The Potential Of Epoxidized Natural Rubber As Hydrophobic Contributor In Biodegrdable Urea Fertilizer.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

THE POTENTIAL OF EPOXIDIZED NATURAL RUBBER AS HYDROPHOBIC
CONTRIBUTOR IN BIODEGRDABLE UREA FERTILIZER

This report submitted in accordance with requirement of the Universiti Teknikal
Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering
(Engineering Materials) (Hons.)

by

NOR ABIDAH BINTI ABDUL AZIZ
B050910044
900301-065136

FACULTY OF MANUFACTURING ENGINEERING
2013

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA
TAJUK: The Potential of Epoxidized Natural Rubber (ENR) as Hydrophobic

Contributor in Biodegradable Urea Fertilizer
SESI PENGAJIAN: 2012/13 Semester2
Saya NOR ABIDAH BINTI ABDUL AZIZ
mengakumembenarkanlaporan PSM inidisimpan di Perpustakaan Universiti Teknikal
Malaysia Melaka (UTeM) dengansyarat-syaratkegunaansepertiberikut:
1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan
untuk tujuan pengajian sahaja dengan izin penulis.
3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan
pertukaran antara institusi pengajian tinggi.
4. **Silatandakan ( セI@

D
D
Er

SULIT

TERHAD


(Mengandungimaklumat yang
berdarjahkeselamatanataukepentingan
Malaysiasebagaimana yang termaktubdalamAKTA

セ。G|XVエ@

TERHAD yang
telahditentukanolehorganisasi/badan di
TIDAK TERHAD manapenyelidikandijalankan)

IHAM BINT1 MOHAM 0
Pensyw.h
Fakulti Kejuruteraan Pembuatan
Un1vers1t1 Tekmkal Malays1a Melaka

AlamatTetap:
No. 279, Jalan Besar,
Felda Padang Piol, 27040
Jerantut, Pahang
Tarikh:


QNセ@

I .6 I 1.3

---------------------

Tarikh :

2-4 I

6

I

13

••
Jikalaporan
PSM

m1
SULIT
atau
TERHAD,
silalampirkansuratdaripadapihakberkuasa/ organisasiberkenaandenganmenyatakansekalisebabdantem
pohlaporan PSM iniperludikelaskansebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled “The Potential of Epoxidized Natural Rubber
(ENR) as Hydrophobic Contributor in Biodegradable Urea Fertilizer”.

Signature

:………………………………………….

Author’s Name

:Nor Abidah binti Abdul Aziz


Date

:3th June 2012

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti
Teknikal Malaysia Melaka (UTeM) as a partial fulfillment of the requirements for
the degree of Bachelor of Manufacturing Engineering (Engineering Material). The
member of the supervisory committee is as follow:

………………………………
(Principal Supervisor)

……………………………….
(Co-Supervisor)

ABSTRAK

Objektif kajian ini adalah untuk menyiasat potensi ENR dalam penghasilan baja

terbiodegradasi urea berasaskan kitosan. Dalam kajian ini, campuran kitosan dan
getah asli terepoksida (ENR) digunakan sebagai pengikat untuk memanfaatkan sifat
biodegradasi dan ciri hidrofobik masing-masing. Kesan formulasi terhadap sifat baja
yang terhasil dikaji secara terperinci di dalam kajian ini. Terlebih dahulu, kitosan dan
ENR dicairkan di dalam cecair toluena dengan kehadiran bentonit sebagai pengisi.
Setelah pengelatinan, serbuk urea dicampurkan dan dikacau sehingga

