Conversion factors, constants and

Appendix 2 Conversion factors, constants and

physical data

Quantity

Symbol

Traditional units

SI units

101.325 kN m Avogadro constant

1 atmosphere (pressure)

10 5 Nm Boltzmann constant

17 mrad Electron rest mass

1 degree (plane angle)

0.017 45 rad

m e 9.109 56 ð 10

g 9.109 56 ð 10 kg

1 erg (dyn cm) 6.242 ð 10 11 eV 10 J

2.39 ð 10 cal

10 Jm Gas constant

1 erg/cm 2 6.242 ð 10 11 eV cm

8.314 3 J K mol 

8.314 3 ð 10 7 erg K mol

1.987 cal K mol

  Al

2.71 g cm

2710 kg cm

7870 kg cm   Cu

Density  Fe 7.87 g cm

8930 kg cm  Ni

8.93 g cm

8900 kg cm Electronic charge

8.90 g cm

1 electron volt

Faraday FDN A e 9.6487 ð

1 kilogram-force/cm 2 kgf/cm 2 14.22 lbf/in 2

1 litre

1 0.220 gal

1 dm 3

1 micron

10 4 Angstrom

10 m

10 cm

Conversion factors, constants and physical data 423

Quantity

Symbol

Traditional units

SI units

1 minute (angle) 

2.908 ð 10 rad   Al

2.908 ð 10 radian

70 GN m Modulus of

    Fe 210 GN m elasticity

209 GN m (average)

Ni

    Cu 127 GN m   Au

79 GN m Planck’s constant 

1 pound (force)

lbf

4.448 22 N

1 psi lbf/in 2 7.03 ð 10 kgf/cm 2 6 894.76 N m

83 GN m Shear modulus

 Fe 8.3 ð 10 11 dyn cm

74 GN m (average)

1 ton (force)

1 tonf/in 2 1.574 9 kgf/mm 2 15.444 3 MN m

133.322 N m Velocity of light (in vacuo)

c 2.997 925 ð 10 10 cm/s

2.997 925 ð 10 8 ms

Figure references

Chapter 1

Dobson, P., Goodhew, P. and Smallman, R.E. (1968). Phil. Mag. 16 , 9. Taylor and Francis.

Rice, R. W. (1983). Chemtech. 230 Edington, J. W. and Smallman, R. E. (1965). Phil. Mag. 11 , 1089. Taylor and Francis. Hales, R., Smallman, R. E. and Dobson, P. (1968).

Chapter 2

Proc. Roy. Soc., A307, 71. Hameed, M. Z., Loretto, M. H. and Smallman, R. E.

Askeland, D. R. (1990). The Science and Engineering (1982). Phil. Mag. 46, 707. Taylor and Francis. of Materials , 2nd (SI) edn. Chapman and Hall,

Johnston, I., Dobson, P. and Smallman, R. E. (1970). London.

Proc. Roy. Soc. A315 , 231, London. Mazey, D. and Barnes, R. (1968). Phil. Mag., 17, 387.

Taylor and Francis.

Chapter 3

Mitchell, T., Foxall, R. A. and Hirsch, P.B. (1963). Brandes, E. A. and Brook, G. B. (1992). Smithells Phil. Mag. 8 , 1895, Taylor and Francis.

Metals Reference Book . Butterworth-Heinemann, Nelson, R. S. and Hudson, J. A. (1976). Vacancies ’76 . 126. The Metals Society.

Oxford. Panseri, C. and Federighi, T. (1958). Phil. Mag., 3, Copper Development Association (1993). CDA publi-

. Copper Development Association. Partridge, P. (1967). Met. Reviews, 118, 169, Ameri- Keith, M. L. and Schairer, J. F. (1952). J. Geology,

cation 94

can Society for Metals.

, 182, University of Chicago Press Weertman, J. (1964). Elementary Dislocation Theory, Raynor, G. V. Annot. Equilib. Diag. No. 3, Institute of

Collier-Macmillan International. Metals, London.

Westmacott, K. H., Smallman, R. E. and Dobson, P. Williamson, G. K. and Smallman, W. (1953). Acta

Cryst. (1968). Metal Sci. J., 2, 117, Institute of Metals.

Chapter 5

Chapter 4

Askeland, D. R. (1990). The Science and Engineering Barnes, R. and Mazey, D. (1960). Phil. Mag. 5, 124.

of Materials , 2nd edn. p. 732. Chapman and Hall, Taylor and Francis.

London.

Berghezan, A., Fourdeux, A. and Amelinckx, S. Barnes, P. (1990). Metals and Materials . Nov, (1961). Acta Met., 9, 464, Pergamon Press.

708–715, Institute of Materials. Bradshaw, F. J. and Pearson, S. (1957). Phil. Mag. 2,

Cahn, R. W. (1949). J. Inst. Metals, 77, 121. 570.

Dash, J. (1957). Dislocations and Mechanical Proper- Cottrell, A. H. (1959). Forty-sixth Thomas Hawksley

ties of Crystals , John Wiley and Sons. Memorial Lecture, Proc. Institution of Mechanical

Gilman, J. (Aug. 1956). Metals, 1000. Engineers. 14 , Institution of Mechanical Engineers.

Hirsch, P. B., Howie, A. and Whelan, M. (1960). Phil. Diehl, J. Chapter 5 in Moderne Probleme d. Metall-

Trans., A252, 499, Royal Society. physik (1965). ed. by Seeger, A., Bd.l, Berlin, Hei-

Hirsch, P. B. and Howie, A. et al. (1965). Electron delberg, New York, Springer.

Microscopy of Thin Crystals . Butterworths, London.

Figure references 425 Howie, A. and Valdre, R. (1963). Phil. Mag., 8, 1981,

Hirsch, P. B. and Mitchell, T. (1967). Can. J. Phys., Taylor and Francis.

45 , 663, National Research Council of Canada. Vale, R. and Smallman, R. E. (1977). Phil. Mag., 36,

Hull, D. (1960). Acta Metall., 8, 11. 209, Zeiss, C. (Dec 1967). Optical Systems for the

Hull, D. and Mogford, I. (1958). Phil. Mag., 3, 1213. Microscope , 15. Carl Zeiss, Germany.

Johnston, W. G. and Gilman, J. J. (1959). J. Appl. Phys., 30 , 129, American Institute of Physics. L¨ucke, K. and Lange, H. (1950). Z. Metallk, 41, 65.

Chapter 6

Morris, D. and Smallman, R. E. (1975). Acta Met., 23, Ashby, M. F. (1989). Acta Met. 37, 5, Elsevier Sci-

ence, Oxford, pp. 1273–93. Maddin, R. and Cottrell, A. H. (1955). Phil. Mag., 66, Barrett, C. S. (1952). Structure of Metals, 2nd edn.

McGraw-Hill. Puttick, K. E. and King, R. (1952). J. Inst. Metals, 81, Mathias, B. T. (1959) . Progress in Low-Temperature

Physics , ed. By Gorter, C. J., North Holland Pub- Steeds, J. (1963). Conference on Relation between lishing Co.

Structure and Strength in Metals and Alloys , HMSO. Morris, D., Besag, F. and Smallman, F. (1974). Phil.

