u
d 1
, . . . , u
d p
d
′
. Let G
i,j
≡ G
i,j
u =[g
j
U
c i
, U
d i
−g
j
u
c
, u
d
−
.
g
j
u
c
, u
d ′
U
c i
− u
c
], and G
i
≡ G
i
u = G
i, 1
u, . . . , G
i,d
u
′
. Let R
i
≡ R
i
u = G
i
u
′
X
i
. Then Y
i
=
d j =1
[g
j
u
c
,
u
d
−
.
g
j
u
c
, u
d ′
U
c i
− u
c
]X
i,j
+ε
i
+ R
i
= ξ
′
i,u
α u+ε
i
+R
i
,
where αu and ξ
i,u
are defined after Equation 6
. Let ε ≡ ε
1
, . . . , ε
n ′
and R ≡ Ru = R
1
u, . . . , R
n
u
′
. Then
we have the following bias-variance decomposition:
H [
α
n
u;h, λ − α u]
= H
−1
ξ
′
K
hλ
Q
h
−1 n
Q
′
h
K
hλ
ξ H
−1 −1
× H
−1
ξ
′
K
hλ
Q
h
−1 n
Q
′
h
K
hλ
R +
H
−1
ξ
′
K
hλ
Q
h
−1 n
Q
′
h
K
hλ
ξ H
−1 −1
× H
−1
ξ
′
K
hλ
Q
h
−1 n
Q
′
h
K
hλ
ε =
n
u
′ −1
n n
u
−1 n
u
′ −1
n
B
n
u
+
n
u
′ −1
n n
u
−1 n
u
′ −1
n
V
n
u A.1
where
n
u ≡
n
u;h, λ = n
−1
Q
′
h
K
hλ
ξ H
−1
, B
n
u ≡ B
n
u;h, λ = n
−1
Q
′
h
K
hλ
R, and
V
n
u ≡ V
n
u;h, λ = n
−1
Q
′
h
K
hλ
ε. We prove Theorem 3.1 by proving the following three
lemmata. Lemma 1.
n
u = u + o
P
1, where u is defined in
11 .
Proof. Recall that η
i
u
c
≡ U
c i
− u
c
h and Q
i
≡ QV
i
. By
the definition of Q
h,iu
in 7
, we have
n
u =
1 n
n i=1
K
hλ,iu
Q
i
Q
i
⊗ η
i
u
c
X
′ i
X
′ i
⊗ U
c i
− u
c ′
H
−1
= ⎛
⎝
n, 11
k×d n,
12 k×p
c
d n,
21 kp
c
×d n,
22 kp
c
×p
c
d
⎞ ⎠ ,
where
n, 11
≡
n, 11
u;h, λ =
1 n
n i=1
K
hλ,iu
Q
i
X
′ i
,
n, 12
≡
n, 12
u;h, λ =
1 n
n i=1
K
hλ,iu
Q
i
X
′ i
⊗ η
i
u
c ′
,
n, 21
≡
n, 21
u;h, λ =
1 n
n i=1
K
hλ,iu
Q
i
X
′ i
⊗ η
i
u
c
, and
n, 22
≡
n, 22
u;h, λ =
1 n
n i=1
K
hλ,iu
Q
i
X
′ i
⊗ [η
i
u
c
η
i
u
c ′
]. It suffices to show that
n,lj
=
lj
u + o
P
1 for l, j = 1, 2, where
lj
u denotes the l, j block of the block diagonal matrix u.
By Assumptions A1–A3, E
[
n, 11
] = E[Q
i
X
′
i
K
hλ,iu
] = E[Q
i
X
′
i
W
h,iu
c
|d
U
d i
u
d
= 0]pu
d
+
p
d
s=1
E [Q
i
X
′
i
W
h,iu
c
L
λ,iu
d
|d
U
d i
u
d
= s]pd
U
d i
u
d
= s = E
1
U
c i
, U
d i
W
h,iu
c
|d
U
d i
u
d
= 0 p
u
d
+ O λ =
1
u
c
+ h ⊙ t, u
d
f
U
u
c
+ h ⊙ t, u
d
W t dt
+ O λ =
1
u f
U
u + O h
2
+ λ .
