pada Unit Persiapan Batang Jagung.

  Tabel LA.1 Neraca Massa pada Unit Persiapan Bahan Baku

  Masuk (kg/jam) keluar (kg/jam) Komponen alur 1 alur 4 alur 2

  Batang jagung 560,4753 140,1188 700,5941

  Total 700,5941 700,5941 LA.2 Vibrating Screen (VS-104) Fungsi

  : Menyaring batang jagung yang telah dihaluskan oleh Knife Cutter (KC) sampai 1 mm.

  Gambar LA.2 Diagram Alir Vibrating Screen (VS-103) Asumsi efisiensi penyaringan batang jagung pada Vibrating Screen adalah 80% .

  Dalam vibrating screen akan dipisahkan semua batang jagung yang ukurannya 1 mm dari batang jagung yang ukurannya lebih besar dari 1 mm (Walas, 1988). Persamaan Neraca Massa pada Vibrating Screen (VS-104)

  2

  3

  4 F = F + F

  2 F = 700,5941

  700,5941 /

  = = / = 140,1188 kg/jam

  3

  2

4 F = F – F

  = 700,5941 – 140,1188 = 560,4753 kg/jam

  Tabel LA.2

  Neraca Massa pada Vibrating Screen (VS-104) masuk (kg/jam) keluar (kg/jam) Komponen alur 2 alur 3 alur 4

  Batang jagung 700,5941 560,4753 140,1188

  Total 700,5941 700,5941 LA.3 Reaktor (R-201)

  Fungsi: mengurai remah batang jagung (corn stover) dalam proses pemanasan pada

  o suhu 480 C sehingga terbentuk bio-oil, gas, dan arang.

  15

  7 Bio-oil

  3

  batang jagung REAKTOR Arang (C) syngas

  6 N 2

  5 Gambar LA.3 Diagram Alir Reaktor Pyrolisis (R-201)

  Persamaan Neraca Massa pada Reaktor Pyrolisis (R-201)

  3

  5

  

7

F + F = F

  Reaksi pada Reaktor Pyrolysis (RP)

  480 C

  (C H O ) 6,203C

  12

  4

  10

6 H

  10 O 5(l) + 66,976C(s)+ (6,404CO 2 + 3,852CO +4,159CH

  4

  • 10

  9,734H

  2 ) (g) + 17,136 H

  2 O (Simulation of Olive Pits Pyrolysis in a Rotary Kiln Plant thermal science, 2011 ).

  Massa remah jagung masuk ke raktor sama dengan jumlah remah jagung yang keluar

  3

  di alur 4 Vibrating Screen sehingga F = 560,4753 kg/jam konversi Lignoselulosa = 100 % (Hambali,2007)

  Alur 3 Massa (C

10 H

  12 O 4 ) 10 = 560,4753 kg/jam 560,4753

  Mol (C

10 H

  12 O 4 ) 10 = = 0,2954 kmol/jam

  Hasil reaksi Alur 7 Mol bio-oil = 4,0381 kmol

  ,

  Mol C = x 0,2954 = 19,7847 kmol

  ,

  Mol CO = x 0,2954 = 1,8917 kmol

  2 ,

  Mol CO = x 0,2954 = 1,1379 kmol

  4.159

  Mol CH

  4 = x 0,2954 = 1,2286 kmol

  1 ,

  Mol H

  2 = x 0,2954 = 2,8754 kmol ,

  Mol H

  2 O = x 0,2954 = 5,0620 kmol

  7 F Bio-oil = 4,0381 x 60,0333 = 242,4242 kg/jam

  7 F C = 19,7847 x 12,0111 = 237,6360 kg/jam

  Komposisi Produk Gas Sintesis (Syngas) serta Berat Molekulnya Komposisi (% mol) Berat Molekul (kg/kmol)

  H

  2 56,4 2,016

  N

  2 33,1 28,020

  CH

  4 7,1 16,040

  H O 1,7 18,016

2 CO 1,3 28,010

  CO 0,4 44,010

  2 (Sumber : Subekti, 2005 dan Perry and Green, 1999)

