. . . , g Then the AVC matrix of Let

3.2 Asymptotic Theory for the Local Linear Estimator Let μ s,t = R v s w v t dv, s, t = 0, 1, 2. Define u = f U u 1 u k×dp c kp c ×d μ 2,1 1 u ⊗ I p c , 3.1 and ϒ u = f U u μ p c 0,2 2 u k×kp c kp c ×k μ 2,2 2 u ⊗ I p c . 3.2 Clearly, u is a k1 + p c × d1 + p c matrix and ϒu is k 1 + p c × k1 + p c matrix. To describe the leading bias term associated with the discrete random variables, we define an indicator function I s ·, · by I s u d , u d = 1{u d = u d s } p d t =s 1{u d = u d t }. That is, I s u d , u d is one if and only if u d and u d differ only in the sth component and is zero otherwise. Let B u; h, λ = 1 2 μ 2,1 f U u 1 uA u ; h kp c ×1 + u d ∈U d p d s=1 λ s I s u d , u d f U u c , u d × 1 u c , u d gu c , u d − gu c , u d −μ 2,1 1 u c , u d ⊗ I p c · g u c , u d , 3.3 where A u; h = p c s=1 h 2 s g 1,ss u, . . . , p c s=1 h 2 s g d,ss u ′ , g u = g 1

u, . . . , g

d u ′ , and · g u = . g 1 u ′ , . . . , . g d u ′ ′ . Now we state our first main theorem. Theorem 3.1. Suppose that Assumptions A1–A6 hold. Then √ nh {H[ α n u; h, λ − αu] − ′ −1 −1 ′ −1 B u; h, λ} d → N0, ′ −1 −1 ′ −1 ϒ −1 ′ −1 −1 , where we have suppressed the dependence of ,, and ϒ on u, and H = diag 1, . . . , 1, h ′ , . . . , h ′ is a dp c + 1 × dp c + 1 diagonal matrix with both 1 and h appearing d times. Remark 3 Optimal choice of the weight matrix. To mini- mize the AVC matrix of α n , we can choose n u as a con- sistent estimate of ϒu, say ϒ

u. Then the AVC matrix of

α ϒ u; h, λ is given by u = [u ′ ϒ u −1 u] −1 , which is the minimum AVC matrix conditional on the choice of the global instruments QV i . Let α u be a preliminary estimate of αu by setting n u = I k p c +1 . Define the local residual ε i u = Y i − d j =1 g j uX i,j , where g j u is the jth component of α

u. Let

ϒ u = h n n i=1 × Q i Q ′ i ε i u 2 Q i Q ′ i ⊗ η i u c ′ ε i u 2 Q i Q ′ i ⊗ η i u c ε i u 2 Q i Q ′ i ⊗ [η i u c η i u c ′ ] ε i u 2 × K 2 hλ,iu , where Q i ≡ QV i and η i u c ≡ U c i − u c

h. It is easy to show