Stein, J. and Low, J. R. (1960). J. Appl. Physics, 30, Mag. 29 , 43 Taylor and Francis, London.

392, American Institute of Physics. Pashley, D. and Presland, D. (1958–9). J. Inst. Metals.

Wilson, D. (1966). J. Inst. Metals, 94, 84, Institute of

87 , 419. Institute of Metals.

Metals.

Raynor, G. V. (1958). Structure of Metals, Inst. of Metallurgists, 21, Iliffe and Sons, London. Rose, R. M., Shepard, L. A. and Wulff, J. (1966).

Chapter 8

Structure and Properties of Materials . John Wiley and Sons.

Ashby, M. F. et al. (1979). Acta Met., 27, 669. Shull, C. G. and Smart, R. (1949). Phys. Rev., 76,

Ashby, M. F. (1989). Acta Met., 1273–93: Elsevier 1256.

Science Ltd.

Slater, J. C. Quantum Theory of Matter. Brookes, J. W., Loretto, M. H. and Smallman, R. E. Wert, C. and Zener, C. (1949). Phys. Rev., 76, 1169

(1979). Acta Met. 27, 1829. American Institute of Physics.

Cottrell, A. H. (1958). Brittle Fracture in Steel and Other Materials. Trans. Amer. Inst. Mech. Engrs., April , p. 192.

Chapter 7

Fine, M., Bryne, J. G. and Kelly, A. (1961). Phil.

Mag., 6 , 1119.

Adams, M. A. and Higgins, P. (1959). Phil. Mag, 4, 777.

Greenwood, G. W. (1968). Institute of Metals Confer- Adams, M. A., Roberts, A. C. and Smallman, R. E. ence on Phase Transformation , Institute of Metals.

(1960). Acta Metall., 8, 328. Guinier, A. and Fournet, G. (1955). Small-angle Scat- Broom, T. and Ham, R. (1959). Proc. Roy. Soc., A251, tering of X-rays . John Wiley & Sons.

186. Guinier, A. and Walker, R. (1953). Acta Metall., 1, Buergers, Handbuch der Metallphysik. Akademic-

Verlags-gesellschaft. Kelly, P. and Nutting, J. (1960). Proc. Roy. Soc., Burke and Turnbull (1952). Progress in metal Physics A259 , 45, Royal Society.

3 , Pergamon Press. Kurdjumov, G. (1948). J. Tech. Phys. SSSR, 18, 999. Cahn, J. (1949). Inst. Metals, 77, 121.

Metals Handbook, American Society for Metals. Churchman, T., Mogford, I. and Cottrell, A. H. (1957).

Mehl, R. F. and Hagel, K. (1956). Progress in Metal Phil. Mag., 2 1273.

Physics, 6 , Pergamon Press. Clareborough, L. M. Hargreaves, M. and West (1955).

Nicholson, R. B., Thomas, G. and Nutting, J. Proc. Roy. Soc., A232 , 252.

(1958–9). J. Inst. Metals, 87, 431. Cottrell, A. H. (1957). Conference on Properties of

Silcock, J., Heal, T. J. and Hardy, H. K. (1953–4). J. Materials at High Rates of Strain. Institution of

Inst. Metals , 82, 239.

Mechanical Engineers. Cottrell, A. H. Fracture. John Wiley & Sons. Dillamore, I. L., Smallman, R. E. and Wilson, D.

Chapter 9

(1969). Commonwealth Mining and Metallurgy Congress , London, Institute of Mining and

Balliger, N. K. and Gladman, T. (1981). Metal Sci- Metallurgy.

ence , March, 95.

Hahn (1962). Acta Met., 10, 727, Pergamon Press, Driver, D. (1985). Metals and Materials, June, Oxford.

345–54, Institute of Materials, London. Hancock, J., Dillamore, I. L. and Smallman, R. E.

Gilman, P. (1990). Metals and Materials, Aug, 505, (1972). Metal Sci. J., 6, 152.

Institute of Materials, London.

426 Modern Physical Metallurgy and Materials Engineering Kim, Y-W. and Froes, F. H. (1990). High-Temperature

spray methods). Metals and Materials, September, Aluminides and Intermetallics , TMS Symposium,

551–555, Institute of Materials.

ed. by Whang, S. H., Lin, C. T. and Pope D. Noguchi, O., Oya. Y. and Suzuki, T. (1981). Metall. Trans. 12A , 1647.

Chapter 13

Sidjanin, L. and Smallman, R. E. (1992). Mat. Science and Technology , 8, 105.

Bonfield, W. (1997). Materials World, Jan, 18, Insti- Smithells, C. J., Smithells Metals Reference Book, 7th

tute of Materials.

edn. Butterworth-Heinemann. Vincent, J. (1990) Metals and Materials, June, 395, Woodfield, A. P., Postans, P. J., Loretto, M. H. and

Institute of Materials.

Smallman, R. E. (1988). Acta Metall., 36, 507. Walker, P. S. and Sathasiwan, S. (1999), J. Biomat.

Chapter 10

Chapter 14

Bovenkerk, H. P. et al . (1959). Nature , 184 , 1094–1098.

Butterfield, B. G. and Meylan, B. A. (1980). Three- Green, D. J. (1984). Industrial Materials Science and

Dimensional Structure of Wood: an Ultrastructural Engineering , ed. by L. E. Murr, Chapter 3, Marcel

Approach , 2nd Edn. Chapman and Hall, London. Dekker.

Easterling, K. E. (1990). Tomorrow’s Materials. Insti- Headley, T. J. and Loehmann, R. E. (1984). J. Amer.

tute of Metals, London.

Ceram. Soc. Sept, 67 , 9, 620–625. Haines, R. C., Curtis, M. E., Mullaney, F. M. and Ubbelohde, A. R. J. P. (1964). BCURA Gazette, 51,

Ramsden, G. (1983). The design, development and BCURA Ltd, Coal Research Establishment. Stoke

manufacture of a new and unique tennis racket. Orchard, Cheltenham, UK.

Proc. Instn. Mech. Engrs. 197B , May, 71–79. Wedge, P. J. (1987). Metals and Materials, Jan, 36–8,

Horwood, G. P. (1994). Flexes, bend points and Institute of Materials.

torques. In Golf: the Scientific Way (ed. A. Cochran) Aston Publ. Group, Hemel Hempstead, Herts, UK.

Chapter 11

pp. 103–108. L¨uthi, J. (1998). Just step in, push down, and go. Polymeric Materials (1975). copyright  American

Engineering Design , 98-3, Du Pont de Nemours Society for Matals Park, OH.

Internat. SA, P.O. Box CH-1218, Le Grande- Saconnex, Switzerland. (‘Crocodile’ snowboard binding, Fritschi Swiss Bindings AG, CH-3714,

Chapter 12

Frutigen).

Barrell, R. and Rickerby, D. S. (1989). Engineering McMahon, C. J. and Graham, C. D. (1992). Introduc- coatings by physical vapour deposition. Metals and

tion to Materials: the Bicycle and the Walkman . materials , August, 468–473, Institute of Materials.