A.2 Define two column vectors ω
1
∈ R
k
and ω
2
∈ R
d
such that ω
l
= 1 for l = 1, 2. Then it is easy to show that varω
′ 1
n, 11
ω
2
=
1 n
Varω
′ 1
Q
i
X
′
i
ω
2
K
hλ,iu
= Onh
−1
= o1. It follows by Chebyshev’s inequality that
n, 11
=
1
uf
U
u +
o
P
1. Similarly,
n, 22
= E[
n, 22
] + O
P
nh
−12
= E[Q
i
X
′ i
⊗ η
i
u
c
η
i
u
c ′
K
hλ,iu
] + O
P
nh
−12
= [
1
u
c
+ h ⊙ t, u
d
⊗ tt
′
]f
U
u
c
+ h ⊙ t, u
d
× W tdt + O
P
λ + nh
−12
= μ
2,1
[
1
u ⊗ I
p
c
]f
U
u + o
P
1 . By the same token,
n, 12
= o
P
1, and
n, 21
= o
P
1 . This completes the proof.
Lemma 2. √
nh B
n
u =
√
nh B u; h, λ + o
P
1, where
B u; h, λ is defined in
13 .
Proof. Write
√
nh B
n
u =
1 n
n i=1
√
nh K
hλ,iu
Q
h,iu
R
i
=
1 n
n i=1
ς
i
, where
ς
i
= √
nh
d j =1
g
j
U
c i
, U
d i
− g
j
u
c
, u
d
−
.
g
j
u
c
, u
d ′
× U
c i
− u
c
Q
i
X
i,j
Q
i
X
i,j
⊗ η
i
u
c
K
hλ,iu
= √
nh Q
i
X
′ i
G
i
Q
i
X
′ i
G
i
⊗ η
i
u
c
K
hλ,iu
. It follows that
√
nh E[
B
n
u] = Eς
i
= Eς
i
|d
U
d i
u
d
= 0 p
u
d
+ Eς
i
|d
U
d i
u
d
= 1 P d
U
d i
u
d
= 1 + O √
nh λ
2
≡
b
n, 1
+ b
n, 2
+ o 1 .
On the set {U
d i
= u
d
, W
h,iu
c
0}, g
j
U
c i
, U
d i
−g
j
u
c
, u
d
−
.
g
j
u
c
, u
d ′
U
c i
− u
c
=
1 2
A
i,j
u + oh
2
, where A
i,j
u ≡ U
c i
− u
c ′
..
g
j
uU
c i
− u
c
and
..
g
j
u ≡ ∂
.
g
j
u∂u
c′
. Let
A
i
u ≡ A
i, 1
u, . . . , A
i,d
u
′
. Then we have
b
n, 1
= 1
2 √
nh
E Q
i
X
′ i
A
i
u Q
i
X
′ i
A
i
u ⊗ η
i
u
c
W
h,iu
c
p
u
d
+ o √
nh h
2
= 1
2 √
nh E
1
U
i
A
i
u
1
U
i
A
i
u ⊗ η
i
u
c
W
h,iu
c
p u
d
+ o 1 =
√
nh μ
2,1
2 f
U
u
1
u A u; h
kp
c
×1
+ o1, and
b
n, 2
= √
nh E
1
⎧ ⎨
⎩
d j =1
g
j
U
i
− g
j
u −
.
