CHAPTER 6 RELATIONS

F. CHAPTER 6 RELATIONS

Summary of P–V–T equations for real gases

P R = P/P c ,T R = T/T C ,v R ' = v/v c ', v c ' = RT c /P c , Z(T,P) = v(T,P)/v 0 (T,P)

Inflection conditions: ( ∂P/∂v) 2

b ≈ (2/3)N πσ Avog 3 . Pitzer Factor w = –1.0 – log (P sat )

= –1 – 0.4343 ln (P sat ) .Z=Z 10 (0) R TR=0.7 R TR=0.7 (T R ,P R )+wZ (1) (T R ,P R )

If R is a universal gas constant, then a, v, b are based upon mole basis. If R is simply a gas constant, then a, v, b are based upon mass basis Summary of Equations of State

Name

State Equations

Constants

Remarks

2 1. 3 Virial Eq. Pv= RT + B

1 ´P + C 1 ´P + D 1 ´P + ..., where B 1 ’, C 1 ’, D 1 ’ are called 2nd, 3rd, P/ u T=Z

B 1 ´, C 1 ´, … are functions of T or Pv = RT + B/ and 4th virial coefficients that

v + C/v 2 + ... , and B, C, ... are functions of T.

represent corrections to ideal gas behavior

B*(T*) = B(T) / b o , b 0 in Virial Eq. 3

2. Approximate

Pv/RT = Z = 1 + B(T)/P

m /kmole, T* = T/( ε/k) For

Z = 1 + (P R /T R ) (0.083 – (0.422/T r ))

b o , ε/k. See R.E. Sonntag and G. Van Wylen

where T R = T/T c, P R = P/P c

3. Clausius I

P = RT/(v–b)b = body volume

Cannot satisfy inflection conditions.

a = (27/64)v c ' 2 P c = (27/64) R 2 Does not agree with (VW)

4. Van der Waals P = RT/(v–b) – a/v 2 , b is a correction for

volume occupied by molecular and repulsive

c /P c ≈ 2.667πεσ N Avog , b= v c '/8 (P c v c /RT c ) exp = 0.2 to 0.3

forces, a/v 2 is a correction for attractive forces

=(1/8) RT c /P c , Z c =3/8, A = for most gases. Another

Z – (B* +1) Z + A* Z – A*B =0

(27/64) P R /T 2 R , B* = (1/8) P R /T R

form:of the VW relation is v 3 + v 2 (– b P – R T)/P + v ( a /P) (– ab /P) = 0

5. Berthelot

P = RT/(v–b) – (a/T) (1/v 2 )a = (27/64) (v c ' 2 T 2

3 c P c ) = = (27/64)R

T c /P c ,b=v c '/8 = RT c /8P c

Name State Equations

Constants

Remarks

6. Dieterici P = (RT/(v–b)) exp {–a/(RTv)}

2 c /P c b 2 Developed to provide better

a = (4/e 2 )v c ' 2 P c =(4/e 2 )R 2 T 2

=v c '/e = RT c /(e P c ), Z c = 0.271,

agreement with

e = exp(1)=2.3026

experiments.

7. Redlich–Kwong P = RT/(v–b) –a/(T 1/2 v (v + b))

a= 0.4275 v c ' 2 T 0.5 c P

2.5 c = 0.4275R

2 Good accuracy over wide

(RK)

range and at high pressure. or

T c /P c ,

b = 0.08664 v c ' = 0.08664 RT c /P c ,

Z * –Z 2 + (A*– B* 2 – B*) Z – A*B 2.5 * =0 Z

c =1/3, A = 0.4275 P R /T R , B* =

0.08664 P R /T R

8. Clausius II

P = RT(v–b)–a/(T(v+c) 2 )a = 27/64 v ' 2 T P =(27/64) R c 2 c c

T 3 c /P c b=v c '(Z c –1/4) = (RT c /P c ) (Z c –1/4) c=v c '(3/8 –Z c )= (RT c /P c ) (3/8 –Z c )

9. Peng Robinson P = (RT/(v–b) ) – (a α(w,TR)/((v+b(1+√2)) (v

a = 0.45724 v c ' 2 Pc = 0.45724R 2

+ b (1– √2)))

