Conversion factors, constants and
Appendix 2 Conversion factors, constants and
physical data
Quantity
Symbol
Traditional units
SI units
101.325 kN m Avogadro constant
1 atmosphere (pressure)
10 5 Nm Boltzmann constant
17 mrad Electron rest mass
1 degree (plane angle)
0.017 45 rad
m e 9.109 56 ð 10
g 9.109 56 ð 10 kg
1 erg (dyn cm) 6.242 ð 10 11 eV 10 J
2.39 ð 10 cal
10 Jm Gas constant
1 erg/cm 2 6.242 ð 10 11 eV cm
8.314 3 J K mol
8.314 3 ð 10 7 erg K mol
1.987 cal K mol
Al
2.71 g cm
2710 kg cm
7870 kg cm Cu
Density Fe 7.87 g cm
8930 kg cm Ni
8.93 g cm
8900 kg cm Electronic charge
8.90 g cm
1 electron volt
Faraday FDN A e 9.6487 ð
1 kilogram-force/cm 2 kgf/cm 2 14.22 lbf/in 2
1 litre
1 0.220 gal
1 dm 3
1 micron
10 4 Angstrom
10 m
10 cm
Conversion factors, constants and physical data 423
Quantity
Symbol
Traditional units
SI units
1 minute (angle)
2.908 ð 10 rad Al
2.908 ð 10 radian
70 GN m Modulus of
Fe 210 GN m elasticity
209 GN m (average)
Ni
Cu 127 GN m Au
79 GN m Planck’s constant
1 pound (force)
lbf
4.448 22 N
1 psi lbf/in 2 7.03 ð 10 kgf/cm 2 6 894.76 N m
83 GN m Shear modulus
Fe 8.3 ð 10 11 dyn cm
74 GN m (average)
1 ton (force)
1 tonf/in 2 1.574 9 kgf/mm 2 15.444 3 MN m
133.322 N m Velocity of light (in vacuo)
c 2.997 925 ð 10 10 cm/s
2.997 925 ð 10 8 ms
Figure references
Chapter 1
Dobson, P., Goodhew, P. and Smallman, R.E. (1968). Phil. Mag. 16 , 9. Taylor and Francis.
Rice, R. W. (1983). Chemtech. 230 Edington, J. W. and Smallman, R. E. (1965). Phil. Mag. 11 , 1089. Taylor and Francis. Hales, R., Smallman, R. E. and Dobson, P. (1968).
Chapter 2
Proc. Roy. Soc., A307, 71. Hameed, M. Z., Loretto, M. H. and Smallman, R. E.
Askeland, D. R. (1990). The Science and Engineering (1982). Phil. Mag. 46, 707. Taylor and Francis. of Materials , 2nd (SI) edn. Chapman and Hall,
Johnston, I., Dobson, P. and Smallman, R. E. (1970). London.
Proc. Roy. Soc. A315 , 231, London. Mazey, D. and Barnes, R. (1968). Phil. Mag., 17, 387.
Taylor and Francis.
Chapter 3
Mitchell, T., Foxall, R. A. and Hirsch, P.B. (1963). Brandes, E. A. and Brook, G. B. (1992). Smithells Phil. Mag. 8 , 1895, Taylor and Francis.
Metals Reference Book . Butterworth-Heinemann, Nelson, R. S. and Hudson, J. A. (1976). Vacancies ’76 . 126. The Metals Society.
Oxford. Panseri, C. and Federighi, T. (1958). Phil. Mag., 3, Copper Development Association (1993). CDA publi-
. Copper Development Association. Partridge, P. (1967). Met. Reviews, 118, 169, Ameri- Keith, M. L. and Schairer, J. F. (1952). J. Geology,
cation 94
can Society for Metals.
, 182, University of Chicago Press Weertman, J. (1964). Elementary Dislocation Theory, Raynor, G. V. Annot. Equilib. Diag. No. 3, Institute of
Collier-Macmillan International. Metals, London.
Westmacott, K. H., Smallman, R. E. and Dobson, P. Williamson, G. K. and Smallman, W. (1953). Acta
Cryst. (1968). Metal Sci. J., 2, 117, Institute of Metals.
Chapter 5
Chapter 4
Askeland, D. R. (1990). The Science and Engineering Barnes, R. and Mazey, D. (1960). Phil. Mag. 5, 124.
of Materials , 2nd edn. p. 732. Chapman and Hall, Taylor and Francis.
London.
Berghezan, A., Fourdeux, A. and Amelinckx, S. Barnes, P. (1990). Metals and Materials . Nov, (1961). Acta Met., 9, 464, Pergamon Press.
708–715, Institute of Materials. Bradshaw, F. J. and Pearson, S. (1957). Phil. Mag. 2,
Cahn, R. W. (1949). J. Inst. Metals, 77, 121. 570.
Dash, J. (1957). Dislocations and Mechanical Proper- Cottrell, A. H. (1959). Forty-sixth Thomas Hawksley
ties of Crystals , John Wiley and Sons. Memorial Lecture, Proc. Institution of Mechanical
Gilman, J. (Aug. 1956). Metals, 1000. Engineers. 14 , Institution of Mechanical Engineers.