Merion Books, Philadelphia. Kelly, P. J., Arnell, R. D. and Ahmed, W. Materials

Pratt, P. L. (1992). The arrow, Appendix to Longbow: World . (March 1993), pp. 161–5. Institute of Mate-

A Social and Military History , 3rd edn by Robert rials.

Hardy, Patrick Stephens, Cambridge. Weatherill, A. E. and Gill, B. J. (1988). Surface engi-

neering for high-temperature environments (thermal

Index

Acceptor level, (band theory), 184 stress-anisotropy of plastics, 129 Acetabular cup (hip joint), 394, 398

wood, 407

Acheson carbothermic process, 334, 341 Annealing, 53, 86, 98, 117–9, 237–45 283, 378, see also Acrylonitrile-butadiene-styrene (ABS), 354, 355, 356, 357

Grain growth; Preferred orientation; Recovery stage of Activation energy (Q), see Arrhenius equation

annealing; Recrystallization; Twinning Additives:

Annealing point (glass), 345

anti-oxidant, 353 Anti-phase boundaries (APB), 178, 214, 232, 313 anti-ozonant, 353

Archery bows, arrows, strings 411–3 filler, 352

Arrhenius equation, 80, 89, 175, 177, 178, 218, 237, 246, plasticizer, 352

Adhesives, 414 Ashby diagrams, 168, 286, 356 Age-hardening, 260, 261–2, see also Hardening

atomic mass, relative, 7

Alloying elements in steel, 278, 283, 290, 298–9

atomic number (Z), 4, 133

Alnico alloys, 191

atomic volume, 168

Alumina:

Bohr model, 2

crystal structure, 26

energy states, 9–10

deformation, 103, 116

interatomic distance, 21

fibre reinforcement, 369, 371

nuclear cross-section, 88

laser ruby, 196

transmutation, 88

nanocomposites, 374

see also Electron

refractories, 323 Auger electron spectroscopy (AES), 46, 150, 154 specific moduli, 321

Ausforming, 283

strength-probability-time diagram, 349

Austenite, 60–1, 76, 274

zirconia-toughened, ZT(A), 331 Austempered ductile iron (ADI) 304–5 Aluminium alloys, 316–17, 412, 414

Austempering, 283, 304

Al-Ag, 263–4

Avogadro constant (N), 21

Al-Li alloys, 317

Avrami equation, 240, 276

designation (IADS), 316 mechanical alloying, 318–9

Bain transformation theory, 279 rapid solidification processing, 318

Bainite, 274, 282

superplastic, 317–8 Band structure (electronic), 181–3 Anelastic behaviour, 176

conduction band, 183, 193, 194 Anisotropy:

diamond, 339–40

anisotropic thermal expansion, 121

magnetism, 189

baked carbons, 340

optical behaviour, 195

birefringence in crystals, 129 valency band, 183, 184, 193, 194 composites, 362, 369

Bardeen, Cooper and Schrieffer (BCS) theory of development during solidification, 45

superconductivity, 186

elastic, 203

Barkhausen effect, 190

optical properties of crystals, 129

Basquin’s law 253

428 Index B-H curves for magnets, 189,

Ceramics:

Bauschinger effect, 235

classification, 320

Bauxite, 324–5 elastic deformation 203 Beam theory (bending), 413

firing, 322, 325, 326 Bearings, 61

general properties, 321–2 Bend test, 201, 412

optical applications 195 Berman-Simon line, 338

production of powders, 322–3 ‘Beryllium-copper’, 53, 260, 411

testing, 200–1

Bicycle frames, wheels, 413–5 thermal shock resistance, 334 Biomaterials:

time-dependence of strength, 348–9 bioactive, 394, 395, 399

transformation-toughening, 330 biocompatible, 394, 399, 401

Channelling patterns, 145–6 biodegradable, 395, 405

Chemical stress, 89

bioinert, 394

Chemisorption, 378

biometric, 404 Coble creep 175–6, 249 mechanical properties, 396

Coffin-Manson law 253 requirements, general, 394–5

Coherency (interfaces): Bismaleimides (BMI), 367

devitrification, 332 Bloch wall, 190

inoculation, 45

Boart, 337 laser-heated surfaces, 392–3 Boltzmann constant, 51, 80, 85

nucleation in solids, 82–3 Bonding, interatomic, 7–10

precipitation-hardening, 262 8-N Rule, 9

recrystallization, 245 bonding and energy levels, 9

strain, 191

covalent, 9 Cold-drawing (plastics), 355 ionic, 8

Collagen, 397, 400, 402 metallic, 8

Colour, 195

van der Waals, 9 Compliance, elastic, 202, 413 Bone, human:

Composites, fibre-reinforced: fracture repair, 397

principles:

osteoblasts, osteocytes, osteons, 398 functions of matrix, 361 see also Joints

modulus ratio versus stress ratio, 362 Boric oxide, 30

Rule of Mixtures, 362 Boron nitride, 23

see also Fibres

Bragg diffraction law, 134, 135, 141

types:

Brasses: carbon fibre (CFRP), 367, 369, 408, 410, 412 brazing alloys, 414

ceramic-matrix (CMC), 372–3 compounds, 24, 78

continuous-fibre, 361–3 phase diagram, 60

duplex steel 416 season cracking, 386

glass-reinforced (GRP), 361, 366 Bridgman method (single crystals), 47

metal-matrix (MMC), 368–72 Bright-annealing of copper, 378

polymer-matrix (PMC), 366–7 Brillouin zone, 75, 77, 181–2

Bulk density, 321

AB-type, 24

Bulk modulus, 197

AB 2 -type, 24

Burgers vector, 91–2, 102, see also Thompson AB 2 O 4 -type (spinel), 26–7 tetrahedron

ABO 3 -type, 26 deviation from stoichiometric composition, 87 electrochemical, 76–7

Capacitors, 193–4

electron, 78–9

Carbon, 337–45, 353 intercalation, 343–4 Carbon electrodes, baked, 340

intermetallic, 312–5 Carbon, vitreous, 343

Laves phases, 77

Cast ingot structure, 44–5 order-disorder transitions, 79–80 Cast irons, 303–5

size-factor, 77

austempered ductile (ADI), 304 Conservative motion, of dislocations, 94 grey, 304

Consid`ere’s construction, 199 malleable, 304

Conversion factors and constants, 422–3 mottled, 303

Coordination:

spheroidal graphite (SG), 304 coordination number (CN), 20 white, 303

ionic crystals, 22

Cathodic (sacrificial) protection, 386, 415 Pauling Rules 22–4 Cement and concrete:

radius ratio (r/R), 22 reinforcement, 372

Cordierite, 72

thermal analysis, 165

Cords in glass, 117

Cementite, 60, 274

Coring, 53–4

Index 429 Corrosion, aqueous:

Curie temperature (point), 27, 190 differential aeration cell, 382

Curing of thermosetting resins, 37, 357, 415 electrochemical principles, 382–4

Czochralski ‘crystal-pulling’ (single crystals), 47 failures, 386–7 inhibitors, 384 passivity, 384, 385–6

Dacron 400–3, 413

prevention, 384–6 Damping capacity, 176, 407–8 Corrosion-fatigue, 254, 387

de Broglie relation, 10, 125

Crazing of plastics, 355–6 Debye characteristic temperature, 170–1 Creep, metallic 199–200, 245–51