  7 F CO 2 = 1,8917 x 44,0147 x 0,4% = 0,3330 kg/jam

  7 F CO = 1,1379 x 28,0105 x 1,3% = 0,4143 kg/jam

  7 F CH 4 = 1,2286 x 16,0427 x 7,1% = 1,3994 kg/jam

  7 F H = 2,8754 x 2,0016 x 56,4% = 3,2460 kg/jam

  2

  7 F H

  2 O = 5,0620 x 18,0016 x 1,7% = 1,5491 kg/jam Alur5 Kebutuhan gas N

  2 sebagai pendorong partikel – partikel yang terdapat pada reaktor

  x 2 CO

  BM 2

  x O H

  N 2

  = O H

  F 2

  09 639.294,42 = 1,2715 kmol O H

  1 kkal/jam 1 10.549,548 kkal/jam

  O H kmol x

2

  1 2 =

  Q Q O H reaktor 2

  = O H kmol x

  N 2

  = 1,1152 kmol x kg/kmol 16,0427 = 17,8908 kg/jam O H

  BM

  N

  pyrolisis (R-201) 10% dari jagung yang masuk (www//:CO

  1 2 CO kmol x

  2 _Compound.com). F 5 =

  10% dari jagung yang masuk = 10% x 560,4753 kg/jam = 56,0475 kg/jam F

  5

  = 56,0475 kg/jam x 33,1% = 16,2027 kg/jam Alur 6 2 CO

  N

  = 2

  Q Q CO reaktor

  = 2 CO

  = 2

  1 5.732,5174 kkal/jam kkal/jam

  09 639.294,42

  CH kmol x

  = 1,1152 kmol 2 CO

  F

  = 1,2715 kmol x kg/kmol 16,0427 = 20,3982 kg/jam

  Alur 15

  Q reaktor N x kmol CO CO 2 =

  1 2 Q CO 2 639.294,42 09 kkal/jam

  x kmol CH

  =

  1 2 5.732,5174 kkal/jam

  = 1,1152 kmol

  F N BM CO CO CO 2 = x 2 2

  = 1,1152 kmol x 16,0427 kg/kmol = 17,8908 kg/jam

  Q reaktor N = x kmol H O H 2 O

  1 2 Q H O 2 639.294,42 09 kkal/jam

  x kmol H O

  =

  1 2 10.549,548 1 kkal/jam

  = 1,2715 kmol

  F = N x BM H O H O H O 2 2 2

  = 1,2715 kmol x 16,0427 kg/kmol = 20,3982 kg/jam

  Tabel berikut adalah neraca massa pada Reaktor Pyrolisis (R-201)

  Tabel LA.3

  Neraca Massa pada Reaktor Pyrolisis (R-201)

  Massa Masuk (kg/jam) Massa Keluar (kg/jam) Komponen Alur 3 Alur 5 Alur 6 Alur7 Alur 15

  • Lignoselulosa 470,7993 --- Impuritis --- 89,6760 89,6760
  • Bio-oil

  242,4242 --- Arang (C) --- 237,6360 ---

  

2 17,8908 0,3330 17,8908

  • CO
  • CO

  0,4143 CH --- ---

  4

  1,3994 H --- --- 3,2460

  2

  

2 O 20,3982 1,5491 20,3982

  • H 16,2027 --- N ---

  2 Sub total 560,4753 16,2027 38,2890 576,678 38,2890 Total 614,967 614,967

  LA.4 Cyclone (CY-205)

  Fungsi : Memisahkan karbon yang masih ada pada gas yang berasal dari Reaktor Pyrolisis

  Gambar LA.4

  Diagram Alir Cyclone (CY-205) Persamaan Neraca Massa pada Cyclone (CY-205)

  8

  9

10 F = F + F

  Alur 9 Asumsi : efisiensi peyisihan karbon aktif = 100% (hasil maksimum).