Hirsch, P. B., Howie, A. and Whelan, M. (1960). Phil. Diehl, J. Chapter 5 in Moderne Probleme d. Metall-
Trans., A252, 499, Royal Society. physik (1965). ed. by Seeger, A., Bd.l, Berlin, Hei-
Hirsch, P. B. and Howie, A. et al. (1965). Electron delberg, New York, Springer.
Microscopy of Thin Crystals . Butterworths, London.
Figure references 425 Howie, A. and Valdre, R. (1963). Phil. Mag., 8, 1981,
Hirsch, P. B. and Mitchell, T. (1967). Can. J. Phys., Taylor and Francis.
45 , 663, National Research Council of Canada. Vale, R. and Smallman, R. E. (1977). Phil. Mag., 36,
Hull, D. (1960). Acta Metall., 8, 11. 209, Zeiss, C. (Dec 1967). Optical Systems for the
Hull, D. and Mogford, I. (1958). Phil. Mag., 3, 1213. Microscope , 15. Carl Zeiss, Germany.
Johnston, W. G. and Gilman, J. J. (1959). J. Appl. Phys., 30 , 129, American Institute of Physics. L¨ucke, K. and Lange, H. (1950). Z. Metallk, 41, 65.
Chapter 6
Morris, D. and Smallman, R. E. (1975). Acta Met., 23, Ashby, M. F. (1989). Acta Met. 37, 5, Elsevier Sci-
ence, Oxford, pp. 1273–93. Maddin, R. and Cottrell, A. H. (1955). Phil. Mag., 66, Barrett, C. S. (1952). Structure of Metals, 2nd edn.
McGraw-Hill. Puttick, K. E. and King, R. (1952). J. Inst. Metals, 81, Mathias, B. T. (1959) . Progress in Low-Temperature
Physics , ed. By Gorter, C. J., North Holland Pub- Steeds, J. (1963). Conference on Relation between lishing Co.
Structure and Strength in Metals and Alloys , HMSO. Morris, D., Besag, F. and Smallman, F. (1974). Phil.
Stein, J. and Low, J. R. (1960). J. Appl. Physics, 30, Mag. 29 , 43 Taylor and Francis, London.
392, American Institute of Physics. Pashley, D. and Presland, D. (1958–9). J. Inst. Metals.
Wilson, D. (1966). J. Inst. Metals, 94, 84, Institute of
87 , 419. Institute of Metals.
Metals.
Raynor, G. V. (1958). Structure of Metals, Inst. of Metallurgists, 21, Iliffe and Sons, London. Rose, R. M., Shepard, L. A. and Wulff, J. (1966).
Chapter 8
Structure and Properties of Materials . John Wiley and Sons.
Ashby, M. F. et al. (1979). Acta Met., 27, 669. Shull, C. G. and Smart, R. (1949). Phys. Rev., 76,
Ashby, M. F. (1989). Acta Met., 1273–93: Elsevier 1256.
Science Ltd.
Slater, J. C. Quantum Theory of Matter. Brookes, J. W., Loretto, M. H. and Smallman, R. E. Wert, C. and Zener, C. (1949). Phys. Rev., 76, 1169
(1979). Acta Met. 27, 1829. American Institute of Physics.
Cottrell, A. H. (1958). Brittle Fracture in Steel and Other Materials. Trans. Amer. Inst. Mech. Engrs., April , p. 192.
Chapter 7
Fine, M., Bryne, J. G. and Kelly, A. (1961). Phil.
Mag., 6 , 1119.
Adams, M. A. and Higgins, P. (1959). Phil. Mag, 4, 777.
Greenwood, G. W. (1968). Institute of Metals Confer- Adams, M. A., Roberts, A. C. and Smallman, R. E. ence on Phase Transformation , Institute of Metals.
(1960). Acta Metall., 8, 328. Guinier, A. and Fournet, G. (1955). Small-angle Scat- Broom, T. and Ham, R. (1959). Proc. Roy. Soc., A251, tering of X-rays . John Wiley & Sons.
186. Guinier, A. and Walker, R. (1953). Acta Metall., 1, Buergers, Handbuch der Metallphysik. Akademic-
Verlags-gesellschaft. Kelly, P. and Nutting, J. (1960). Proc. Roy. Soc., Burke and Turnbull (1952). Progress in metal Physics A259 , 45, Royal Society.
3 , Pergamon Press. Kurdjumov, G. (1948). J. Tech. Phys. SSSR, 18, 999. Cahn, J. (1949). Inst. Metals, 77, 121.
Metals Handbook, American Society for Metals. Churchman, T., Mogford, I. and Cottrell, A. H. (1957).
Mehl, R. F. and Hagel, K. (1956). Progress in Metal Phil. Mag., 2 1273.
Physics, 6 , Pergamon Press. Clareborough, L. M. Hargreaves, M. and West (1955).
Nicholson, R. B., Thomas, G. and Nutting, J. Proc. Roy. Soc., A232 , 252.