homogen

dalam jangka masa 20 minit kemudian dituang ke dalam piring petri untuk
dikeringkan di dalam ketuhar pada suhu ~60°C semalaman. Acuan digunakan untuk
memadatkan campuran dengan menggunakan penekan hidraulik untuk mendapatkan
saiz dan bentuk yang dikehendaki. Selepas pemprosesan, sifat fizik dan mekanik baja
diuji melalui penentuan ketumpatan, ujian biodegredasi, ujian penyerapan air, ujian
pengekalan air, ujian kekerasan dan ujian mampatan. Akhirnya, baja dianalisis untuk
sifat terma, sifat kimia dan morfologi dengan menggunakan permeteran kalori
pengimbasan kebezaan (DSC), pembelauan sinar-X (XRD), spektroskopi penjelmaan
Fourier infra-merah (FTIR), serakan tenaga sinar-X (EDX) dan kemikroskopan
elektron imbasan (SEM). Diakhir ujikaji ini, didapati peningkatan amaun ENR dapat
mengurangkan kadar penyerapan air ke dalam


baja melalui pemampasan sifat

hidrofilik kitosan. Campuran 10pph ENR didalam kitasan berasaskan baja urea
menghasilkan

baja

urea

terbiodegradasi

yang

mempunyai

sebanyak1.128g/cm3, manakala penyerapan air adalah sebanyak

ketumpatan
-7.73% dan


pengekalan air sebanyak 95.9%. Kekuatan mampatan dan kekerasan urea-ENR10
juga adalah paling rendah dengan masing-masing hanya0.559MPadan 39.53 Shore
D.

Akhir skali,dengan kehadiran ENR tahap biodegradasi baja urea yanglebih

perlahan dapat dihasilkan. Ia diramal dapat meningkatkan prestasi pembebasan
nitogen ke persekitaran untuk baja pembebasan perlahan pada masa akan datang.

i

ABSTRACT

The objective of this research is to investigate the potential of ENR in preparation of
chitosan based urea fertilizer. In this research, mixture of chitosan and epoxidized
natural rubber (ENR) was used as binder to take advantage of their biodegradable
and hydrophobic characteristics, respectively. The effect of mixing formulation to the
properties of fertilizer was studied in detail. Firstly, the chitosan and ENR was
diluted in toluene with the presence of bentonite as filler. After gelatinization, the

urea powder was mixed and stirred until homogenous for 20 minutes. Then, the
gelatin was poured into a petri dish and left to dry in an oven at 60°C overnight.
Then, it is put in a mold and compressed using a hydraulic presser to obtain the
desired size and shape. After processing, the physical and mechanical properties of
the fertilizer was determined through density measurement, biodegradability test,
water absorption test, water retention test, hardness test and compression test.
Finally, the fertilizer was analyzed for thermal, chemical and morphological
properties by using differential scanning calorimetry (DSC), X-ray Powder
Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Energy
Dispersive X-ray (EDX) and scanning electron microscopy (SEM). At the end of this
research, it has been found the incorporation of ENR in biodegradable chitosan based
urea fertilizer has imparted the properties biodegradable properties to the
ENR/chitosan based urea fertilizer. A mixture of 10pph ENR in chitosan based urea
fertilizer produced biodegradable urea fertilizer with density low density of
1.23g/cm3 where as water absorption and water retention was -7.73 % and 95.9%
respectively. The compressivestrength and hardness of this sample werethe
lowestwith only 0.559 MPa and 39.53 Shore D, respectively. Finally, with the
presence of ENR slower biodegradability level of urea fertilizer was produced. It
ispredictedto improve the performance of nitrogen release to surrounding for future
slow release fertilizer.


ii

ACKNOWLEDGEMENT

I would like to convey my gratitude to Allah S.W.T for His generous blessing and
undying strength bestowed upon me during the course of this research.

Firstly, I would like to extend my heartiest gratitude to Dr. Noraiham Mohamad as
my supervisor who had given me guidance and support me during the research. And
not to be forgotten to other lecturers, my co- supervisor PM Dr. Azizah Shaaban, my
mentor Ms. Nadiah Hamid, my friends and other person whose name is not mention
here.