  kg

  8

9 F Karbon aktif (C) = F Karbon aktif (C) = 237,6360

  jam

  Alur 10

  kg

  8

  10 F Bio-oil = F Bio-oil = 242,4242 jam kg

  8

  10 F CO 2 = F CO 2 = 0,3330 jam kg

  8

  10 F CO = F CO = 0,4143 jam kg

  8

  10 F CH4 = F CH 4 = 1,3994 jam kg

  8

  10 F H 2 = F H 2 = 3,2460 jam kg

  8

  10 F H

  2 O = F H

  2 O = 1,5491 jam

  • 237,6360

  • 0,3330 0,4143 1,3994

    • F

  3,2460 1,5491

  11 Bio-oil = F

  Efisiensi Knock Out Drum (KOD) : 100 % F

  13 Alur 11

  12

  = F

  11

  Gambar LA.5 Diagram Alir Knock Out Drum (KOD) Persamaan Neraca Massa Pada Knock Out Drum (KOD) F

  Fungsi : memisahkan gas dari cairan bio-oil. Dalam Knock Out Drum ini terjadi pemisahan Gas dan cair secara langsung (Paul, 2000). Asumsi efisiensi alat : terpisah 100%

  LA.5. Knock Out Drum (KO-208)

  Sub Total 237,6360 249,3660 Total 487,0020 487,0020

  3,2460 1,5491

  242,4242

  0,3330 0,4143 1,3994

  242,4242 237,6360

  2 O

  2 H

  4 H

  CH

  2 CO

  Alur 8 Alur 9 Alur 10 Bio-oil Arang CO

  Komponen Massa Masuk (kg/jam) Massa Keluar (kg/jam)

  Tabel berikut adalah neraca massa pada Cyclone. Tabel LA.4 Neraca Massa pada Cyclone (CY-205)

  12 Bio-oil = 242,4242 jam kg

  Alur 13

  kg

  13

  11 F CO 2 = F CO 2 = 0,3330 jam

kg

  13

  11 F CO = F CO = 0,4143

jam

kg

  13

  11 F CH 4 = F CH 4 = 1,3994

jam

kg

  13

  11 F H = F H = 3,2460

  2

  2

jam

Tabel berikut adalah neraca massa pada Knock Out Drum (KO-208).

  Tabel LA.5 Neraca Massa pada Knock Out Drum (KO-208)

  Komponen Massa Masuk (kg/jam) Massa Keluar (kg/jam) Alur 11 Alur 12 Alur 13

  Bio-oil 242,4242 242,4242 ---

  2 0,3330 0,3330

  • CO

  CO 0,4143 0,4143 ---

  4 1,3994 1,3994

  • CH

  2 3,2460 3,2460

  • H H

  2 O 1,5491 1,5491

  Sub Total 242,4242 6,9418 Total 249,3660 249,3660

  LAMPIRAN B PERHITUNGAN NERACA PANAS Basis perhitungan : 1 jam operasi. o Temperatur referensi : 25 C (298,15 K).

  Satuan perhitungan : kJ/jam

  Tabel LB.1 Kapasitas Panas Gas

  Cp (J/mol.K) -2 -5 2 -9 3 -12 5 Komponen

  A b x 10 T C x 10 T d x 10 T e x 10 T (J/mol.K) g

  : 17,6386 6,7006 -13,1485 105,8830 -29,1803 H 2

l -23,0694 -8.042,1300 1.377,7600

  : 58,8663 g : 29,4119 -0,3007 0,5451 5,1319 -42,5308

  N 2 l

  

: 14,7141 220,2570 -3.521,4600 179,9600

g : 38,3870 -7,3664 29,0981 -263,8490 80,0679

  CH 4

l : -7,7071 102,5620 -166,5660 19.750,7000

g : 34,0471 -0,9651 3,2998 -20,4467 4,3023

  H O 2 l

  

: 18,2964 47,2118 -133,8780 1.314,2400

g

  : 29,0063 0,2492 -1,8644 47,9892 -28,7266 CO

l : 14,9673 214,3970 -3.247,0300 158,0420

g : 19,0223 7,9629 -7,3707 37,4572 -8,1330

  CO 2

l : 11,0417 115,9550 -723,1300 15.501,9000

g

  O : 5,9865 0,0558 0,1400 -1,0938 0,2300 2 c

  : 11,1800 1,0950 -0,4891 C o o

  Perry and Green, C), untuk S satuan (kal/mol.