(1958–9). J. Inst. Metals, 87, 431. Cottrell, A. H. (1957). Conference on Properties of
Silcock, J., Heal, T. J. and Hardy, H. K. (1953–4). J. Materials at High Rates of Strain. Institution of
Inst. Metals , 82, 239.
Mechanical Engineers. Cottrell, A. H. Fracture. John Wiley & Sons. Dillamore, I. L., Smallman, R. E. and Wilson, D.
Chapter 9
(1969). Commonwealth Mining and Metallurgy Congress , London, Institute of Mining and
Balliger, N. K. and Gladman, T. (1981). Metal Sci- Metallurgy.
ence , March, 95.
Hahn (1962). Acta Met., 10, 727, Pergamon Press, Driver, D. (1985). Metals and Materials, June, Oxford.
345–54, Institute of Materials, London. Hancock, J., Dillamore, I. L. and Smallman, R. E.
Gilman, P. (1990). Metals and Materials, Aug, 505, (1972). Metal Sci. J., 6, 152.
Institute of Materials, London.
426 Modern Physical Metallurgy and Materials Engineering Kim, Y-W. and Froes, F. H. (1990). High-Temperature
spray methods). Metals and Materials, September, Aluminides and Intermetallics , TMS Symposium,
551–555, Institute of Materials.
ed. by Whang, S. H., Lin, C. T. and Pope D. Noguchi, O., Oya. Y. and Suzuki, T. (1981). Metall. Trans. 12A , 1647.
Chapter 13
Sidjanin, L. and Smallman, R. E. (1992). Mat. Science and Technology , 8, 105.
Bonfield, W. (1997). Materials World, Jan, 18, Insti- Smithells, C. J., Smithells Metals Reference Book, 7th
tute of Materials.
edn. Butterworth-Heinemann. Vincent, J. (1990) Metals and Materials, June, 395, Woodfield, A. P., Postans, P. J., Loretto, M. H. and
Institute of Materials.
Smallman, R. E. (1988). Acta Metall., 36, 507. Walker, P. S. and Sathasiwan, S. (1999), J. Biomat.
Chapter 10
Chapter 14
Bovenkerk, H. P. et al . (1959). Nature , 184 , 1094–1098.
Butterfield, B. G. and Meylan, B. A. (1980). Three- Green, D. J. (1984). Industrial Materials Science and
Dimensional Structure of Wood: an Ultrastructural Engineering , ed. by L. E. Murr, Chapter 3, Marcel
Approach , 2nd Edn. Chapman and Hall, London. Dekker.
Easterling, K. E. (1990). Tomorrow’s Materials. Insti- Headley, T. J. and Loehmann, R. E. (1984). J. Amer.
tute of Metals, London.
Ceram. Soc. Sept, 67 , 9, 620–625. Haines, R. C., Curtis, M. E., Mullaney, F. M. and Ubbelohde, A. R. J. P. (1964). BCURA Gazette, 51,
Ramsden, G. (1983). The design, development and BCURA Ltd, Coal Research Establishment. Stoke
manufacture of a new and unique tennis racket. Orchard, Cheltenham, UK.
Proc. Instn. Mech. Engrs. 197B , May, 71–79. Wedge, P. J. (1987). Metals and Materials, Jan, 36–8,
Horwood, G. P. (1994). Flexes, bend points and Institute of Materials.
torques. In Golf: the Scientific Way (ed. A. Cochran) Aston Publ. Group, Hemel Hempstead, Herts, UK.
Chapter 11
pp. 103–108. L¨uthi, J. (1998). Just step in, push down, and go. Polymeric Materials (1975). copyright American
Engineering Design , 98-3, Du Pont de Nemours Society for Matals Park, OH.
Internat. SA, P.O. Box CH-1218, Le Grande- Saconnex, Switzerland. (‘Crocodile’ snowboard binding, Fritschi Swiss Bindings AG, CH-3714,
Chapter 12
Frutigen).
Barrell, R. and Rickerby, D. S. (1989). Engineering McMahon, C. J. and Graham, C. D. (1992). Introduc- coatings by physical vapour deposition. Metals and
tion to Materials: the Bicycle and the Walkman . materials , August, 468–473, Institute of Materials.
Merion Books, Philadelphia. Kelly, P. J., Arnell, R. D. and Ahmed, W. Materials
Pratt, P. L. (1992). The arrow, Appendix to Longbow: World . (March 1993), pp. 161–5. Institute of Mate-
A Social and Military History , 3rd edn by Robert rials.