Debye-Scherrer (power) method of X-ray analysis, 136 fracture, 249

Deep-drawing, 234

grain boundary diffusion (Coble), 175–6, 249

Defects:

grain boundary sliding, 247, 258

ceramics, 323

Herring-Nabarro, 176, 249

defect lattice, 80

tertiary, 249

defect tetrahedra, 108

testing, 199–200

glasses, 117

transient and steady-state, 245–6

line, 90–7

Creep-resistant alloys, 249–51

planar, 97–103

Critical field and temperature (superconductivity),

Crystal structures: see also Vacancies; Dislocations; Radiation damage; alumina, 26

Stacking fault; Voids

barium titanium oxide, 26

Deformation, elastic, 201–3

boron nitride, 23 Deformation mechanisms (Ashby) maps, 176, 251–2, 356 cristobalite, 25

Cu 3 Au, 79 CuAl 2 0

dislocations, 90

, 270 intermetallic compounds, 312 CuZn, 24, 79

theoretical, calculation of, 21, 168 diamond, 21, 103

various materials, 321

Fe 3 Al, 79

see also Property ratios

graphite, 21, 341–4

Dental materials, 395–7,

Kaolinite, 29

bioglass, 397

Ll 2 structure, 115

martensite, 278 Detonation-gun (D-gun) method of coating, 391 metals at room temperature, 20

Devitrification, 31, 117, 331–2 345 MgCu 2 , 77

perovskite, 26, 187

Dezincification, 386

Potassium graphite 343–4

silicon nitride, 326

natural, 337–8

TiAl ⊲Ll 0 ⊳ , 314–5 polycrystalline (PCD), 340, 371 zinc sulphide (blende), 23

Crystallinity in polymers, 36–7, 38 Dielectric materials, 70, 72 193–4, 324 chain-folding model, 39

Differential scanning calorimetry (DSC), 165–6 crystalline melting point ⊲T m ⊳ , 38, 355

Differential thermal analysis (DTA), 165 defects, 116–7

Diffusion:

microscopy, 129–30

Cu/Zn couple, 60

spherulites 40, 117, 355 diffusion coefficient (D), 173 Crystallography:

Fick’s 1st law, 173, 175

axial ratio (c/a), 15, 19, 204, 278

Fick’s 2nd law, 54, 173

crystal systems, 12

interstitial, 174

directions and planes, 14–16

mechanisms, 173–5

equivalence, 16

oxidation, during, 379

interplanar spacing, 134

Miller-Bravais indices, 15

reptation in polymers, 41

Miller indices, 14

self- 86, 175

reciprocal lattice, 141–2

stress-induced, 174–5

stereographic projection, 16–19

unit cell, 12

vacancy, 174

Vector Addition Law, 17

Diffusion bonding, 370

Weiss Zone Law, 16

Dilatation strain, 202, 215

430 Index Dilatometry, 169

Electrical contacts, 62

Dipoles in dielectric materials, 193, 194 Electrochemical effect, in alloying, 73, 74 Dislocation:

Electrochemical Series, 383 behaviour of:

Electrode (half-cell) potential, 382 ‘atmosphere’ (Cottrell) locking, 212, 214–6

Electrographites, 340

chemical stress, response to, 90 Electromagnetic spectrum, 125, 194 climb, 93, 94, 110–2, 237, 246–7, 288

Electron:

cross-slip, 93, 101–2, 210, 214, 230, 232, 268 –atom ratio (e/a), 75, 78, 186 decoration of, 155

Auger, 142, 143, 150, 154 dissociation, 99–100, 105, 108, 116

band structure theory, 181–3 Frank-Read source, 210, 223, 265

back-scattered (BS), 144, 150 interaction, 96

exchange energy (magnetism), 190 Lomer-Cottrell barrier, 103, 107

‘gas’, 8

motion, conservative and non-conservative, 94

orbitals, radii of, 190

multiplication, 210 polarization in dielectrics, 193 pile-up, 247, 288

quantum numbers, 2–4

characteristics:

secondary, 150

Burgers vector, 91–2 states, density of, 9–10, 75–6, 182 density, 230, 237, 371

states, filling of, 3–7

force acting per unit length, 92

volt, 10

image formation in TEM, 147, 155–6 see also Atom: Electron microscopy jog, 93–4, 97, 108

Electronegativity, 74,77

kink, 216 Electron energy loss spectroscopy (EELS), 150, 152–4 line tension, 210

Electron microscopy, 142–54 loops, see Dislocation loops

back-scattered (BS) electrons, 144 strain energy, elastic, 95–6

bend (extinction) contours, 156 velocity, 207–8

bright-and dark-field imaging, 147, 161 width, 207

convergent beam diffraction pattern (CBDP), 149 forms:

diffraction contrast, 147

dipole, 94, 228 dynamical theory, 158–60 edge, 91

electron channelling, 145–6 extended, see Stacking faults

first-order Laue zones (FOLZ), 150 extrinsic, 98

g -vector, 156–8

‘forest’, 93, 238 higher-order Laue zones (HOLZ), 149 grain boundary (gbds), 97–8

higher-voltage electron microscopy (HVEM), 149–50 intrinsic, 98

imaging of dislocations, 147, 157–8, 159, 166 ionic crystals, fcc, 97

Kikuchi lines, 148

misfit, at interface, 83

kinematical theory, 156

partial (Shockley), 99, 105 scanning electron microscope (SEM), 144–6 screw, 91, 97

scattering of plasmons and electrons, 142–3 sessile (Frank), 102

selected area diffraction (SAD), 147 stair-rod, 102, 107–108

transmission electron microscope (TEM), 143–4 superdislocations, 114, 214, 231

weak-beam, 160–1

unit, 106 Electron probe microanalysis (EPMA), 150–2 loops:

Electro-optic ceramics, 196 cross-slip multiplication source, 210–1

Emery, 324

double, 107, 111, 119

Epitaxy, see Coherency

growth and stability, 117, 269 Epoxy resins (adhesives), 36, 412, 415 irradiation effects, 119–20

Equilibrium diagrams, see Phage diagrams Orowan, 231, 266, 371

Etching techniques for microscopy, 126, 154 prismatic, 94, 106, 119

Eutectic reaction:

sessile (Frank), 102, 104, 107, 121

binary systems, 56

single, 91, 93

in-situ composites, 374

Domain structures, 178, 190

ternary systems, 66–9

Dough-moulding compounds (DMC), 366 Eutectoid reaction, 58, 274 Drug delivery, polymeric, 405

Ewald ‘reflection’ sphere, 141–2, 148, 156 ‘Ductile’ ceramics 286–7

Extended X-ray absorption fine-structure spectroscopy Dulong and Petit law, 170, 179

(EXAFS), 163

Duplex (double) ageing, 271 Extrusion of plastics, 356–7 Duplex steel, 416 Duralumin alloys, 260