  C)

  1997 (kal/g. ; Stanley, 1989 (J/mol.K); Richard and Rousseau, 1986 (J/mol.K); Reklaitis, 1983 (J/mol.K)

  Tabel LB.2 Panas Pembentukan Panas Laten Temperatur H f Komponen H ( ) H m Beku Didih vl o o (kkal/mol) (kal/mol) (kal/mol) (

  C) (

  C) H 1.334,6000 2 29 -259,04 -252,61 N 5.577,5000 172 -209,86 -195,80 2

  • -182,60 -161,40

  CH 4 -17,8900 8.179,5000 225 g : -57,7960

  H 2 O 9.729,0000 1.436 100,00 l

  : -68,3150

  • -207,00 -192,00

  CO -26,4200 6.065,3000 200 CO -94,0500 16.560,9000 1.991 -56,60 -78,50 2 O 2

  • 183,00 -218,40

  c : 0 3.500,00

  C 10.994 > 4.200 g

  : 171,2910

  Holtz, 1988 (kkal/mol); Richard and Rousseau, 1986 (kkal/mol), Perry and Green,

  1997 (kkal/mol) Tabel LB.3 Kapasitas Panas Estimasi

  Tabel LB.3 Kontribusi elemen atom untuk metode Hurst dan Herrison (kkal/kmol. K)

  Gugus Harga (J/mol. K) Harga (kkal/mol. K) C 10,86 2,6009

  H 7,56 1,8056 O 13,42 3,2052 N 18,74 4,4758

  S 12,36 2,972 Na 31,4 7,5

  K 68,78 6,8737 Perry and Green, 1997 Data estimasi kapasitas panas (Cp) dalam kkal/kmol.K (Metode Hurst dan Herrison) Cp Lignoselulosa = 189,9126 kkal/kmol. K Cp impuritis = 63,3042 kkal/kmol. K Cp Bio-oil = 49,5874 kkal/kmol. K Data estimasi H f(298) dalam kkal/mol (Tabel 3.335, Perry)

  H Bio oil f K ( 298 )  = -196,8300 kkal/mol H Selulosa f ( 298 K ) = -553,9200 kkal/mol

  H Hemiselulo sa = -224,4675 kkal/mol f ( 298 K ) H f ( 298 K ) Impuritis = -280,1946 kkal/mol 1 kkal = 4,184 kj (Geankoplis,1993)

  LB.1 Reaktor Pyrolisis (R-201) dan Combuster (E-203) (6) CO 2 H O 2 Combuster CO

  CO 2 CH 4 H 2 (14) H O 2 (13)

  Udara

  Gambar LB.1 Combuster (E-203) Kapasitas panas masuk (298 K sampai 753 K) 753 2 2

   

   2 753  298 Cp dT J mol K J mol K x ( ) C . = 29 , 0063 / .  753  298   , 2492 / .

  10  

   298

  2 3 3   5 753  298   9

   

    1 , 8644 J / mol . K x 10  47 , 9892 J / mol . K x

  10  

  3 4 4   5 5     753  298 753  298

   12

    28 , 7266 J / mol . K x

  10    

  4

  5    

  = 13.689,9057 j/mol

  kkal

  1 = 13.689,9057 kj/kmol x

  

kj

  4 , 184 = 3.271,9660 kkal/kmol

  753 2 2

    753  298

   2 Cp dT = J mol K   J mol K x ( C ) 2 . 19 , 0223 / .  753 298  7 , 9629 / .

  10  

   298

  2 3 3    

   5 753  298  9 J mol K x J mol K x

    7 , 3707 / . 10  37 , 4572 / .

  10  

  3 4 4   5 5     753  298 12 753  298

  

    8 , 1330 J / mol . K x

  10    

  4

  5    

  = 20.401,7054 j/mol 1 kkal = 20.401,7054 kj/kmol x 4 , 184 kj 753 = 4.876,1246 kkal/kmol 2 2

    

   2 753 298 Cp dT J mol K J mol K x ( CH ) 4 . = 38 , 387 / .  753  298    7 , 3664 / .