Last but not least, I would like to thank my lovely mother and father for their
support. With prayers and moral support from both of them, I have gained strength to
endure in this study. I also want thank to UTeM management especially from Faculty
of Manufacturing Engineering because giving me the opportunity to gain experiences
and knowledge during the research.


iii

TABLE OF CONTENT

Abstrak

i

Abstract

ii

Acknowledgement

iii

Table of Content

iv

List of Table

viii

List of Figure

x

List of Abbreviations

xii

List of Symbol

xiv

1. INTRODUCTION

1

1.1

Background

1

1.2

Problem Statement

2

1.3

Objective

4

1.4

Scope

4

1.5

Chapter overview

5

2. LITERATURE REVIEW

6

2.1

Fertilizer

6

2.2

Type of Fertilizer

8

2.2.1

Organic Fertilizer

9

2.2.2

Inorganic Fertilizer

10

2.3

Slow and Controlled Released Fertilizer

11

2.4

Urea Fertilizer

15

2.4.1

Urea

16

2.4.2

Urea Formaldehyde Fertilizer

16

2.5

Biodegradable Urea Fertilizer

17

2.5.1

18

Type of Biodegradable based Urea Fertilizer

iv

2.5.2
2.6

2.7

2.8

2.9

21

Hydrophobic

22

2.6.1

23

Hydrophobicity of Biodegradable Urea Fertilizer

Chitosan

24

2.7.1

26

Chitosan based biodegradable urea fertilizer

Natural Rubber (NR)

28

2.8.1

28

Epoxidised Natural Rubber (ENR)

Granulation of Fertilizer

29

2.9.1

Type of granulation process

30

2.9.2

Dry Process

32

2.9.3

Wet Process

32

2.9.3.1 Drum Granulator

34

2.9.3.2 Pan Granulator

35

2.9.3.3 Mixer Granulator

36

Compaction Granulation

38

2.9.4
2.10

Properties of Biodegradable based Urea Fertilizer

Properties of Fertilizer

40

2.10.1 Density

40

2.10.2 Water Absorption

41

2.10.3 Biodegradability

42

2.10.4 Compressive Strength

42

2.10.5 Hardness

43

2.10.6 Compositional Analysis

44

2.10.7 Morphological Analysis

45

2.10.8 Thermal Analysis

46

3. METHODOLOGY

49

3.1

Introduction

49

3.2

Raw Material

51

3.2.1

Urea

51

3.2.2

Chitosan

52

3.2.3

Epoxidised Natural Rubber (ENR)

53

3.2.4

Toluene

54

3.2.5

Bentonite

55

v

3.3

Characterization of Raw Materials
3.3.1

Determining of Particle Size Distribution by using Malvern
Particle Size Analyzer (PSA)

3.3.2

3.3.3
3.4

3.5

56

Identifying chemical structure materials by using Fourier
Transform Infrared Spectroscopy (FTIR)

58

Element analysis by using Energy Dispersive X-ray (EDX)

59

Preparation of ENR/chitosan based urea fertilizer

60

3.4.1

Synthesis of ENR/chitosan based urea fertilizer

60

3.4.2

Mixing of ENR/chitosan based urea fertilizer

60

3.4.3

Drying

61

3.4.4

Compaction

64

Testing and Analysis technique

66

3.5.1

Physical analysis

66

3.5.1.1 Density

66

3.5.1.2 Water Absorption

67

3.5.1.3 Water Retention

68

3.5.1.4 Biodegradability

69

Mechanical Analysis

69

3.5.2.1 Compression Test

69

3.5.2.2 Hardness test

71

Thermal Analysis

72

3.5.3.1 Differential Scanning Calorimetry (DSC)

72

Compositional Analysis

73

3.5.4.1 Fourier Transform Infrared Spectroscopy (FTIR)

73

Phase Analysis

74

3.5.5.1 X-Ray Diffraction (XRD)

74

Morphological Analysis

75

3.5.5.1 Scanning Electron Microscope (SEM)

75

3.5.2

3.5.3

3.5.4

3.5.5

3.5.5

3.6

56

Optimization formulation of ENR/chitosan based urea fertilizer by
using Translation and Ranking selection method