Fatigue, 200, 252–8

Basquin’s Law, 253

Elastomers, 35–6 Coffin-Manson Law, 253 Electrical conductivity, 181–3

cracking and failure, 256–8, 295–6, 413, 416 ceramics, 321

corrosion-, 254, 387

effect of ordering, 180

endurance limit, 200

Index 431 fatigue limit, 252, 254

Glass:

fatigue ratio, 253

manufacture:

hardening, 256

commercial glass, of 31

high-temperature, 258

formation from melt, 31

Miner’s hypothesis, 254 working range of temperature, 345–6 S-N diagram, 200, 252

see also Fluxes

surface striations, 257–8

specific moduli, 321

Fencing foils, 415–6 time-dependency of strength 348 Fermi surface (level), 10, 75, 183, 186, 189

viscosity, 333, 345

Ferri-and ferroelectric materials, 194

structure:

Ferrite, 60, 76, 274, 301 devitrification, 31, 117, 331–2, 345 Fibres for composites:

network-formers, 31

aramid, 367 network-modifiers, 31, 117 aspect ratio, 363

network structure, 11, 31

boron, 369

types:

carbon, 367 AR-, E-, H-modulus, S-, 366 coupling agents, 364

aluminosilicate, 346

critical length, 363

borosilicate (Pyrex), 346

glass, 285, 361, 366 chemically-strengthened, 346–7 lay-up sequence, 365

‘fused quartz’ 345

orientation, 364–6

laminated, 347

stress transfer length, 363

‘lead crystal’, 346

Floating-zone technique (single crystals), 47 thermally-tempered, 346–7 Flow stress 203, 206, 219, 233, 235, 268

Glass transition point ⊲T g ⊳

Glaze, 324

glasses, 30, 31

Globars (SiC), 336

silicon nitride, 326 Golf club shaft, and heads 410–1 solders, 56

Goss texture, 146

Foams (polymeric), 169, 287 418

Grain boundary:

Forsterite ceramics, 71 cavitation during fatigue, 258 Fracture:

coincident site lattice (CSL) model, 98 brittleness in ceramics, 286–8

diffusion creep (Coble), 176, 249 cleavage, 199, 288–9

dislocation pile-up at, 155

creep, 249, 293–4

fracture effect on, 290

cup-and-cone, 199 grain boundary sliding, 247–8, 258, 288 debonding in composites, 364, 371, 372

high-angle, 43, 97, 239

ductile-brittle transition, 198, 289 intergranular nucleation, 240 ductile fracture, 104, 292–3

low-angle (tilt), 43, 97

fatigue, 256–8, 295–6, 348

tripe junction, 99

fracture mechanism map, 294–5

twist, 97

hydrogen, effect of, 291

work-hardening at, 231–2

intercrystalline, 199

Grain growth, 242–3

intergranular, 287

Grain size:

slow (delayed) crak growth in ceramics, 348

dual-phase steels, 301

toughness, 285–7 heat-treatment (steel), effect on, 276–7 toughness parameter ⊲K c ⊳ , 199, 286

toughness, effect on, 289–90 transformation-inhibited, 331

Hall-Petch equation, 216, 219–20, 224, 289 twins, effect of, 224

measurement, 131–2

Frank Read Source, dislocations, 210, 223, 265 yield strees, effect on, 219–20 Fretting corrosion, 387

Grain structures:

Fullerenes and fullerite, 344

cell formation, 230, 238

‘Fused quartz,’ 345

chill crystals, 44

Fusible alloys, 68, 408

columnar crystals, 45, 46 equiaxed grains, 43, 45 planes of weakness, 45

Galvanic Series, 383, see also Electrochemical Series

Graphite:

Gauss error function, 174

conventional structure, 22

GEC process for synthesizing diamonds, 338 intercalation compounds, 344 Gibbsite, 325

pyrolytic (PG), 341–3, 368, 402

432 Index Graphite: (cont.)

Johnson-Mehl equation, 240 turbostratic, 367

Joining:

‘Green’ powder compact, 322, 325 adhesives, 414 Greninger-Troiano theory, 279

brazing, 414 Griffith micro-crack criterion, 284, 289

HAZ problems, 414 Griffith-Preston (GP) zones, 261, 267–8

Tungsten-inert gas (TIG) welding, 414 g -vector in electron microscopy, 157–8

Joints, human: failure, 399 finger, 399

Hall-Petch equation, 216, 219, 224, 289 hip, 394, 398 HAPEX , composite, 399, 402

knee, 399

Hardening: shoulder, 399 chemical, 266

wrist (carpal), 400 coherency strain-, 265–6

dispersion-, 231, 250, 266–7, 301, 302 Kaolinite, 29, 63 fatigue-, 255–6

K Oe torsion pendulum, 177 heat-treatment of steels, 274–84

Kear-Wilsdorf (K-W) lock, 232 irradiation, 290

Kevlar , 367, 408, 410 point defect, 224–6

Kikuchi lines, 148, 157 precipitation-, 53, 259–74, 317

Kirkendall effect, 123, 175 secondary, 283

inverse, 123 texture-, 233–5

Kurdjumov-Sachs orientation relation, 278 work (strain)-, 226–32

Hardness (indentation): Larsen-Miller parameter, 308 Brinell, 199

Lasers, 195–6, 412 hot, 329

Lattice friction, 207, 225 Knoop, 130

Lattice rotation, 205–6 Meyer line, 131

Laue method of X-ray analysis, 135 microhardness, 130–1

Laves phases, 26, 77 Vickers, 130, 199

Le Chatelier principle, 49 Heat-affected zone (HAZ), 405, 414

‘Lead crystal’ glass, 346 Heisenberg’s Uncertainty Principle, 2

Lever Rule, 52 Helmets Safety, 417–8

Liquid pressure forming (LPF), 370 Herring-Nabarro Creep, 176, 249

Liquidus, 52

Heusler alloy, 188, 192 Littleton softening point (glass), 345 Hooke’s Law, 197, 202

Lomer-Cottrell barrier 103, 107 Hume-Rothery Rules, 73

L¨uders band, 211–2 Hund’s Rule, 4, 7 Hydrogen embrittlement, 291

M s temperature, 276, 281, 283 Hydroxyapatite (HA), 396, 397, 399, 402

Magnesia (MgO), 8, 115 Magnet:

Impact testing, 199, 418 hard (permanent), 188–9, 191 Internal friction, 176–7

soft (temporary), 188–9, 191 Investment casting (‘Lost wax’ process), 410

Magnetic alloys, 191–2 Ionic crystals:

Magnetic hysteresis (B-H loop), 189, 191 coordination in, 22

Magnetic remanence, 189 dislocations in, 97

Magnetic susceptibility, 188–9, 192 In-situ composites, 373–4

Magnetism:

Inclusion counting methods, 131–2 anti-ferro-, 162, 192 Inoculation of melts, 45

dia-, 189 ferri-, 193

Insulators, electrical, 193–4 ferro-, 162, 172, 188, 189–90 Intermediate phases, 59, see also Commpounds

para-, 162, 188 Intermediate compounds, 312–5, 370

Magnetostriction, 191 Interstitial atoms, 86–7, 122

Magnox alloys, 258 ‘Invisibility’ criterion (g) in electron microscopy,

Manganese sulphide in steel, 60 157–8

Martempering, 283 Ion implantation, 391–2

Martensite, 61, 76, 274–5, 278–83 Iron, 172

Material property (Ashby) chart, 168, 286 Iron-nickel alloys (Permalloys), 191

Maxwell-Boltzmann distribution law, 80 Iron-silicon alloys (magnets), 191, 243

Mechanical alloying, 301–2, 318–9, 369 Isoforming, 283, 284

Meissner effect, 186 Isostatic pressing:

Melt flow index (MFI) test, 358 alumina, 325

Melting point: silicon nitride, 325–6

congruent, 52, 58, 66 Isothermal annealing, 283

creep-resistant alloys, 249

Index 433 electrochemical effect in alloying, 74

Nitridation, 325–6

incongruent, 58 Non-destructive evaluation (NDE) of ceramics, 323, 337 intermetallic compounds, 312

Notch-sensitivity, see Fracture; Impact testing intermediate phase, of, 76–7

Nuclear fission, 88, 122, 161

pure metal, 42 Nucleation and growth processes: Michel-L´evy colour chart, 129

defect tetrahedra, 108

Microscopy, light:

glass-ceramics, 332

etching, 126 heterogeneous nucleation, 43, 82 hot-stage, 129–30

homogeneous nucleation, 42, 81–2, 332 illumination, bright- and dark-field, 126

nucleating agents (inoculants), 45, 333 magnification, 127

nucleation in solids, 82–3

microhardness testing, 130–1

oxidation, 378

numerical aperture (NA), 127

pearlite formation, 276–8

objective lens, 126 precipitation-hardening, 53, 259–60, 270–1 Burch reflecting, 130

recrystallization, 239–42

oil-immersion, 127 spherulite formation in polymers, 40 ocular lens, 126, 127

twinned crystals, 222–3

parfocalization, 127 phase-contrast, 127–8

void formation, 104, 292, 371 polarized light, 129 Nylon , 355, 359, 366, 409

quantitative, 131–2 grain size, 131 inclusions, 131

Ophthalmic materials (lenses), 404 stereological notation, 131

Optic axes of crystals, 129

resolution, 126

Optical fibres, 195

tube length, 127 Optical properties, 195–6, 339 Miller-Bravais indices, 15–16

Ordering of atoms:

Miller indices, 14 effect on physical properties, 179–80 Mineralizers, 25

entropy of disorder, 49–51

Miscibility, solid see Solid solution

irradiation effects, 123–4

Modifiers, see Glass

magnets, in, 191–2

Modulus of rupture (MoR), 201, 321, 411 order-disorder transformation, 60, 79–80 Moduli, elastic, 197, 203, 321, 396

ordered solid solutions (superlattice), 79, 113–4, 178, Molecular mass distribution (MMD):

in polymers, 33, 360 short-range, long-range 11–12, 177–8 polydispersivity index, 33

work-hardening, effect of, 231–2 Molecular sieves, 30

Orowan loops, 231

Molybdenum disulphide, 22

Ostwald ripening, 272

Moment of Inertia (I), 410, 413

Overvoltage, 383

Monel , 52

Oxidation of metals:

Monotectic reaction, 59, 61, 64

kinetics, 378–80

Moulding of plastics: logarithmic rate law, 379–80 blow-, 357, 359

parabolic rate law, 379

injection-, 356–7, 360

thermodynamics, 376–8

reaction injection- (RIM), 357–8 tennis rackets, 408

Mullite, 63, 335

Pacemaker, heart, 403

Multiple cross-slip (Koehler), 210 p -type semiconductors, 87, 184, 380, 381 Mylar , 413

p-n-p semiconductor, 184–5 Paris-Erdogan (fatigue) equation, 295–6

n -type semiconductor, 87, 184, 380, 381

Particles, precipitate:

Nanocomposites, 374

coarsening of, 272–3

N´eel temperature, 192

stability of, 74

‘Necking’ during tensile test, 198 Pauli Exclusion Principle, 2, 9, 190 Nernst equation, 383

Pauling Rules, of coordination, 22–4 Neumann bands, 223

Pearlite, 60, 276–8

Neutron: Peierls-Nabarro stress, 207, 213, 280, 312 diffraction, 161–2, 179

Periodic Table, 4–7, 74, 151

mass absorption coefficients, 162

Peritectic reaction:

scattering amplitudes, 162 in binary systems, 57–8, 60 ‘thermal’, 161

in ternary systems, 69

Newtonian flow, 345, 358

Peritectoid reaction, 58

Nichrome alloy, 382

Permalloys , 191

Nickel aluminides, 312–4

Permittivity, 193

Nimonic alloys, 249, 295 Persistent slip band (PSB), 255–7 Nishiyama orientation relation, 279

Phase, 48

434 Index Phase diagrams:

Piezoelectric effect, 194

principles: Pilling-Bedworth (P-B) ratio, 379 arrest points, 60

Pistons, diesel, 371

binary, 52 Plasma-spray method of coating, 391 double-reciprocal, 327

Plasmon interactions, 142, 153–4 Gibbs triangle, 65

Platinum phthalocyanine, 117 Lever Rule, 52, 56

Plasticity, macroscopic, 235–7 limitations, 59–60

Poisson ratio, 197, 202

liquidus, 52

Polarization, 193, 194

miscibility gap, 123 Polarized light microscopy, 129 Phase Rule, 64

spherulites in polymers, 40 solidus, 52

Polyacrylonitrile (PAN), 366, 408 solvus, 52

Polybutadiene, 36

ternary, 65–72

Polybutylene (PB), 353

Polyester resin, 37, 366

systems; Polyether ketone (PEEK), 366, 409 Al-Cu, 78, 259–60

Polyethylene (PE), 33, 39, 41 Al 2 O 3 SiO 2 , 63

linear low-density (LLDPE), 353 Au-Ni, 73

low-density (LDPE) and high-density (HDPE), 34, 38, Au-Pt, 73

Cr-S-O, 382 ultra-high molecular weight (UHMPE), 353 Cu-Ag, 73

Polygonization, 238

Cu-Be, 53

Polyimides (PI), 367

Cu-Pb, 61–2 Polyisoprene (natural rubber), 36, 354 Cu-Sn, 78

Polymerization:

Cu-Zn, 60, 78 condensation polymerization, 37 Fe-C, 60–1, 274

copolymerization, 35

Fe-Cr, 298

degree of (n), 32–3

vulcanization, 35

2 O 3 SiO 2 , 70–2 Polymethyl methacrylate (PMMA), 38, 352, 357 Mg-Si, 59

Fe-Ni, 298

Polypropylene (PP), 34, 35, 39, 130, 353, 354, 355, 359, Ni-Cu, 52, 73

Ni-Pt, 73 Polystyrene (PS) 34, 38, 40, 352, 354, 355, 356 Ni-S-O, 64–382

Polytetrafluoroethylene (PTFE),352, 366 Pb-Sn, 57

Polytypoids (polytypes), 328, 334 Polyvinyl acetate (PVAc), 34

Si-Al-O-N, 327 Polyvinyl butyrate (PVB), 347 Ti-Al, 309

Polyvinyl chloride (PVC):

Ti-Cu, 309 plasticized, 34, 352, 353, 357 Ti-V, 309

unplasticized (UPVC), 353 ZrO 2 Y 2 O 3 , 330

Porosity, gas:

Phase equilibrium: scavenging treatment of melts, 45–6 Class I reactions, 68

Sievert’s relation, 45

Class II reactions, 69

Pourbaix diagram, 384

Class III reactions, 69 Powder (Debye-Scherrer) method of X-ray analysis, 136, four-phase, 68–9

two-phase, 52–6 Powders, ceramic 322–3, 324–5, 334 three-phase, 56–8, 61–8

Preferred orientation:

Phase Rule, 48–9, 64

annealing texture, 233

Phase transformations:

cube texture, 191, 245

austenite-bainite, 282 deformation textures, 232–3 austenite-martensite, 278–82

Goss texture, 146, 243

ceramics, 63 recrystallization texture, 245 conversions, 24–5

texture transition, 233

devitrification, 31 Preferred (Renard) numbers, 127 diffusionless, 275

Prepregs (pre-impregnated shapes), 366 inversions, 24

Proof-testing, 201, 348

order-disorder transformation, 60

Property ratios, specific:

pure metal, 48 solidification of pure metal, 42 specific heat, changes in, 171

K lc y , 286, 287

thermodynamical aspects, 50

, 169, 369, 407, 413 volumetric changes, 169

Prosthetic materials:

zirconia, 330–31

ear implants, 402

Phenol-formaldehyde resin (P-F; Bakelite), 36, 37, 357 heart valves and arteries, 402–3

Index 435 maxillofacial surgery, 401

Segregation:

plastic surgery, 400 cellular microsegregation, 54–5 tissue repair, 403

Pyroelectric materials, 194

X-ray analysis of, 141 Selected area diffraction (SAD), 148

Quantum theory, 2–4, 170 Semiconductors, 87, 103, 138, 183–5, 195, 336, 340, 392 Sensitization of austenitic steels, 386

Radiant tubes (gas-fired furnaces), 336 Shape-memory effect (SME), 315 Radiation damage:

‘Sharkskin’ (plastics), 360

damage cascades, 121–3 Shear strength of crystals, theoretical, 90–1 displacement spike, 88

Shear stress for slip, resolved 203–4 electron miroscopy, 149

Sheet moulding compounds (SMC), 357, 366 growth and swelling, 121–3

Shrinkage:

induced precipitation, 123

firing, 325

induced segregation, 123

plastics, 361

microscopy, 149

silicon nitride, 326

neutron ‘annealing’ of metals, 90

solidification, 43

ordered alloys, 123–4

SI units, 420–1

radiation hardening, 225

Sialons, 326–9

thermal spike, 88

Sievert relation, gas, 45

void formation, 104

Reaction-sintering (bonding), 325, 335

Silicon carbide, 24, 334–7

Read-Shockley formula, 97

Silicon-lithium detector, 152

Reciprocal lattice, 141, 148, 156

Silicon nitride, 326

Recovery stage of annealing, 86, 237–8, 246 hot-isostatically-pressed (HIPSN), 326 Recrystallization, 146, 239–42, 243, 293, 319, 342

hot-pressed (HPSN), 326

REFEL silicon carbide, 334 reaction-bonded (RBSN), 325–6 Refractories:

Single crystals:

production for research, 47

modulus of rupture, 201 slip and lattice rotation, 204–5 pyrometric cone equivalent (PCE), 62

stress-strain curves, 226

refractoriness, 63, 322

turbine blades, 46, 250, 307

spalling, 322 X-ray diffraction analysis, 135 types:

Sink-marks (plastics), 361

alumina, 63, 323–4 Sintered aluminium powder (SAP), 242, 250 aluminosilicate 62–3

Sintering, 119, 243, 322, 325, 330 carbon, 337

Size factor, in alloying, 73, 77

insulating, 322 Skiing boots bindings, skis, poles, 417 mullite, 63

Slip:

silica, 63 comparison with twinning, 203 silicon carbide, 334–5

critical resolved shear stress, 205 zirconia, 330–1

dislocation movement, 92–4, 110–1 Relative valency effect, in alloying, 73, 74

lines and bands, 205, 211

Relaxation modulus (polymers), 351

multiple, 205–6

Relaxation time (anelastic), 176, 359 overshooting of primary system, 206 Reptation in polymers, 41

persistent slip band (PSB), 255–6 Resins, thermosetting, 36–8, 357–8, 415

resolved shear stress, 203–4 Resolution, 126

systems in metals, 204

Reversion (retrogression), 260

see also Cross-slip

Rubber:

Snowboarding equipment, 416

decomposition, 164

Sol-gel process, 323

hard (Ebonite), 35

Solders, 56

natural, 354

Solid solution:

repeat units, 36

ceramic, 326

silicone, 36, 371 complete miscibility in ternary system, 66 styrene-butadiene-, 36, 354

coring in, 53–4 extended (continuous), 52

SI units, 420–1

interstitial, 76

diagram (fatigue), 200

ordered, 79

Schmid’s Law, 233 Primary (terminal), 52–3, 74–5 Season-cracking of brass, 386

solvus, 53

Secondary ion mass spectrometry (SIMS) 163–4

substitutional, 73, 79

‘Seeds’ in glass, 117 see also Hume-Rothery Rules

436 Index Solidification:

Strain-anneal technique, for single crystals, 47 cellular front, 54–5

Strain-hardening, see Work-hardening dendritic, 43–4

Strain ratio (R), 234

directional (DS), 46–7, 374 Strength-probability-time (SPT) diagrams, 348 kinectics, of, 81–2

Strengthening, see Hardening plane-front, 43–4

Stress:

pure metal, of, 42

chemical, 89

volume changes, 170

cycles (fatigue), 252–4

Solidus, 52 flow, 203, 206, 219, 233, 235, 268 Solution heat-treatment, 259–60

intensity factor (K), 286

Spark plugs, 324

nominal, 197

Specific heat (capacity), 170–1, 179 Peierls-Nabarro, 207, 213, 288, 312 Specific modulus, 321

relaxation in polymers, 351, 359–60 Spherulites, see Crystallinity in polymers

resolved shear, 203–4, 220, 222 Spinels:

tensor, 202

degree of inversion, 27

true, 198

ferrospinels (ferrites), 27 yield, variation with temperature and strain rate, 208–9 inverse, 27

Stress-corrosion:

oxide scale, 381

ceramics, of, 348

structure, 26–7

cracking (SCC), 386

Spinodal decomposition, 273–4

Stress-recrystallization, 342

Sputtering yield (Y), 389–90 Stress-strain curve, 197, 226–7, 362 Squeeze-casting, 370

Stretcher strain markings, 212 Stacking fault:

Stroh (fracture) mechanism, 288 ceramics, in, 103, 115–6

Styrene-butadiene-rubber (SBR), 36, 354 corrosion, effect on, 386

Superalloys:

cross-slip, 101–2

alloying elements, 305–8

energy, 48, 98, 100 eutectic (NITAC, COTAC), 374 extrinsic, 102

hot corrosion of, 64

imaging in electron microscope, 158, 159 Superconductors, 26, 181, 185–7 intrinsic, 102, 105