T c /P c α(w,T R ) = (1 + f(w) (1 – T (1/2) R )) 2

f(w) = 0.37464 + 1.54226 w – 0.26992 w 2

b = 0.07780 v c ' =0.0778 (RT c /P c ), Z c = 0.26

10. SRK equation P = RT/(v–b) – a α(w,T R )/(v(v+b))

2 A = 0.4275v 2

Pc = 0.4275R

T 2 c /P c , b = 0.08664 v c ' =0.08664 (RT c /P c ), Z c = 1/3

α(w,T

R ) = (1 + f(w) (1 – T R )) 2

f(w) =(0.480 + 1.574 w – 0.176 w 2 )

11. Generalized Eq.

R =T R /( v ′ R –b )–a α (w,T R )/(T R ( v R ′ +c ) a = a/(P c v ′ c T c ), b = b/ v ′ c ,c =

Name State Equations

Constants

Remarks

of state *) ( v ′ R +d ) ,

c/ v ′ c , and d * = d/ v ′ c . See table

below

12. Compressibility Pv = ZRT or P R v R '=ZT R Z=v/v ideal for T R > 2.5, Z > factor

v R ' = v/v c ', v c ' =RT c /P c

1, for T R < 2.5 Z < 1 and

has a minimum value. At Also fv = ( φ(T , P ) Z(T

P R = P/P c ,T R = T/T c

R , P R )) RT (Chapter

T = 1, P = 1, Z can vary

widely. For P R > 10 always 07)

use real gas relations.

13. Benedict Webb P = RT/v + (B

Good accuracy over wide Rubin

2 RT–A 2 –C 2 /T )/v 2 + (B 3 R T–

8 constants. See Table 20A

A 3 )/v 3 + A 3 C 6 /v 6 + (D

3 /(v T 2 ))(1+E 2 /v 2 )

P–V–T condition.

exp(–E /v 2 2 )

14. Martin–Hou

P = RT/(v–b) + (A + B + C e –KT )/(v–b) 2 +

12 constants evaluated from P–v–T Mainly developed for

(A +B T+C e –KT 2 2 3 2 3 )/(v–b) 3 +A 4 /(v–b) 3 4 + (A 5 data of fluids

refrigerants, 1 % accuracy

+B 5 T+C 5 e –KT )/(v–b) 5

for v > 0.67 v c and T < 1.5

15. Lee Kessler

P R =(T R /v R’ )(1+A/ v ′ R +B/ v ′ 2 R +C/ v ′ 5 R +(D/ v ′ R )(

See Table A–21

β+γ/ v ′ 2 R )exp(– γ/ v ′ 2 R )), Z = P R v ′ R /T R

16. Beattie P v = R T( v +B

Accurate for v > 1.25 v c Bridgeman

2 0 (1– ( b / v )) (1– c/( v T ))–

See Table A–20B

(A 0 / v )(1–(a/ v )) equation

Generalized cubic equation of state P R = (T R /(v R '– b * )) – a * α(w,T R n )/(T R (v R '+c * )(v * R +d * )),

where a * = a/(P v ' 2 T c n c c ), b * = b/v c ', c * = c/v c ', d * = d/v c '

Equation 2 c = c/v

d =c/v c'

α α α α (w,T R ) b =b/v c a =a/(P c T c v c ' )

Clausius–I

(27/64) Clausius–II

1 1 Z c –1/4 27/64 Horvath–Lin γβ (note 3)

(3/8–Z c )

(3/8–Z c )

0 1 1 β (note 3) α (note 3) RK

(1+ √2)0.07780 (1–√2)0.0778 0 0.07780 0.45724 Note 1: T R b'/v c ' 2 – a'/v c ' 2

Note 2: c'/v 2

c ' –T R Note 3: γ = Z c –4.72 /360, (1+(

γ+1) 4 ) –1 , 2 α = ((1+γf) (1–2f– 2 γf 2 ))/((1–f) (2+ γf) ), β = (1–2f– 2 γf )/((2+

γ)+(2+4γ)f +(γ+2γ 2 )f 2 )

Liquids and Solids dv = v β P dT – v β T dP, β P = (1/v)( ∂v/∂T) P , β T = –(1/v) ( ∂v/∂P) T , κ T = 1/( β T P) = (–v/P) ( ∂P/∂T) T