Hardy, Patrick Stephens, Cambridge. Weatherill, A. E. and Gill, B. J. (1988). Surface engi-
neering for high-temperature environments (thermal
Index
Acceptor level, (band theory), 184 stress-anisotropy of plastics, 129 Acetabular cup (hip joint), 394, 398
wood, 407
Acheson carbothermic process, 334, 341 Annealing, 53, 86, 98, 117–9, 237–45 283, 378, see also Acrylonitrile-butadiene-styrene (ABS), 354, 355, 356, 357
Grain growth; Preferred orientation; Recovery stage of Activation energy (Q), see Arrhenius equation
annealing; Recrystallization; Twinning Additives:
Annealing point (glass), 345
anti-oxidant, 353 Anti-phase boundaries (APB), 178, 214, 232, 313 anti-ozonant, 353
Archery bows, arrows, strings 411–3 filler, 352
Arrhenius equation, 80, 89, 175, 177, 178, 218, 237, 246, plasticizer, 352
Adhesives, 414 Ashby diagrams, 168, 286, 356 Age-hardening, 260, 261–2, see also Hardening
atomic mass, relative, 7
Alloying elements in steel, 278, 283, 290, 298–9
atomic number (Z), 4, 133
Alnico alloys, 191
atomic volume, 168
Alumina:
Bohr model, 2
crystal structure, 26
energy states, 9–10
deformation, 103, 116
interatomic distance, 21
fibre reinforcement, 369, 371
nuclear cross-section, 88
laser ruby, 196
transmutation, 88
nanocomposites, 374
see also Electron
refractories, 323 Auger electron spectroscopy (AES), 46, 150, 154 specific moduli, 321
Ausforming, 283
strength-probability-time diagram, 349
Austenite, 60–1, 76, 274
zirconia-toughened, ZT(A), 331 Austempered ductile iron (ADI) 304–5 Aluminium alloys, 316–17, 412, 414
Austempering, 283, 304
Al-Ag, 263–4
Avogadro constant (N), 21
Al-Li alloys, 317
Avrami equation, 240, 276
designation (IADS), 316 mechanical alloying, 318–9
Bain transformation theory, 279 rapid solidification processing, 318
Bainite, 274, 282
superplastic, 317–8 Band structure (electronic), 181–3 Anelastic behaviour, 176
conduction band, 183, 193, 194 Anisotropy:
diamond, 339–40
anisotropic thermal expansion, 121
magnetism, 189
baked carbons, 340
optical behaviour, 195
birefringence in crystals, 129 valency band, 183, 184, 193, 194 composites, 362, 369
Bardeen, Cooper and Schrieffer (BCS) theory of development during solidification, 45
superconductivity, 186
elastic, 203
Barkhausen effect, 190
optical properties of crystals, 129
Basquin’s law 253
428 Index B-H curves for magnets, 189,
Ceramics:
Bauschinger effect, 235
classification, 320
Bauxite, 324–5 elastic deformation 203 Beam theory (bending), 413
firing, 322, 325, 326 Bearings, 61
general properties, 321–2 Bend test, 201, 412
optical applications 195 Berman-Simon line, 338
production of powders, 322–3 ‘Beryllium-copper’, 53, 260, 411
testing, 200–1
Bicycle frames, wheels, 413–5 thermal shock resistance, 334 Biomaterials:
time-dependence of strength, 348–9 bioactive, 394, 395, 399
transformation-toughening, 330 biocompatible, 394, 399, 401
Channelling patterns, 145–6 biodegradable, 395, 405
Chemical stress, 89
bioinert, 394
Chemisorption, 378
biometric, 404 Coble creep 175–6, 249 mechanical properties, 396
Coffin-Manson law 253 requirements, general, 394–5
Coherency (interfaces): Bismaleimides (BMI), 367
devitrification, 332 Bloch wall, 190
inoculation, 45
Boart, 337 laser-heated surfaces, 392–3 Boltzmann constant, 51, 80, 85
nucleation in solids, 82–3 Bonding, interatomic, 7–10
precipitation-hardening, 262 8-N Rule, 9
recrystallization, 245 bonding and energy levels, 9
strain, 191
covalent, 9 Cold-drawing (plastics), 355 ionic, 8
Collagen, 397, 400, 402 metallic, 8
Colour, 195
van der Waals, 9 Compliance, elastic, 202, 413 Bone, human:
Composites, fibre-reinforced: fracture repair, 397
principles:
osteoblasts, osteocytes, osteons, 398 functions of matrix, 361 see also Joints
modulus ratio versus stress ratio, 362 Boric oxide, 30
Rule of Mixtures, 362 Boron nitride, 23
see also Fibres
Bragg diffraction law, 134, 135, 141
types:
Brasses: carbon fibre (CFRP), 367, 369, 408, 410, 412 brazing alloys, 414
ceramic-matrix (CMC), 372–3 compounds, 24, 78
continuous-fibre, 361–3 phase diagram, 60
duplex steel 416 season cracking, 386
