Klasifikasi Turbin TURBIN AIR

Gambar 2.13 Daerah Penggunaan dari Beberapa Jenis Konstruksi Turbin yang Berbeda [2] Dalam pembuatan roda turbin, kebanyakan pertama sekali membuat modelnya, setelah model tersebut diselidiki, diuji dan diubah-ubah sehingga menghasilkan daya dan randemen turbin yang baik, kemudian baru dibuat roda turbin yang besarsesungguhnya menurut bentuk modelnya.

2.4 PENGGUNAAN POMPA SEBAGAI TURBIN

Salah satu alternatif yang ekonomis untuk membangun pembangkit listrik tenaga air skala kecil adalah dengan menggunakan pompa sebagai turbin. Bidang ilmu yang khusus mengoperasikan pompa sebagai turbin ini sering disebut dengan istilah PAT, singkatan dari Pumps As Turbine. Jarang yang tahu bahwa beberapa tipe pompa air dapat diaplikasikan sebagai turbin air. Biasanya pompa digerakkan oleh motor listrik untuk menaikkan sejumlah air sampai ketinggian tertentu. Pada aplikasi pompa sebagai turbin, prinsip kerja pompa di balik - yaitu diberi jatuhan air dari ketinggian tertentu untuk memutar impeler pompa. Putaran impeler ini akan diteruskan untuk memutar generator sehingga dihasilkan tenaga listrik. Gambar 2.14 Instalasi Penggunaan Pompa Sebagai Turbin Tujuan dari rancang bangun instalasi dan pengujian pompa sentrifugal sebagai turbin adalah untuk mengevaluasi penggunaan pompa sebagai turbin dalam hal performansi pada kapasitas dan efisiensi. Pada operasi turbin, debit bertambah seiring dengan kenaikan head. Head yang tersedia pada turbin sama dengan ketinggian vertikal antara sisi masuk aliran di reservoir dengan sisi keluar, sebagian kecil menjadi kerugian head pada pipa penstock. Kecepatan putar turbin bervariasi menurut beban dan terdapat perbedaan efisiensi untuk masing-masing kecepatan putar dan head. Beberapa kelebihan aplikasi pompa sebagai turbin air adalah: 1. Sebagai produk industri yang massal, pompa mudah diperoleh dengan berbagai variasi head - flow, tersedia dalam berbagai tipe dan ukuran. 2. Mudah dalam instalasinya. 3. Harga relatif murah daripada turbin, dan suku cadang mudah diperoleh. 4. Aplikasi pompa dapat dikoneksi secara langsung dengan generator direct drive atau menggunakan transmisi mekanik pulley-belt indirect drive apabila putaran pompa sebagai turbin tidak sama dengan putaran generator umumnya 1500 rpm. Jenis pompa yang umum dipakai sebagai turbin adalah end-suction centrifugal pump untuk jatuhan 7 meter-100 meter dengan debit kecil 50 literdetik s.d 150 literdetik dan mixed-flow pump untuk jatuhan rendah 4 meter- 15 meter dengan debit cukup besar 100-400 literdetik. Kapasitas daya aplikasi pompa sebagai turbin beragam, mulai dari 1 kW-100 kW, dengan biaya peralatan yang lebih murah s.d 50 dibandingkan dengan menggunakan turbin air costume product. Hasil penelitian menunjukkan bahwa pompa sentrifugal sebagai turbin bisa diandalkan dengan efisiensi yang tinggi pada unit pembangkit skala kecil. Aplikasi pompa sebagai turbin di lapangan sudah cukup banyak. Aplikasi pompa sebagai turbin dapat dilakukan di saluran irigasi, tailing bendungan, menara air gedung-gedung tinggi memanfaatkan jatuhan air kondensasi pendingin, atau membuat sodetan run-off river. Rancang bangun instalasi dan pengujian pompa sentrifugal sebagai turbin dalam skripsi ini adalah sistem terbuka. Penulis memilih sistem ini karena lebih mirip dengan instalasi sebenarnya dalam penggunaan PAT dan pompa pengumpan lebih sederhana, walaupun instalasi yang akan dirancang bangun akan lebih mahal, lebih rumit serta head untuk pengujian terbatas.