g
j
u
′
U
c i
− u
c
× Q
i
X
i,j
Q
i
X
i,j
⊗ η
i
u
c
K
hλ,iu
⎫ ⎬
⎭ p
1
Downloaded by [Universitas Maritim Raja Ali Haji] at 22:05 11 January 2016
= √
nh E
1
⎡ ⎣
d j =1
Q
i
X
′ i
G
i
Q
i
X
′ i
G
i
⊗ η
i
u
c
K
hλ,iu
⎤ ⎦ p
1
= √
nh
E
1
⎡ ⎢
⎢ ⎢
⎣ ⎛
⎜ ⎜
⎜ ⎝
1
U
i
[g U
i
− g u]
−
1
U
i
⊗ η
i
u
c ′
·
g u
1
U
i
[g U
i
− g u] ⊗ η
i
u
c
−
1
U
i
⊗ [η
i
u
c
η
i
u
c ′
]
·
g u
⎞ ⎟
⎟ ⎟
⎠
× K
hλ,iu
⎤ ⎥
⎥ ⎦
p
1
+ o 1
= √
nh
u
d
∈U
d
p
d
s=1
λ
s
I
s
u
d
, u
d
f
U
u
c
, u
d
×
1
u
c
,
u
d
gu
c
,
u
d
− gu
c
, u
d
−μ
2,1 1
u
c
, u
d
⊗ I
p
c
·
g u
c
, u
d
+ o1,
where A u; h and
·
g u are defined in Section
3.2 , E
l
{·} = E{·|d
U
d i
u
d
= l} for l = 0 and 1, and p
1
= P d
U
d i
u
d
= 1. Con- sequently,
√
nh E[
B
n
u] =
√
nh B u; h, λ + o 1. Noting
that var √
nh B
n
u = Oh
2
+ λ = o1, the conclusion then follows by Chebyshev’s inequality.
Lemma 3. √
nh V
n
u = n
−12
h
12 n
i=1
Q
i
ε
i
Q
i
ε
i
⊗ U
c i
− u
c
h
× K
hλ,iu
d
→ N 0, ϒ u , where ϒu is defined in
12 .
Proof.
Let c be a unit vector on R
k p
c
+1
. Let ζ
i
= h
12
c
′ Q
i
ε
i
Q
i
ε
i
⊗ η
i
u
c
K
hλ,iu
. By the Cram´er–Wold device, it suffices
to prove √
nh c
′
V
n
u = n
−12 n
i=1
ζ
i d
→ N 0, c
′
ϒc .
By the law of iterated expectations, E ζ
i
= 0. Now by arguments sim- ilar to those used in the proof of Lemma 1,
var √
nh c
′
V
n
u = var ζ
1
= hc
′
E ×
Q
i
Q
′ i
ε
2 i
Q
i
Q
′ i
⊗ η
i
u
c ′
ε
2 i
Q
i
Q
′ i
⊗ η
i
u
c
ε
2 i
Q
i
Q
′ i
⊗ [η
i
u
c
η
i
u
c ′
]ε
2 i
K
2
hλ,iu
c = hc
′
E ×
Q
i
Q
′ i
σ
2
V
i
Q
i
Q
′ i
⊗ η
i
u
c ′
σ
2
V
i
Q
i
Q
′ i
⊗ η
i
u
c
σ
2
V
i
Q
i
Q
′ i
⊗ [η
i
u
c
η
i
u
c ′
]σ
2
V
i
× K
2
hλ,iu
c = hc
′
E
2
U
i 2
U
i
⊗ η
i
u
c ′
2
U
i
⊗ η
i
u
c 2
U
i
⊗ [η
i
u
c
η
i
u
c ′
] K
2
hλ,iu
c = c
′
ϒc + o 1 .
The result follows as it is standard to check the Liapounov condition; see, for example, Li and Racine
2007 .
By Lemmas 1–3 and the Slutsky lemma, √
nh [H
α
n
u − α u −
′ −1
−1 ′
−1
B u; h, λ]
=
n
u
′ −1
n n
u
−1 n
u
′ −1
n
√
nh
V
n
u
+
n
u
′ −1
n n
u
−1 n
u
′ −1
n
√
nh B
n
u − [ u
′ −1
u]
−1
u
′ −1
√
nh B u; h, λ
d
→ N0,
′ −1
−1 ′
−1
ϒ
−1 ′
−1 −1
,
where dependence of , , and ϒ on u is suppressed. This completes the proof of Theorem 3.1.