glass-reinforced (GRP), 361, 366 Bridgman method (single crystals), 47
metal-matrix (MMC), 368–72 Bright-annealing of copper, 378
polymer-matrix (PMC), 366–7 Brillouin zone, 75, 77, 181–2
Bulk density, 321
AB-type, 24
Bulk modulus, 197
AB 2 -type, 24
Burgers vector, 91–2, 102, see also Thompson AB 2 O 4 -type (spinel), 26–7 tetrahedron
ABO 3 -type, 26 deviation from stoichiometric composition, 87 electrochemical, 76–7
Capacitors, 193–4
electron, 78–9
Carbon, 337–45, 353 intercalation, 343–4 Carbon electrodes, baked, 340
intermetallic, 312–5 Carbon, vitreous, 343
Laves phases, 77
Cast ingot structure, 44–5 order-disorder transitions, 79–80 Cast irons, 303–5
size-factor, 77
austempered ductile (ADI), 304 Conservative motion, of dislocations, 94 grey, 304
Consid`ere’s construction, 199 malleable, 304
Conversion factors and constants, 422–3 mottled, 303
Coordination:
spheroidal graphite (SG), 304 coordination number (CN), 20 white, 303
ionic crystals, 22
Cathodic (sacrificial) protection, 386, 415 Pauling Rules 22–4 Cement and concrete:
radius ratio (r/R), 22 reinforcement, 372
Cordierite, 72
thermal analysis, 165
Cords in glass, 117
Cementite, 60, 274
Coring, 53–4
Index 429 Corrosion, aqueous:
Curie temperature (point), 27, 190 differential aeration cell, 382
Curing of thermosetting resins, 37, 357, 415 electrochemical principles, 382–4
Czochralski ‘crystal-pulling’ (single crystals), 47 failures, 386–7 inhibitors, 384 passivity, 384, 385–6
Dacron 400–3, 413
prevention, 384–6 Damping capacity, 176, 407–8 Corrosion-fatigue, 254, 387
de Broglie relation, 10, 125
Crazing of plastics, 355–6 Debye characteristic temperature, 170–1 Creep, metallic 199–200, 245–51
Debye-Scherrer (power) method of X-ray analysis, 136 fracture, 249
Deep-drawing, 234
grain boundary diffusion (Coble), 175–6, 249
Defects:
grain boundary sliding, 247, 258
ceramics, 323
Herring-Nabarro, 176, 249
defect lattice, 80
tertiary, 249
defect tetrahedra, 108
testing, 199–200
glasses, 117
transient and steady-state, 245–6
line, 90–7
Creep-resistant alloys, 249–51
planar, 97–103
Critical field and temperature (superconductivity),
Crystal structures: see also Vacancies; Dislocations; Radiation damage; alumina, 26
Stacking fault; Voids
barium titanium oxide, 26
Deformation, elastic, 201–3
boron nitride, 23 Deformation mechanisms (Ashby) maps, 176, 251–2, 356 cristobalite, 25
Cu 3 Au, 79 CuAl 2 0
dislocations, 90
, 270 intermetallic compounds, 312 CuZn, 24, 79
theoretical, calculation of, 21, 168 diamond, 21, 103
various materials, 321
Fe 3 Al, 79
see also Property ratios
graphite, 21, 341–4
Dental materials, 395–7,
Kaolinite, 29
bioglass, 397
Ll 2 structure, 115
martensite, 278 Detonation-gun (D-gun) method of coating, 391 metals at room temperature, 20
Devitrification, 31, 117, 331–2 345 MgCu 2 , 77
perovskite, 26, 187
Dezincification, 386
Potassium graphite 343–4
silicon nitride, 326
natural, 337–8
TiAl ⊲Ll 0 ⊳ , 314–5 polycrystalline (PCD), 340, 371 zinc sulphide (blende), 23
Crystallinity in polymers, 36–7, 38 Dielectric materials, 70, 72 193–4, 324 chain-folding model, 39
Differential scanning calorimetry (DSC), 165–6 crystalline melting point ⊲T m ⊳ , 38, 355
Differential thermal analysis (DTA), 165 defects, 116–7
Diffusion:
microscopy, 129–30
Cu/Zn couple, 60
spherulites 40, 117, 355 diffusion coefficient (D), 173 Crystallography:
Fick’s 1st law, 173, 175
axial ratio (c/a), 15, 19, 204, 278
Fick’s 2nd law, 54, 173
crystal systems, 12
interstitial, 174
directions and planes, 14–16
mechanisms, 173–5
equivalence, 16
oxidation, during, 379
interplanar spacing, 134
Miller-Bravais indices, 15
reptation in polymers, 41
Miller indices, 14
self- 86, 175
reciprocal lattice, 141–2
stress-induced, 174–5
stereographic projection, 16–19
unit cell, 12
vacancy, 174
Vector Addition Law, 17
Diffusion bonding, 370
Weiss Zone Law, 16
Dilatation strain, 202, 215
430 Index Dilatometry, 169
Electrical contacts, 62
Dipoles in dielectric materials, 193, 194 Electrochemical effect, in alloying, 73, 74 Dislocation:
Electrochemical Series, 383 behaviour of:
Electrode (half-cell) potential, 382 ‘atmosphere’ (Cottrell) locking, 212, 214–6
Electrographites, 340
chemical stress, response to, 90 Electromagnetic spectrum, 125, 194 climb, 93, 94, 110–2, 237, 246–7, 288
Electron:
cross-slip, 93, 101–2, 210, 214, 230, 232, 268 –atom ratio (e/a), 75, 78, 186 decoration of, 155
Auger, 142, 143, 150, 154 dissociation, 99–100, 105, 108, 116
band structure theory, 181–3 Frank-Read source, 210, 223, 265
back-scattered (BS), 144, 150 interaction, 96
exchange energy (magnetism), 190 Lomer-Cottrell barrier, 103, 107
‘gas’, 8
motion, conservative and non-conservative, 94
orbitals, radii of, 190
multiplication, 210 polarization in dielectrics, 193 pile-up, 247, 288
quantum numbers, 2–4
characteristics:
secondary, 150
Burgers vector, 91–2 states, density of, 9–10, 75–6, 182 density, 230, 237, 371
states, filling of, 3–7
force acting per unit length, 92
volt, 10
image formation in TEM, 147, 155–6 see also Atom: Electron microscopy jog, 93–4, 97, 108
Electronegativity, 74,77
kink, 216 Electron energy loss spectroscopy (EELS), 150, 152–4 line tension, 210
Electron microscopy, 142–54 loops, see Dislocation loops
back-scattered (BS) electrons, 144 strain energy, elastic, 95–6
bend (extinction) contours, 156 velocity, 207–8
bright-and dark-field imaging, 147, 161 width, 207
convergent beam diffraction pattern (CBDP), 149 forms:
diffraction contrast, 147
dipole, 94, 228 dynamical theory, 158–60 edge, 91
electron channelling, 145–6 extended, see Stacking faults
first-order Laue zones (FOLZ), 150 extrinsic, 98
g -vector, 156–8
‘forest’, 93, 238 higher-order Laue zones (HOLZ), 149 grain boundary (gbds), 97–8
higher-voltage electron microscopy (HVEM), 149–50 intrinsic, 98
imaging of dislocations, 147, 157–8, 159, 166 ionic crystals, fcc, 97
Kikuchi lines, 148
misfit, at interface, 83
kinematical theory, 156
partial (Shockley), 99, 105 scanning electron microscope (SEM), 144–6 screw, 91, 97
scattering of plasmons and electrons, 142–3 sessile (Frank), 102
selected area diffraction (SAD), 147 stair-rod, 102, 107–108
transmission electron microscope (TEM), 143–4 superdislocations, 114, 214, 231
weak-beam, 160–1
unit, 106 Electron probe microanalysis (EPMA), 150–2 loops:
Electro-optic ceramics, 196 cross-slip multiplication source, 210–1
Emery, 324
double, 107, 111, 119
Epitaxy, see Coherency
growth and stability, 117, 269 Epoxy resins (adhesives), 36, 412, 415 irradiation effects, 119–20
Equilibrium diagrams, see Phage diagrams Orowan, 231, 266, 371
Etching techniques for microscopy, 126, 154 prismatic, 94, 106, 119
Eutectic reaction:
sessile (Frank), 102, 104, 107, 121
binary systems, 56
single, 91, 93
in-situ composites, 374
Domain structures, 178, 190
ternary systems, 66–9
Dough-moulding compounds (DMC), 366 Eutectoid reaction, 58, 274 Drug delivery, polymeric, 405
Ewald ‘reflection’ sphere, 141–2, 148, 156 ‘Ductile’ ceramics 286–7
Extended X-ray absorption fine-structure spectroscopy Dulong and Petit law, 170, 179
(EXAFS), 163
Duplex (double) ageing, 271 Extrusion of plastics, 356–7 Duplex steel, 416 Duralumin alloys, 260
Fatigue, 200, 252–8
Basquin’s Law, 253
Elastomers, 35–6 Coffin-Manson Law, 253 Electrical conductivity, 181–3
cracking and failure, 256–8, 295–6, 413, 416 ceramics, 321
corrosion-, 254, 387
effect of ordering, 180
endurance limit, 200
Index 431 fatigue limit, 252, 254
Glass:
fatigue ratio, 253
manufacture:
hardening, 256
commercial glass, of 31
high-temperature, 258
formation from melt, 31
Miner’s hypothesis, 254 working range of temperature, 345–6 S-N diagram, 200, 252
see also Fluxes
surface striations, 257–8
specific moduli, 321
Fencing foils, 415–6 time-dependency of strength 348 Fermi surface (level), 10, 75, 183, 186, 189
viscosity, 333, 345
Ferri-and ferroelectric materials, 194
structure:
Ferrite, 60, 76, 274, 301 devitrification, 31, 117, 331–2, 345 Fibres for composites:
network-formers, 31
aramid, 367 network-modifiers, 31, 117 aspect ratio, 363
network structure, 11, 31
boron, 369
types:
carbon, 367 AR-, E-, H-modulus, S-, 366 coupling agents, 364
aluminosilicate, 346
critical length, 363
borosilicate (Pyrex), 346