2.5 GENERATOR

Generator listrik adalah sebuah alat yang menghasilkan energi listrik dari sumber energi mekanik berdasarkan prinsip induksi elektromagnetik yang ditemukan oleh Faraday. Proses ini dikenal sebagai pembangkit listrik. Walau generator dan motor punya banyak kesamaan, tapi motor adalah alat yang mengubah energi listrik menjadi energi mekanik. Generator mendorong muatan listrik untuk bergerak melalui sebuah sirkuit listrik eksternal, tapi generator tidak menciptakan listrik yang sudah ada di dalam kabel lilitannya. Hal ini bisa dianalogikan dengan sebuah pompa air, yang menciptakan aliran air tapi tidak menciptakan air di dalamnya. Sumber enegi mekanik bisa berupa resiprokat maupun turbin uap, air yang jatuh melalui sebuah turbin maupun kincir air, mesin pembakaran dalam , turbin angin, engkol tangan, energi surya atau matahari, udara yang dimampatkan, atau apa pun sumber energi mekanik yang lain. Berdasarkan arus keluarannya, generator dapat dibagi menjadi dua jenis yaitu generator arus searah atau biasa disebut dinamo, dan generator arus bolak- balik atau alternator. Prinsip kerja generator adalah menghasilkan arus listrik induksi dengan cara memutar gelung di antara kutub utara-selatan sebuah mangnet. Perbedaan generator arus bolak-balik dan generator arus searah adalah pada cincin luncur yang berhubungan dengan tiap ujung gelung. Pada generator arus searah hanya terdapat sebuah cincin yang terbelah di tengahnya, disebut cincin belah atau komutator. Pada sistem pembangkit listrik biasanya menggunakan generator arus bolak- balik. Berdasarkan kecepatan memutar gelung, generator ini dibagi lagi menjadi generator sinkron dan generator asinkron generator induksi. Disebut mesin sinkron, baik generator maupun motor karena beroperasi pada kecepatan sinkron, yaitu kecepatan dimana terbentuk medan magnet oleh gelung yang berotasi. Kecepatan sinkron ini dapat diperoleh dari: Keterangan: Ns = kecepatan sinkron putarandetik f = frekuensi Hz P = jumlah kutub dalam generator Pada generator AC alternator pembangkit listrik, magnetlah yang berputar sedangkan kumparannya diam. Magnet yang digunakan bukan magnet permanen melainkan elektromagnet kumparan yang dililitkan pada inti besi, sehingga medan magnetik yang dihasilkan lebih besar daripada menggunakan magnet permanen. Dalam alternator pembangkit listrik, kumparan yang diam disebut kumparan jangkar, sedangkan kumparan yang bergerak disebut kumparan medan. Kumparan jangkar dan inti besinya disebut stator dan kumparan medan dan inti besinya disebut rotor. Rotor dan turbin memiliki poros yang sama sehingga putaran turbin akan juga memutar rotor. Selain memberi putaran pada rotor, turbin juga memberi tenaga pada sebuah dinamo kecil disebut exiter yang berfungsi menyuplai arus listrik ke kumparan medan. Generator induksi adalah generator listrik yang secara mekanis dan elektrik mirip dengan motor induksi. Generator induksi menghasilkan energi listrik ketika porosnya diputar lebih cepat dari kecepatan sinkron yang dimiliki motor induksi setara. Generator induksi sering digunakan untuk turbin angin dan beberapa instalasi mikro hidro karena kemampuannya untuk menghasilkan daya yang bermanfaat pada berbagai kecepatan rotor. Generator induksi secara mekanis dan elektrik lebih sederhana daripada jenis generator lainnya. Generator induksi tidak memiliki exiter seperti pada generator sinkron, artinya generator ini memerlukan pasokan listrik eksternal untuk menghasilkan fluks magnetik yang berputar. Pasokan listrik eksternal ini dapat diperoleh dari jaringan listrik lain ataupun dari generator itu sendiri setelah mulai menghasilkan daya. Fluks magnet berputar dari stator menginduksi arus pada rotor, yang juga menghasilkan medan magnet. Jika rotor ternyata lebih lambat dari laju fluks berputar, mesin bertindak seperti motor induksi. Jika rotor diputar lebih cepat, akan bertindak seperti generator, menghasilkan daya pada frekuensi sinkron. Penggunaan Motor Induksi Sebagai Generator MISG telah diterapkan secara luas pada PLTMH dan diakui keandalannya. Meskipun dari segi effisiensi, khususnya pada beban tidak penuh part load, MISG tidak sebaik generator sinkron, tetapi karena motor induksi banyak tersedia dipasaran dengan range daya yang luas dan konstruksi motor induksi jauh lebih sederhana dibanding generator sinkron sehingga lebih handal terhadap run away speed serta lebih mudah perawatannya. Maka MISG dapat dipakai sebagai alternatif dari generator sinkron untuk pembangkit mikro hidro. Prinsip kerja MISG secara sederhana akan lebih mudah dipahami dari prinsip kerja motor induksi. Apabila motor induksi dihubungkan dengan tegangan tiga fasa, pada kumparan statornya akan timbul medan magnet putar. Kecepatan medan magnet putar disebut sebagai kecepatan sinkron tergantung dari frekuensi tegangan listrik yang dihubungkan dan jumlah kutub statornya. Medan magnet putar pada kumparan stator akan memotong batang konduktor pada kumparan rotor, akibatnya pada kumparan akan