Proof of Theorem 3.2. Let
n
u;h, λ, B
n
u;h, λ, and
V
n
u;h, λ be as defined after A.1
. Let ¯
B
n
u;h, λ ≡
B
n
u;h, λ−Bu; h, λ. Let J
1n
≡
n
u; h,
λ −
n
u;h, λ,
J
2n
≡ √
nh [
V
n
u; h,
λ − V
n
u;h, λ], and J
3n
≡ √
nh [ ¯
B
n
u; h,
λ − ¯
B
n
u;h, λ]. By the result in Theorem 3.1 and the ex-
pansion in A.1
, it suffices to show that i J
1n
= o
P
1, ii J
2n
= o
P
1, and iii J
3n
= o
P
1. For notational simplicity, for the moment we assume that
p
c
= p
d
= 1, so that we can write the bandwidth h, λ simply as h, λ. Similarly, we write U
c i
, u
c
and U
d i
, u
d
as U
c i
, u
c
and U
d i
, u
d
, respectively. Let h = bn
−δ
and λ = rn
−σ
for some b ∈ [b, ¯b], r ∈ [r, ¯r], δ 0, and σ 0. Note that when
p
c
= p
d
= 1, we can write hK
hλ,iu
as hK
hλ,iu
= w U
c i
− u
c
h λ
1{U
d i
=u
d
}
= w U
c i
− u
c
bn
−δ
rn
−σ 1{U
d i
=u
d
}
≡ K
br,iu
. For any nonnegative random variable ς
i
, define m
ζ
u =
E ς
i
|U
i
= u. m
ζ
is usually continuous and uniformly bounded below. Then by the C
r
inequality, for any γ 0, E
,, K
b
′
r
′
,iu
− K
br,iu
, ,
γ i
ς
i
= E[|h
′
K
h
′
λ
′
,iu
− hK
hλ,iu
|
γ
m
ς
U
i
] ≤ c
γ
{E[|h
′
K
h
′
λ
′
,iu
− hK
hλ,iu
|
γ
m
ζ
U
i
] + E[h|K
hλ
′
,iu
− K
hλ,iu
|
γ
m
ζ
U
i
]} ≡ c
γ
{K
1
+ K
2
} , say, where c
γ
= 1 if γ ∈ 0, 1] and c
γ
= 2
γ −1
if γ 1. Here and in the remainder of this proof prime does not denote transpose.
Let c
b
= ¯bb. By the fact that λ
′
∈ 0, 1] and Assumption A5, for any b, b
′
∈ [b, ¯b], K
1
=
u
d i
∈U
d
,, ,
, w
u
c i
− u
c
h
′
− w u
c i
− u
c
h λ
′ 1{u
d i
=u
d
}
, ,
, ,
γ
× m
ς
u
c i
, u
d i
f u
c i
, u
d i
du
c i
≤ h
u
d i
∈U
d
c
w
c
b
−c
w
c
b
|wvh h
′
− wv|
γ
× m
ς
u
c
+ hv, u
d i
f u
c
+ hv, u
d i
dv
Downloaded by [Universitas Maritim Raja Ali Haji] at 22:05 11 January 2016
≤ C
1ς
C
γ w
h|1 − h h
′
|
γ c
w
c
b
−c
w
c
b
|v|
γ
dv = C
1ς
C
γ w
h |b
′
− bb
′
|
γ c
w
c
b
−c
w
c
b
|v|
γ
dv ≤ C
2ς
h|b
′
− b|
γ
, where C
sς
is a finite constant that depends on ς
i
; for example, C
1ς
≡ sup
u
c
∈U
c
u
d i
∈U
d
m
ς
u
c
+ hv, u
d i
f u
c
+ hv, u
d i
dv ∞. Similarly, K
2
=
u
d i
∈U
d
,u
d i
=u
d
,, ,
,w u
c i
− u
c
h ,,
, ,
γ
|λ
′
− λ|
γ
m
ς
u
c i
, u
d i
× f u
c i
, u
d i
du
c i
= h|λ
′
− λ|
γ u
d i
∈U
d
c
w
c
b
−c
w
c
b
w v
γ
m
ς
u
c
+ hv, u
d i
× f u
c
+ hv, u
d i
dv ≤ C
3ς
h|λ
′
− λ|
γ
≤ C
3ς
hn
−γ σ
|r
′
− r|
γ
. It follows that
E [|K
b
′
r
′
,iu
− K
br,iu
|
γ
ς
i
] ≤ c
γ
C
2ς
∨ C
3ς
h|b
′
− b|
γ
+ |r
′
− r|
γ
, A.3
where a ∨ b = max a, b . Then by the C