4. RESULT AND DISCUSSION

76

77

vi

4.1

Introduction

77

4.2

Raw Material Characterization

77

4.2.1

Particle Size Distribution

78

4.2.2

FTIR analysis

78

4.3.3

SEM/EDX analysis

83

4.3

Density Test

86

4.4

Water Absorption

87

4.5

Water Retention

90

4.6

Biodegradable test

93

4.7

Compressive strength of chitosan/ENR based urea fertilizer

95

4.8

Hardness Test in specimen

98

4.9

FTIR analysis of chitosan/ENR based urea fertilizer

100

4.10

SEM/EDX analysis of chitosan/ENR based urea fertilizer

102

4.10.1 Morphological analysis by SEM/EDX

102

4.10.2 Morphological analysis of samples ENR/chitosan based urea
Fertilizer

104

4.11

Thermal analysis of chitosan/ENR based urea fertilizer by using DSC

107

4.12

Crystalline/amorphous phase analysis by XRD

109

4.13

Optimum formulation of ENR/chitosan based urea fertilizer via
ranking method

112

5. CONCLUSION AND RECOMMENDATION

115

5.1

Conclusion

116

5.2

Recommendations

118

REFERENCES

119

APPENDICES

vii

LIST OF TABLE

Table 2.1

N-P-K description (Materials Handbook: A Concise Desktop
Reference, 2000)

7

Table 2.2

Classification of organic fertilizer (Tsukasamachi, 2003)

10

Table 2.3

Commonly used inorganic fertilizer (Wijgert, 2009)

12

Table 2.4

Organic based urea fertilizer (Jenjie et al., 2002)

20

Table 2.5

Granulation process (Article: Pharmaceutical Technology,
1998)

31

Table 3.1

Raw material

51

Table 3.2

Powder urea characteristic according to MSDS

51

Table 3.3

Chitosan characteristic (MSDS chitosan)

52

Table 3.4

Toluene characteristic according to MSDS

54

Table 3.5

Bentonite characteristic according to MSDS

55

Table 3.6

Fomulation of chitosan based urea fertilizer

60

Table 4.1

Particle size distribution of raw material

78

Table 4.2

Functional groups present in ENR, urea, bentonite and chitosan

80

Table 4.3

Purity of raw materials

85

Table 4.4

Density measurements of each composition

86

Table 4.5

Percentage water absorption of each composition

89

Table 4.6

Detail percentage of water retention of each composition

92

Table 4.7

Compression strength of each composition

97

Table 4.8

Hardness of each composition

99

Table 4.9

Melting Temperature and enthalpy transition before
and after degradation for each composition

108

Table 4.10

The desired characteristic of biodegradable urea fertilizer

112

Table 4.11

The ranking process

114

viii

LIST OF FIGURES

Figure 2.1

Uniform pellet shape (Intellectual Property Corporation
Malaysia, 2002)

Figure2.2

11

Outlook of the SRF over a period of 8-9 months
(Green Feed, 2007)

Figure 2.3

13

Diffusion of water soluble nutrients by the biodegradable
superabsorbent polymer (Yamuna et al., 2012)

15

Figure 2.4

Hydrophobic interaction (Baker, 2011)

23

Figure 2.5

Chitosan structure (Kumar, 2000)

25

Figure 2.6

(a)-(f) SEM Micrograph of chitosan filled compounds of
rubber at 10 phr chitosan loading taken at different
magnification

27

Figure 2.7

Performic epoxidation ENR (Yoksan, 2008)

29

Figure 2.8

Principle of granulation (Aulton, 2012)

30

Figure 2.9

Chilsonator (Dry Granulation Process, 2005)

32

Figure 2.10

Illustrates the granule growth phenomenon
(Agrawal et al., 2011)

33

Figure 2.11

Drum Granulator (Ullmann’s Agrochemicals, 2007)

34

Figure 2.12

Pan Granulator (Ullmann’s Agrochemicals, 2007)

36

Figure 2.13

High speed mixer granulator (Kejohn, 2009)