Dokumen yang terkait

Peningkatan Efektifitas Mesin Blowing Berdasarkan Evaluasi Overall Equipment Effectiveness dan FMEA pada Industri Manufaktur Plastik

13 124 92

Integrasi Overall Equipment Effectiveness dan Failure Mode and Effect Analysis untuk Meningkatkan Efektivitas Mesin Hammer Mill di PT. Salix Bintama Prima

12 167 136

USULAN PERBAIKAN GANGGUAN FIXED TELEPHONE DAN TELKOM FLEXI DENGAN KOMBINASI METODE FAULT TREE ANALYSIS DAN FAILURE MODE AND EFFECT ANALYSIS DI WILAYAH DIVRE IV KANDATEL SOLO

3 18 205

Analisis Gangguan Jaringan Kabel dengan Kombinasi Metode Fault Tree Analysis dan Failure Mode and Effect Analysis (Studi kasus PT. ABC).

0 1 6

PENINGKATAN EFEKTIVITAS PERAWATAN MESIN PERONTOK BULU UNGGAS DENGAN METODE OVERALL EQUIPMENT EFFECTIVENESS DAN FAILURE MODE EFFECT ANALYSIS (Studi Kasus di Perusahaan Pengolahan Ayam Kampung Pasuruan)

0 0 6

Perbaikan Efektivitas Pekerja Menggunakan Overall Labour Effectiveness dan Fault Tree Analysis Studi Kasus: PT. Riau Graindo Dumai

0 2 6

Integrasi Overall Equipment Effectiveness dan Failure Mode and Effect Analysis untuk Meningkatkan Efektivitas Mesin Hammer Mill di PT. Salix Bintama Prima

0 0 18

BAB II GAMBARAN UMUM PERUSAHAAN - Integrasi Overall Equipment Effectiveness dan Failure Mode and Effect Analysis untuk Meningkatkan Efektivitas Mesin Hammer Mill di PT. Salix Bintama Prima

0 0 15

BAB I PENDAHULUAN - Integrasi Overall Equipment Effectiveness dan Failure Mode and Effect Analysis untuk Meningkatkan Efektivitas Mesin Hammer Mill di PT. Salix Bintama Prima

0 0 8

Manajemen Risiko Operasional Onshore Processing Facility Dengan Menggunakan Risk Failure Mode And Effect Analysis Dan Fault Tree Analysis - ITS Repository

0 0 100