  10  

   298

  2 3 3     753  298

   5  9

   29 , 0981 J / mol . K x 10   263 , 849 J / mol . K x

  10  

  3 4 4   5 5     753  298 753  298

   12

   J mol K x 80 , 0679 / .

  10    

  4

  5    

  = 21.850,6921 j/mol 1 kkal = 21.850,6921 kj/kmol x

  

kj

  4 , 184 753 = 5.222,4407 kkal/kmol 2 2  753  298 

   2 Cp dT J mol K   J mol K x ( H ) 2 . = 17 , 6386 / .  753 298  6 , 7006 / .

  10  

   298

  2 3 3     

   5 753 298  9 J mol K x J mol K x

    13 , 1485 / . 10  105 , 8830 / .

  10  

  3 4 4   5 5     753  298 753  298

   12

    29 , 1803 J / mol . K x

  10    

  4

  5    

  = 13.396,3151 j/mol

  = 13.396,3151 kj/kmol x

  2 Cp dT x N H CO CO CO . 303 298 13 13 2 2 2

  35,9806 kg/jam

  = kkal/kmol 5.222,4407 16,0427 kg/kmol

   753 298 ) ( 13 . 4 4 4 Cp dT x BM F CH CH CH

   =

  4 Cp dT x N H CH CH CH . 753 298 13 13 4 4 4

  = 58,5487 kkal/jam  CH

  x

  44,0147 kg/kmol 57,8986 kg/jam

  = 44,5089 kkal/kmol

   303 298 ) ( 13 . 2 2 2 Cp dT x BM F CO CO CO

   =

   CO

  

kj

kkal

  x = 7338,3596 kkal/ jam

  62,8219 kg/jam

  3.271,9660 kkal/kmol 28,0105 kg/kmol

  BM F CO CO CO =

  .dT Cp x

  =  753 298 ) ( 13

  

  Cp dT x N H CO CO CO . 753 298 13 13

  Neraca panas komponen  CO

  1 = 3.201,7961 kkal/kmol

  4

  184 ,

  x

  = 11.712,9006 kkal/jam  H

  2 13 13 753 H N x Cp dT H 2 H  . 2 H 2 13 298753

  F H 2 x Cp dT

  = . ( H ) 2

   BM H 298 2

  1,4964 kg/jam

  x

  = 3.201,7961 kkal/kmol 2,0016 kg/kmol

  = 2.393,6689 kkal/jam Kapasitas panas CH 303 4 (298 K sampai 303 K) 2 2 2 303  298  

   Cp . dT = ( ) CH 4 38 , 387 J / mol . K  303  298    7 , 3664 J / mol . K x

  10  

   298

  2 3 3     303  298

   5  9

   29 , 0981 J / mol . K x 10   263 , 849 J / mol . K x

  10  

  3 4 4   5 5     303  298 303  298

   12

   J mol K x 80 , 0679 / .

  10    

  4

  5    

  = 180,1005 j/mol

  kkal

  1 = 180,1005 kj/kmol x

  kj

  4 , 184 = 43,0451 kkal/kmol

  Kapasitas panas udara (O 303 2 & N 2 ) (298 K sampai 303 K) 2 2 2 303  298  

   Cp . dT = ( ) O 2 5 , 9865 J / mol . K  303  298    , 0558 J / mol . K x

  10  

   298

  2 3 3     303  298

   5  9

   ,

  14 J / mol . K x 10   1 , 0938 J / mol . K x

  10  

  3 4 4   5 5       303 298  12 303 298

  J mol K x

   , 23 / .