37

Figure 2.14

Diagram of a typical compaction / granulation system
(Vent et al., 2004)

Figure 2.15

39

The effect of the amount of AM on water absorbency
(Wu et al., 2007)

42

Figure 2.17

Working Principle of FTIR

45

Figure 2.18

SEM working principle (Sperling, 2006)

46

Figure 2.19

SEM micrographs of dynamically cured
60/40 ENR-30/PP TPVs with sulphur system
(Nakason et al., 2008)

46

ix

Figure 2.20

DSC heat denaturation

48

Figure 3.1

Flow chart

50

Figure 3.2

Urea powder

52

Figure 3.3

Chitosan powder

53

Figure 3.4

Epoxidized Natural Rubber

54

Figure 3.5

Toluene liquid

55

Figure 3.6

Bentonite powder

56

Figure 3.7

Particle Size Analyzer

57

Figure 3.8

Fourier Transform Infrared (FTIR)

58

Figure 3.9

Schematic diagram of principle of EDX
(Goldstein et al., 2002)

59

Figure 3.10

Mixing sequence of ENR/chitosan based urea fertilizer

62

Figure 3.11

Final drying product ENR/chitosan based urea fertilizer

63

Figure 3.12

Drying oven

64

Figure 3.13

Manually hydraulic press

65

Figure 3.14

Mould of manually hydraulic press

65

Figure 3.15

Specimen of Fertilizer

66

Figure 3.16

Electronic Densimeter

67

Figure 3.17

Water absorption test

68

Figure 3.18

Specimen in container prior to test

69

Figure 3.19

Universal testing machine

70

Figure 3.20

Compression features

70

Figure 3.21

Specimen at compression test

70

Figure 3.22

Test point at hardness tester

71

Figure 3.23

Specimen at Hardness Tester

71

Figure 3.24

Hardness Tester

71

Figure 3.25

Differential Scanning Calorimeter

72

Figure 3.26

XRD instrument

74

Figure 3.27

The sputter gold coat (LEICA EM SCD005) instrument

75

Figure 3.28

Scanning electron microscope

75

Figure 3.29

Sample sputtered with thin layer gold

75

Figure 4.1

Volume (%) versus Particle Size (μm) for (a) chitosan,
(b) bentonite and (c) urea

79

x

Figure 4.2

FTIR spectrum of urea

81

Figure 4.3

FTIR Spectrum of Chitosan

81

Figure 4.4

FTIR spectrum of ENR

82

Figure 4.5

FTIR Spectrum of Bentonite

83

Figure 4.6

SEM/EDX spectrum of chitosan

84

Figure 4.7

SEM/EDX spectrum of urea

84

Figure 4.8

SEM/EDX spectrum of bentonite

85

Figure 4.9

Density of each composition

86

Figure 4.10

Percentage water absorption versus time

88

Figure 4.11

Physical diagram for samples 0,3,5,7 and 10 pph chitosan
after 360 seconds absorb water

90

Figure 4.12

Percentage water retention versus time

91

Figure 4.13

The physical changes of composition ENR based chitosan urea
fertilizer. (From left: urea-ENR0 until urea-ENR10)

93

Figure 4.14

Percentage weight loss versus time

94

Figure 4.15

Compressive strength versus composition

96

Figure 4.16

Fracture failure of composition
(a)ENR-1(without ENR loading)
(b)ENR-5(highest loading of ENR)

97

Figure 4.17

Hardness versus composition

99

Figure 4.18

FTIR spectra of (a) urea and (b) Sample urea-ENR10

101

Figure 4.19

SEM/EDX for urea-ENR0

103

Figure 4.20

SEM/EDX for urea-ENR10

104

Figure 4.21

Surface morphology of urea-ENR0

105

Figure 4.22

Surface morphology of urea-ENR10

110

Figure 4.22

XRD patterns of (a) ENR, (b) bentonite, (c) chitosan, (d) urea
with (e) urea-ENR10 respectively