Superlattice, see Ordering of atoms ordered structures, 113–4

Superplasticity, 220–1, 317–8 structure, 99–102, 112

Surface (interfacial) energy:

tetrahedra, 93, 104, 107–8

ductile failure, 293

width, 101

grain growth, 242–3

work-hardening, 227 hydrogen embrittlement, 291 Stacking sequences:

nucleation, influence on, 81–2 cubic structures, 19, 112

particle-coarsening, 272–3 fcc crystals, 99, 102

sintering, 243

hexagonal structures, 19, 110–1

triple junctions, 99

intercalation compounds, 343–4 Surgical materials see Prosthetic materials precipitation-hardening, 269

Swell, degree of, 359

pyrolytic graphite, 341–2

Symmetry in crystals:

Laue patterns, 135

porcelains, 70 point and space groups, 18 Steels, types of:

tetrahedral, 18

alloy, 278, 298–9, 302–3 Synchro-shear (Kronberg), 116 austenitic (stainless), 291, 298, 303

Synchrotron radiation studies (SRS), 162–3 designation (BS) of steels, 302–3

dual-phase (DP), 300–1 Tacticity, in polymers; syndio-, iso- and atacticity, 35, 39 duplex, 416

Talc (French chalk), 9, 30

high-strength low-alloy (HSLA), 286, 299–30 TD (thoria-dispersed)-nickel, 250, 295, 307 maraging, 299, 416

Temper embrittlement, 291

mechanically-alloyed (MA), 301–2 Tempering of martensite, 282–3 non-strain-ageing, 212

Tennis racket frames and strings, 407–9 plain carbon, 277, 297–8

Tensile test, 198, see also Yielding, discontinuous Stereographic projection, 16

Thermal analysis, 164–6

preferred orientation, 232–3 Thermal expansion, 168–70, 372, 407 slip, 205

Thermistor (PTC), 185

Thompson tetrahedron, 105 Thermodynamic criteria for equilibrium: Stiffness constants, elastic, 202

entropy, 49–50, 74–5, 374 Stirling’s approximation, 85

free energy, 49–50

‘Stones’ in glass, 117 aqueous corrosion, 382–4 Strain-age hardening, 211, 215, 217–8

oxidation of metals, 376–82

Index 437 recrystallization, 239

chemical stress, 89–90

transformation, of, 171–2

clustering, 104, 120, 269

variation with temperature/composition, 50, 75

creep mechanisms, 247–9

heat content, 49

definition, 84

Thermo-mechanical (THT) treatments, 283

di-vacancies, 89

Thermocouple sheaths, 323

diffusion of, 174–5

Thermoforming of plastics, 356–8

emission, 122

Thermogravimetric analysis (TGA), 164, 379 equilibrium concentration, 85 Thermoplastics, 32–5

fatigue, 254

adhesive, 415 Frenkel defect (vacancy-interstitial pair), 86 copolymer, 35

precipitation, role during, 268–71 flow defects 360–1

Schottky defect (vacancy pair), 86 molecular mass distribution, 33

structural repeat units, typical, 35

Thermosets, 36–8, 357–8, 375, 415 Vacuum melting and degassing, 45 Thompson tetrahedron:

Vapour deposition:

bcc crystals, 112–3 chemical (CVD), 323, 342, 368, 388 cph crystals, 108–12

physical (PVD), 388–90

defect (stacking fault) tetrahedra, 111–2 plasma-assisted chemical (PACVD), 388 fcc crystals 106–7

plasma-assisted physical (PAPVD), 390 ionic crystals, 114–5

Varistor, 185

stair-rod dislocations, 107

Vegard’s Law, 168

Throwing power, 388

Viscoelasticity, 35, 351, 359

Time-temperature-transformation (TTT) diagrams, 274–6,

Titanium alloys, 308–12, 410, 414

thermoplastic melts, 358–9

˛ -stabilizers, in, 308

Voids:

ˇ -stabilizers, in, 308 debonding in composites, 371 commercial, 310–11

ductile fracture, 104, 293

processing, 312

fatigue failure, 256–8

Titanium aluminides, 314–15

formation of, 90, 104

Tool tips, 329

gas-filled, 104

Transducers, 194

irradiation swelling, 122–3

Transformation-toughening (zirconia), 330

sintering, 119

Transformer laminations, 243 von Mises yield criterion, 220, 287 Transistor, 184

Vulcanization, 35

Transmutation of elements, 88

Vycor glass, 48, 333

Tresca yield criterion, 235–6 Turbine blades:

Wagner-Hauffe Rule, 380

ceramic, 322 Waste management (plastics), 354–5 directional solidification of, 46–7

Wave number, 181

superalloys, 305–8

Weld decay, 386

Wiedemann-Franz law, 181

boundary, 98–9 Widmanst¨atten structure, 53, 83, 262 boundary energy, 101

‘Windows’, ceramic, 196

comparison with slip, 203

dislocation (pole) mechanism, 223–4

cell structure, 406

fracture, 224

properties, 407

impurities, effect of, 223

types, 407

prestrain, effect of 223 Work (strain)-hardening, 226–32 stacking sequence, 102, 244

brittle behaviour, 289–90

Tyres, automobile, 353

creep, during, 246–7 dislocation-dislocation interaction, 212

Undercooling, 42

jog theory, 93–4

constitutional, 54–5 Lomer-Cottrell barrier, 103, 107 effect on rate of precipitation, 81

relation to slip, 206

Uranium, 122

Taylor model, 226

Urea-formaldehyde (U-F) resin, 36, 415

X-ray diffraction:

Vacancies:

methods of analysis:

activation energy of formation, 89 diffractometry (XRD), 137–8 activation energy of migration, 89

Laue, 135, 261

438 Index X-ray diffraction: (cont.)

Si-Li detector, 151

topography, 138 wavelength- and energy-dispersive spectrometers, 150–1 powder (Debye-Scherrer), 136, 179 principles: ‘absent’ reflections, 139–40, 141

YBCO (1–2-3 compound) superconductor, 187 asterism, 238, 267

Yielding, discontinuous:

atomic scattering factor, 139 effect of overstraining, 211 Bragg law, 134

effects of temperature and grain size, 217–8 determination of lattice parameters, 140

L¨uders band formation, 211–2 determination of solvus, 140

ordered alloys, 214

intensity of diffraction, 138–40

strain age-hardening, 211

line-broadening, 140–41 yield point (upper, lower), 211 reciprocal lattice, 141–2

Young’s modulus, 197, 203, 321 see also Property ratios reflection (line) number (N), 134

Yttria, 326, 330

small angle scattering (SAS), 141, 261, 262 Yttrium-aluminium-garnet (YAG), 328 structure-factor equation, 139–40

X-rays: Z(AF) micro-analysis technique, 152 absorption coefficients, 133, 162

Zener drag equation, 242–3

characteristic, 133, 150–2

Zeolites, 30

continuous (‘white’) spectrum, 133, 161

Zirconia, 330–1

diffraction by crystals, 134 fully-stabilized cubic (CSZ), 330 extended X-ray absorption fine-structure spectroscopy

partially-stabilized (PSZ), 330, 331 (EXAFS), 163

refractories, 330–1

filtering, 134 tetragonal zirconia polycrystal (TZP), 330, 331 intensity measurement, 138

toughened alumina (ZT(A)), 331 scattering amplitudes, 162

Zone-refining, 46, 55–6, 185