  10    

  4

  5    

  = 31,2640 j/mol = 31,2640 kj/kmol x

      

  1 = 34,4084 kkal/kmol

  Kapasitas panas hasil pembakaran (298 K sampai 823 K)

  Cp dT O . 823 298 ) ( 2

  =     

    

     

  

  2 298 823 / 10 . 0558 , 298 823 . / 9865 ,

  5 2 2 2 K x mol J K mol J 9 3 3 5 / 10 . 0938 ,

  1

  3 298 823 / 10 . 14 ,

   

     

  184 ,

  

  K x mol J x K mol J

    

    

   

    

    

   

  5 298 823 / 10 . 23 ,

  4 298 823 5 5 12 4 4 K x mol J = 3.448,8655 j/mol = 3.448,8655 kj/kmol x

  kj kkal

  184 ,

  4

  4

  kj kkal

  kj kkal

  5

  184 ,

  4

  1 = 7,4723 kkal/kmol

  Cp dT N . 303 298 ) ( 2

  =

   

    

     

    

  

  2 298 303 / 10 . 3007 , 298 303 . / 4119 ,

  29 2 2 2 K x mol J K mol J 9 3

3

5 / 10 . 1319 ,

  3 298 303 / 10 . 5451 ,

  4 298 303 5 5 12 4 4 K x mol J = 143,9647 j/mol = 143,9647 kj/kmol x

   

     

     

  

  K x mol J x K mol J

    

    

    

    

    

  

  

  5 298 303 / 10 . 425308

  1 = 824,2986 kkal/kmol

  Cp dT N . 823 298 ) ( 2

  K x mol J x K mol J

   

    

    

    

    

    

   

  8

     

     

   

  7

  3 298 823 / 10 . 3707 ,

  37

  5 298 823 / 10 . 1330 ,

  4 298 823 5 5 12 4 4 K x mol J = 23.984,8527 j/mol = 23.984,8527 kj/kmol x

  . 823 7 298 / 0223 ,

   

  . 373 47 298 / 2964 ,

  2 298 373 / 10 . 2118 ,

  

    

    

    

  =

  

kj

kkal

   = 9,729 kkal/kmol Cp dT O H . 373 298 ) ( 2

     O H 2

  Cp dT dT Cp dT Cp O H O H O H O H . . . ) ( 298 373 823 373 ) ( ) ( 823 298 ) ( 2 2 2 2   

  1 = 5.732,5174 kkal/kmol

  4

  184 ,

  19 2 2 2 K x mol J K mol J 9 3 3 5 / 10 . 4572 ,

  2 298 823 / 10 . 9629 ,

  =

  5

  K x mol J x K mol J

   

    

     

   

  3 298 823 / 10 . 5451 ,

  29 2 2 2 K x mol J K mol J 9 3

3

5 / 10 . 1319 ,

    

  2 298 823 / 10 . 3007 , 298 823 . / 4119 ,

  

     

    

    

   

    

    

  

  1 = 3.085,0795 kkal/kmol

   

     

    

   

  =

  Cp dT C . 823 298 ) ( 2

  4

    

  184 ,

  

kj

kkal

  4 298 823 5 5 12 4 4 K x mol J = 12.907,9728 j/mol = 12.907,9728 kj/kmol x

  5 298 823 / 10 . 425308

  

  

    

  18 2 2 2 K x mol J K mol J

  9 3 3 5 / 10 .

  mol O

  4

  4 298 823 5 5 12 4 4 K x mol J = 16.357,2991 j/mol = 16.357,2991 kj/kmol x

  

kj

kkal

  184 ,

  4

  1 = 3.909,4883 kkal/kmol

  Cp dT O H . 823 298 ) ( 2

  = 1.355,5567 kkal/kmol + 9,729 kkal/kmol + 3.909,4883 kkal/kmol = 5,274,7740 kkal/kmol

  Reaksi pembakaran CH

  4 : O H CO O CH 2 2 2 4

  2  2  

  Udara yang dibutuhkan untuk membakar 1 kmol CH

  4 (udara 20 % berlebih)

  2 = (kmol CH 4 + (20% kmol CH 4 )) x τ O

  

  2

  = (1 + 0,2) x 2 = 2,4 kmol

  Mol N

  2 = kmol x

  4 ,

  2

  21 79   

    

   

    

     

    

  

  2 373 823 / 10 . 9651 , 373 823 . / 0471 ,

  5 298 823 / 10 . 3023 ,

  

  . 314 24 ,

  4

  1

  3 298 373 / 10 . 8780 , 133

   

     

    

    