Figure 4.23

Figure 4.24

111

XRD patterns of (a) urea-ENR0, (b) urea-ENR5 and
(c) urea-ENR10

116

The combination amorphous and crystalline region

112

xi

LIST OF ABBREVIATIONS

ENR

-

Epoxidised natural rubber

N

-

Nitrogen

P

-

Phosphorus

K

-

Potassium

C

-

Carbon

O

-

Oxygen

H

-

Hydrogen

Ca

-

Calcium

Mg

-

Magnesium

S

-

Sulphur

DSC

-

Differential scanning calorimetry

Tg

-

Glass transition temperature

FTIR -

Fourier transform infrared

SEM -

Scanning Electron Microscopy

SRF

-

Slow-release fertilizer

CRF

-

Control release fertilizer

IBDU -

Isobutydine diurea

CO2

-

Carbon dioxide

UF

-

Urea formaldehyde

PUFs -

Polyurethane foams

(NH4)2SO4

Ammonium sulphate

ASTM

The American Society for Testing of Materials

ISO

-

The International Standards Organization

NR

-

Natural rubber

AM

-

Acrylamide

xii

LIST OF SYMBOL

ms-1

-

Meter per second

%

-

Percentage

kW

-

Kilo Watt

min

-

Minute

kg

-

Kilogram

mm

-

Millimeter

μm

-

Micrometer

kN

-

Kilo Newton

MPa

-

Megapascal

xiii

CHAPTER 1
INTRODUCTION

1.1

Background

Fertilizers are chemical compounds applied to promote plant and fruit growth (Bahera et
al.., 2009). According to Akelah et al. (1996), fertilizers are one of the most important
products of the agrochemical industry. They are added to the soil to release nutrients
necessary for plant growth. Artificial fertilizers are inorganic fertilizers formulated in
appropriate concentrations and the combinations supply three main nutrients: nitrogen,
phosphorus and potassium (N, P and K) for various crops and growing conditions. N
(nitrogen) promotes leaf growth and forms proteins and chlorophyll. P (phosphorus)
contributes to root, flower and fruit development. K (potassium) contributes to stem and
root growth and the synthesis of proteins (Mandal et al. and Gu et al. 2009).

El- Rafie et al. and Byung et al. (1996) has found method of reducing nutrient losses
involves the use of controlled-release fertilizers. These fertilizers can be physically
prepared from the granules of the soluble fertilizers by coating them with materials,
which reduce their dissolution rate. Meanwhile, slow release fertilizers are made to
release their nutrient contents gradually and to coincide with the nutrient requirement of
a plant. These fertilizers can be physically prepared by degradability coating granules of
conventional fertilizers with various materials that reduce their dissolution rate (Ge et al.
2002).

1

Therefore, this project is intended to study the potential of epoxidized natural rubber
(ENR) as hydrophobic contributor in biodegradable urea fertilizer. The formaldehyde
was replaced with the mixture of ENR and chitosan as hydrophobic and biodegradable
contributor, respectively. A fertilizer granule was produced through compaction and
drying process. Then, the granule was characterized for physical, mechanical, thermal,
chemical, phase and morphological properties.

1.2

Problem Statement

In urea fertilizer, some percentage of nutrients consist of nitrogen (N), phosphorus (P)
and potassium (K) is lost to the environment and cannot be absorbed by plants, causing
not only substantial economic and resource losses but also very serious environmental
pollution. The losses are due to leaching, decomposition and ammonium volatilization in
soil, handling and storage (Trenkel at al. (1997) and Saigusa et al. (2007).

Recently, the use of slow release fertilizers has become a new trend to save fertilizer
consumption and to minimize environmental pollution (Wu et al., 2008 and Guo et al.,
2005). Due to its polymeric cationic, biodegradable, bioabsorbable, and bactericidal
characteristics, chitosan (CS) nanoparticle is an interesting material for use in controlled
release systems. However, there are limited to explore the potential of chitosan
nanoparticles as slow and control release for NPK fertilizers. This brings out the idea of
developing biodegradable fertilizer base chitosan as binder and hydrophilicty controller.

Over the last years, there has been research and increasing interest in the use of polymers
combining with starch as binder and coating material as a potential biodegradable
fertilizer. According to Liu et al. (2007), there is a research in improving properties of
fertilizer with controlled release and water retention by using chitosan-coated fertilizer
polyacrylic-co-acrylamide (P (AA-co-AM) with controlled release and water retention
which possessed three layer structure of fertilizer. Therefore, although the control release
property has been improved, but after the coating layer is dissolved, the nutrient fertilizer
2

in its core will degrade. Hence, due to increase in water absorbency, the degradation of
fertilizer will become faster after the coated layer dissolve completely. According to
Riyajan et al. (2012), natural rubber (NR) has potential for controlling urea release. The
hydrophobic group of encapsulation of urea fertilizer by NR can control releasing
nutrient from capsule and easily degrade to soil. Epoxidized Natural Rubber (ENR) is
chemically modified from NR to improve hydrophilicity of NR. However, there is no
study in incorporated this ENR in urea fertilizer as control and slow release fertilizer.

In addition, formaldehyde is the material that gives reaction when the elevated level is
reached. The dangerous chemical will emit into the air. This can causes watery eyes,
nose irritations, wheezing and coughing, fatigue, skin rash, severe allergic reactions,
burning sensations in the eyes and throat, nausea, and difficulty in breathing in some
humans. In this research, formaldehyde is widely found use in agricultural technology as
non-biodegradable binder. Recently, due to many reports of formaldehyde affect to
health and environment there are only few studies focuses on the effect of formaldehyde
based on urea fertilizer in agriculture; especially in Malaysia. Controlled studies have
suggested that tolerance to formaldehydes odour and irritating effects can occur over a
prolonged exposure (Meriat et al., 2008). By replacing formaldehyde with biodegradable
and free chemical reaction is purposely suggested.

In this research, the incorporation of ENR in biodegradable chitosan based urea fertilizer
is hypothesized to impart the biodegradable properties to the ENR/chitosan based urea
fertilizer. The introduction of epoxirane ring with existing double bonds in the ENR will
act as hydrophobic contributor and chitosan as hydrophilic controller to accelerate the
degradation process at a certain time that accomplices with nutrient needed by plant. In
principle, the slow and control release with hydrophobicity properties could be
significantly improve. To increase the binding energy ENR and chitosan was
incorporated in the mixture. ENR is well known as an ideal material for biodegradable
type which important to increase the reaction between chitosan and urea. As a result, this
research is hoped can formulate and develop into new potential products besides it
capable reducing level of formaldehyde releasing to the environment.
3

1.3

Objective

The aim of this research is to understand the specific cause and effect of formaldehyde
based urea fertilizer characteristics and able to understand the properties, structure and
effect of biodegradable urea fertilizer on water, soil and air. The objectives of this
research are:
i.

To incorporate ENR in biodegradable chitosan based urea fertilizer
through wet mixing and compression molding.

ii.

To study the effect of ENR loading on the physical, mechanical,
compositional, morphological and thermal properties of chitosan based
biodegradable urea fertilizer.

iii.

To characterize the physical, mechanical, compositional, morphological,
and thermal properties of ENR/chitosan based urea fertilizer.

1.4

Scope

The scope of this research is to study the effect of ENR in biodegradable urea fertilizer
as hydrophobic contributor. ENR/chitosan based urea fertilizer is produced by wet
mixing followed by drying and compaction to desired shape where ENR loading is
varied in the formulation composition of urea fertilizer. Material testing is performed to
measure the physical and mechanical properties in term of density, water absorption,
water retention, biodegradability, hardness and compression. The properties of urea
fertilizer is further characterized by using morphological, thermal and compositional
analysis of the sample using scanning electron microscopy (SEM), differential scanning
calorimetry (DSC), x-ray diffraction (XRD),
spectroscopy (FTIR).