  K x mol J x K mol J

  4 298 373 4 4

    

    

   = 5.671,6493 j/mol = 5.671,6493 kj/kmol x

  kj kkal

  184 ,

  1 = 1.355,5567 kkal/kmol

    

  Cp dT O H . 823 373 ) ( 2

  = 9 3 3 5 / 10 . 4467 ,

  20

  3 298 823 / 10 . 2998 ,

  3

   

      

     

  

  K x mol J x K mol J

    

    

   

    

  34 2 2 2 K x mol J K mol J

  = 9,0286 kmol  Hr  H H H H ( 298 ) f ( CO ) f ( H O ) f ( CH ) f ( O ) =  . .   . .  2 2 4 2

  = (-94,0500 + 2 x (-68,3150) – (-17,8900) – 2 x 0) kkal/mol

  mol

  1000 = -212,7900 kkal/mol x

  kmol

  1 = -212.790 kkal/kmol

  N ( CH ) 4 rHr xHr

  . = ( 298 ) ( 298 )

  1 = x (-212.790 kkal/kmol)

   (  1 ) = -212.790 kkal/kmol

  ΔH reaktan 303 14 14  

  HN x CP . dT CH 4 CH 4 CH ( ) 4

    298   

  = 1 kmol/jam x 43,0451 kkal/kmol = 43,0451 kkal/jam 303

   

  HN x Cp . dT O 2 O 2 ( O ) 2

     298  

  = 2,4 kmol/jam x 7,4723 kkal/kmol = 17,9334 kkal/jam 303

   

  H N x Cp dT N N ( N ) 2  . 2 2

     298  

  = 9,0286 kmol/jam x 34,4084 kkal/kmol = 310,6587 kkal/jam

  : 0,4; kmol :CO : 1; kmol N : 9,0286; kmol H O : 2) ΔH produk (kmol O 823

  2

  2

  2

  2

   

  HN x Cp . dT O 2 O 2 ( O ) 2

     298  

  = 0,4 kmol/jam x 824,2986 kkal/kmol = 329,7195 kkal/jam 823

   

  H N x Cp dT N N ( N ) 2  . 2 2

     298  

  = 9,0286 kmol/jam x 3.085,0795 kkal/kmol = 27.853,8610 kkal/jam 823

   

  HN x CP . dT CO CO CO 2 2 ( ) 2

    298   

  = 1 kmol/jam x 5.732,5174 kkal/kmol = 5.732,5174 kkal/jam 823

   

  HN x Cp . dT H 2 O H 2 O ( H O ) 2

     298  

  = 2 kmol/jam x 5,274,7740 kkal/kmol = 10.549,5481 kkal/jam

  Panas yang dihasilkan dari pembakaran 1 kmol CH4

  Hr ( 298 ) + Q = r.  CH 4 ΔH produk - ΔH reaktan

  = (-212.790 + 329,7195 + 27.853,8610 + 5.732,5174 + 10.549,5481

  • 43,0451 - 17,9334 - 310,6587) kkal/jam = 168.695,9913 kkal/jam

  Jumlah Bahan Bakar yang dibutuhkan 14 Q reaktor N x kmol CH CH 4 =

  1 4 Q CH 4 639.294,42 09 kkal/jam

  = x 1 kmol CH 4 168.695,99 13 kkal/jam 14 = 3,7896 kmol 14 F N BM CH CH CH 4 = x 4 4

  = 3,7896 kmol x 16,0427 kg/kmol = 60,7958 kg/jam Tabel LB.4 Neraca panas pada Combuster Neraca Panas Keluar

  Neraca Panas Masuk (kkal/jam) (kkal/jam)

  Komponen Alur (13) Alur (14)

  Alur (6) CO

  1.255,1595 CO

  2

  65,8633 3.732,5174 CH

  4

  43,0451 H

  2

  4.176,2074 H O

  2

  2.692,6375 10.549,5481 N

  2

  310,6587 27.853,8610 O

  2

  17,9334 329,7195 Panas yang

  • 32.695,9913 dihasilkan

  40.926,913 Total 40.926,913 LB.2

  Reaktor Pyrolisis (R) Gambar LB.2 Reaktor Pyrolisis (R) Kapasitas panas alur 3 (298 K sampai 303 K)