4

and fourier transform infrared

1.5

Chapter Overview

The organization of this report is as follow; Chapter 1 provides the introduction of the
research background consist of problem statement, objectives, scopes of research and
report organization. Chapter 2 comprise of a literature review of previous research
finding on application of, chitosan, epoxidised natural rubber (ENR), slow and control
released fertilizer and many more in fertilizer and the preview of testing and analysis that
conducted in this research. Chapter 3 covers the methodology of the research including
flow chart, raw materials, sample preparation, testing, analysis and Gantt chart where as
Chapter 4 presents the comprehensive discussion on the results obtained throughout the
study.

Conclusion and recommendation experimental of this study is presented in

Chapter 5.

5

CHAPTER 2
LITERATURE REVIEW

2.1

Fertilizer

Fertilizer is a chemical compound containing three elements which are nitrogen (N),
phosphorus (P) and potassium (K). It is added to soil to release nutrients which are
essential for growth and development of crops. There are various type of fertilizer either
organic or inorganic fertilizers (Papangkorn et al., 2008). Cardarelli (2000) has stated
that fertilizers are natural or synthetic chemical compound chemical compounds
containing nutrients essential for the normal growth and development of plants. As a
general rule, all carbon (C) and oxygen (O) necessary to the plants are provided, via
photosynthesis, from carbon dioxide and oxygen gases from the atmosphere while rain
and ground waters supply all the hydrogen (H) required. All other nutrients which are N,
P and K must be transformed from minerals and organic matter, by microorganisms
respectively, before becoming available for plants. The most important fertilizers are
fertilizer product which also is called as chemical or mineral fertilizers, manures and
plant residues. A fertilizer product is a material produced by industrial processes with
the specific purpose of being used as a fertilizer. Fertilizers are essential in today’s
agricultural system to replace the elements extracted from the soil in the form of food
and other agricultural products (Rutland et al., 1998).

In practice, either industrial minerals or chemicals are currently used as feedstock’s for
manufacturing fertilizers and hence it is necessary to distinguish two groups which are
mineral fertilizers and chemical fertilizers. Mineral fertilizers that consist mainly of
6

natural or manufactured industrial minerals such as saltpetre, potash, and phosphate rock
meanwhile chemical fertilizers that are chemical commodities, such as ammonia and
urea, produced as products or by-product by the chemical industry (Cardarelli, 2000).
The N-P-K descriptions are presented in Table 2.1.

Table 2.1: N-P-K description (Materials Handbook: A Concise Desktop Reference, 2000)

Nutrients

Description
Plant intake nitrogen compound are converted into proteins by complex
biochemical reaction. For improving the nitrogen intake of crops, nitrogen rich
feed stocks must be added to soils artificially. Today, the major industrial

Nitrogen (N)

minerals used as nitrogen rich feedstock such as, saltpetre (KNO3), soda nitre
(NaNO3), urea (NH2CONH2), urea formaldehyde (NH2CONHCH2OH) and
many more. Important because it promotes vigorous plant growth, increases
top growth, and is a building block for protein.
The least used major nutrients. The role of phosphorus in cell of plant is to
provide chemical energy which is stored within the strong phosphorus
chemical bond. The behaviour of phosphorus is unique in soils as it is usually
bound to clay minerals and does not move downward with percolating ground

Phosphorus (P)

waters and hence accumulates in the top soil. The major phosphorus rich
materials are synthetic chemicals obtain from chemical treatment of phosphate
rock that is mainly apatite by concentrated sulphuric acid. Promotes cell
division and stimulates healthy root growth and is essential for seed
germination.
It is indispensable as a nutrient and it is required in large quantities by most
plants. The role of potassium in plants is regulatory and catalytic. Growing
plants absorb potassium as potassium cations K+ but the metabolic route is

Potassium (K)

unclear. The major industrial mineral used as potassium feedstock is sylvinite
(KCl) also known as muriate of potash. Potash is an essential nutrient for
photosynthesis which also promotes fruit formation and imparts disease
resistance and winter hardiness.

7