  Cp dT osa lignoselul . 303 298 ) (

  Cp dT C . 753 298 ) (

  8

  4 298 303 5 5 12 4 4 K x mol J = 186,2253 J/mol = 186,2253 kj/kmol x

  kj kkal

  184 ,

  4

  1 = 44,5089 kkal/kmol

  Kapasitas panas alur 7 (298 K sampai 753 K)

  Cp dT Bio oil . 753 298 ) (

  

  =   K x Cp Bio oil  298 753

  

  = 49,5874 kkal/kmol. K x (753 – 298) K = 22.607,7670 kkal/kmol

  =

  

    K x K mol J K K mol J

    

    

    

  

  2 298 753 / 10 . 095 ,

  . 753 1 298 / 18 ,

  11 2 2 2

  3 298 753 / 10 . 4891 , 3 3 5  

    

    

    

  5 298 303 / 10 . 1330 ,

  

  =  

  2 298 303 / 10 . 9629 ,

  K x Cp selulosa

   298 303 = 99,3748 kkal/kmol. K x (303 – 298) K = 496,8740 kkal/kmol

  Cp dT puritis . 303 298 ) (Im

  =

  

 

K x Cp impuritis

   298 303 = 63,3042 kkal/kmol. K x (303 – 298) K = 316,5210 kkal/kmol

  Kapasitas panas alur 6 (298 K sampai 303 K)

  Cp dT CO . 303 298 ) ( 2

  =     

    

    

  

  . 303 7 298 / 0223 ,

    

  19 2 2 2 K x mol J K mol J 9 3 3 5 / 10 . 4572 ,

  37

  3 298 303 / 10 . 3707 ,

  7

   

     

     

   

  K x mol J x K mol J

    

    

    

    

   K x K mol J

  = 7.052,1334 j/mol 1 kkal = 7.052,1334 kj/kmol x 4 , 184 kj = 1.685,5003 kkal/kmol

  Neraca panas komponen  Lignoselulosa 3 3 303

  HN x Cp dT lignoselul osa lignoselul osa ( lignoselul osa ) . 3 303 298F lignin x Cp

  = .dT ( lignin )

   BM lignin 298 kg jam

  553 , 1067 /

  x

  = 496,8740 kkal/kmol 1960 kg/kmol = 140,2165 kkal/jam

   Impuritis 3 3 303

  HN x Cp . dT impuritis impuritis impuritis ( ) 3 298303 F impuritis

  = x Cp .dT ( impuritis )

   BM impuritis 298

  92 , 6377 kg / jam = x 316,5210 kkal/kmol

  133,5613 kg/kmol = 219,5379 kkal/jam

   Bio-oil 7 7 753

  HN x Cp . dT Biooil Biooil Biooil 298

  7 753 F Biooil

  = x Cp ( Biooil ) .dT

   BM Biooil 298

  242,4242 kg/jam

  x

  = 22.607,767 kkal/kmol 60,0333 kg/kmol

  = 33.803,1310 kkal/jam  Arang (C) 10 10 753

  HN x Cp . dT C C C 29810 753 F C x Cp

  = .dT ( C )

   BM C 298

  44,8975 kg/jam

  x

  = 1.685,5003 kkal/kmol 12,0111 kg/kmol 7 = 6.300,4013 kkal/jam 7 753

  HN x Cp . dT CO CO CO 2 2 2 298 7753 F CO 2

  = x Cp . dT ( ) CO 2

   BM CO 2 298

  156,6147 kg/jam = x 4.876,1246 kkal/kmol

  44,0147 kg/kmol = 17.350,4032 kkal/jam

  Panas pembentukan pada temperatur 298 K (referensi) Reaksi Umum:

  • (C H O ) 480 C 6,203C H O + 66,976C(s)+ (6,404CO + 3,852CO +4,159CH

  10

  12

  4

  10

  6 10 5(l)

  2

  4

  9,734H

  2 ) (g) + 17,136 H

  2 O