glass, 285, 361, 366 chemically-strengthened, 346–7 lay-up sequence, 365
‘fused quartz’ 345
orientation, 364–6
laminated, 347
stress transfer length, 363
‘lead crystal’, 346
Floating-zone technique (single crystals), 47 thermally-tempered, 346–7 Flow stress 203, 206, 219, 233, 235, 268
Glass transition point ⊲T g ⊳
Glaze, 324
glasses, 30, 31
Globars (SiC), 336
silicon nitride, 326 Golf club shaft, and heads 410–1 solders, 56
Goss texture, 146
Foams (polymeric), 169, 287 418
Grain boundary:
Forsterite ceramics, 71 cavitation during fatigue, 258 Fracture:
coincident site lattice (CSL) model, 98 brittleness in ceramics, 286–8
diffusion creep (Coble), 176, 249 cleavage, 199, 288–9
dislocation pile-up at, 155
creep, 249, 293–4
fracture effect on, 290
cup-and-cone, 199 grain boundary sliding, 247–8, 258, 288 debonding in composites, 364, 371, 372
high-angle, 43, 97, 239
ductile-brittle transition, 198, 289 intergranular nucleation, 240 ductile fracture, 104, 292–3
low-angle (tilt), 43, 97
fatigue, 256–8, 295–6, 348
tripe junction, 99
fracture mechanism map, 294–5
twist, 97
hydrogen, effect of, 291
work-hardening at, 231–2
intercrystalline, 199
Grain growth, 242–3
intergranular, 287
Grain size:
slow (delayed) crak growth in ceramics, 348
dual-phase steels, 301
toughness, 285–7 heat-treatment (steel), effect on, 276–7 toughness parameter ⊲K c ⊳ , 199, 286
toughness, effect on, 289–90 transformation-inhibited, 331
Hall-Petch equation, 216, 219–20, 224, 289 twins, effect of, 224
measurement, 131–2
Frank Read Source, dislocations, 210, 223, 265 yield strees, effect on, 219–20 Fretting corrosion, 387
Grain structures:
Fullerenes and fullerite, 344
cell formation, 230, 238
‘Fused quartz,’ 345
chill crystals, 44
Fusible alloys, 68, 408
columnar crystals, 45, 46 equiaxed grains, 43, 45 planes of weakness, 45
Galvanic Series, 383, see also Electrochemical Series
Graphite:
Gauss error function, 174
conventional structure, 22
GEC process for synthesizing diamonds, 338 intercalation compounds, 344 Gibbsite, 325
pyrolytic (PG), 341–3, 368, 402
432 Index Graphite: (cont.)
Johnson-Mehl equation, 240 turbostratic, 367
Joining:
‘Green’ powder compact, 322, 325 adhesives, 414 Greninger-Troiano theory, 279
brazing, 414 Griffith micro-crack criterion, 284, 289
HAZ problems, 414 Griffith-Preston (GP) zones, 261, 267–8
Tungsten-inert gas (TIG) welding, 414 g -vector in electron microscopy, 157–8
Joints, human: failure, 399 finger, 399
Hall-Petch equation, 216, 219, 224, 289 hip, 394, 398 HAPEX , composite, 399, 402
knee, 399
Hardening: shoulder, 399 chemical, 266
wrist (carpal), 400 coherency strain-, 265–6
dispersion-, 231, 250, 266–7, 301, 302 Kaolinite, 29, 63 fatigue-, 255–6
K Oe torsion pendulum, 177 heat-treatment of steels, 274–84
Kear-Wilsdorf (K-W) lock, 232 irradiation, 290
Kevlar , 367, 408, 410 point defect, 224–6
Kikuchi lines, 148, 157 precipitation-, 53, 259–74, 317
Kirkendall effect, 123, 175 secondary, 283
inverse, 123 texture-, 233–5
Kurdjumov-Sachs orientation relation, 278 work (strain)-, 226–32
Hardness (indentation): Larsen-Miller parameter, 308 Brinell, 199
Lasers, 195–6, 412 hot, 329
Lattice friction, 207, 225 Knoop, 130
Lattice rotation, 205–6 Meyer line, 131
Laue method of X-ray analysis, 135 microhardness, 130–1
Laves phases, 26, 77 Vickers, 130, 199
Le Chatelier principle, 49 Heat-affected zone (HAZ), 405, 414
‘Lead crystal’ glass, 346 Heisenberg’s Uncertainty Principle, 2
Lever Rule, 52 Helmets Safety, 417–8
Liquid pressure forming (LPF), 370 Herring-Nabarro Creep, 176, 249
Liquidus, 52
Heusler alloy, 188, 192 Littleton softening point (glass), 345 Hooke’s Law, 197, 202
Lomer-Cottrell barrier 103, 107 Hume-Rothery Rules, 73
L¨uders band, 211–2 Hund’s Rule, 4, 7 Hydrogen embrittlement, 291
M s temperature, 276, 281, 283 Hydroxyapatite (HA), 396, 397, 399, 402
Magnesia (MgO), 8, 115 Magnet:
Impact testing, 199, 418 hard (permanent), 188–9, 191 Internal friction, 176–7
soft (temporary), 188–9, 191 Investment casting (‘Lost wax’ process), 410
Magnetic alloys, 191–2 Ionic crystals:
Magnetic hysteresis (B-H loop), 189, 191 coordination in, 22
Magnetic remanence, 189 dislocations in, 97
Magnetic susceptibility, 188–9, 192 In-situ composites, 373–4
Magnetism:
Inclusion counting methods, 131–2 anti-ferro-, 162, 192 Inoculation of melts, 45
dia-, 189 ferri-, 193
Insulators, electrical, 193–4 ferro-, 162, 172, 188, 189–90 Intermediate phases, 59, see also Commpounds
para-, 162, 188 Intermediate compounds, 312–5, 370
Magnetostriction, 191 Interstitial atoms, 86–7, 122
Magnox alloys, 258 ‘Invisibility’ criterion (g) in electron microscopy,
Manganese sulphide in steel, 60 157–8
Martempering, 283 Ion implantation, 391–2
Martensite, 61, 76, 274–5, 278–83 Iron, 172
Material property (Ashby) chart, 168, 286 Iron-nickel alloys (Permalloys), 191
Maxwell-Boltzmann distribution law, 80 Iron-silicon alloys (magnets), 191, 243
Mechanical alloying, 301–2, 318–9, 369 Isoforming, 283, 284
Meissner effect, 186 Isostatic pressing:
Melt flow index (MFI) test, 358 alumina, 325
Melting point: silicon nitride, 325–6
congruent, 52, 58, 66 Isothermal annealing, 283
creep-resistant alloys, 249
Index 433 electrochemical effect in alloying, 74
Nitridation, 325–6
incongruent, 58 Non-destructive evaluation (NDE) of ceramics, 323, 337 intermetallic compounds, 312
Notch-sensitivity, see Fracture; Impact testing intermediate phase, of, 76–7
Nuclear fission, 88, 122, 161
pure metal, 42 Nucleation and growth processes: Michel-L´evy colour chart, 129
defect tetrahedra, 108
Microscopy, light:
glass-ceramics, 332
etching, 126 heterogeneous nucleation, 43, 82 hot-stage, 129–30
homogeneous nucleation, 42, 81–2, 332 illumination, bright- and dark-field, 126
nucleating agents (inoculants), 45, 333 magnification, 127
nucleation in solids, 82–3
microhardness testing, 130–1
oxidation, 378
numerical aperture (NA), 127
pearlite formation, 276–8
objective lens, 126 precipitation-hardening, 53, 259–60, 270–1 Burch reflecting, 130
recrystallization, 239–42
oil-immersion, 127 spherulite formation in polymers, 40 ocular lens, 126, 127
twinned crystals, 222–3
parfocalization, 127 phase-contrast, 127–8
void formation, 104, 292, 371 polarized light, 129 Nylon , 355, 359, 366, 409
quantitative, 131–2 grain size, 131 inclusions, 131
Ophthalmic materials (lenses), 404 stereological notation, 131
Optic axes of crystals, 129
resolution, 126
Optical fibres, 195
tube length, 127 Optical properties, 195–6, 339 Miller-Bravais indices, 15–16
Ordering of atoms:
Miller indices, 14 effect on physical properties, 179–80 Mineralizers, 25
entropy of disorder, 49–51
Miscibility, solid see Solid solution
irradiation effects, 123–4
Modifiers, see Glass
magnets, in, 191–2
Modulus of rupture (MoR), 201, 321, 411 order-disorder transformation, 60, 79–80 Moduli, elastic, 197, 203, 321, 396
ordered solid solutions (superlattice), 79, 113–4, 178, Molecular mass distribution (MMD):
in polymers, 33, 360 short-range, long-range 11–12, 177–8 polydispersivity index, 33
work-hardening, effect of, 231–2 Molecular sieves, 30
Orowan loops, 231
Molybdenum disulphide, 22
Ostwald ripening, 272
Moment of Inertia (I), 410, 413
Overvoltage, 383
Monel , 52
Oxidation of metals:
Monotectic reaction, 59, 61, 64
kinetics, 378–80
Moulding of plastics: logarithmic rate law, 379–80 blow-, 357, 359
parabolic rate law, 379
injection-, 356–7, 360
thermodynamics, 376–8
reaction injection- (RIM), 357–8 tennis rackets, 408
Mullite, 63, 335
Pacemaker, heart, 403
Multiple cross-slip (Koehler), 210 p -type semiconductors, 87, 184, 380, 381 Mylar , 413
p-n-p semiconductor, 184–5 Paris-Erdogan (fatigue) equation, 295–6
n -type semiconductor, 87, 184, 380, 381
Particles, precipitate:
Nanocomposites, 374
coarsening of, 272–3
N´eel temperature, 192
stability of, 74
‘Necking’ during tensile test, 198 Pauli Exclusion Principle, 2, 9, 190 Nernst equation, 383
Pauling Rules, of coordination, 22–4 Neumann bands, 223
Pearlite, 60, 276–8
Neutron: Peierls-Nabarro stress, 207, 213, 280, 312 diffraction, 161–2, 179
Periodic Table, 4–7, 74, 151
mass absorption coefficients, 162
Peritectic reaction:
scattering amplitudes, 162 in binary systems, 57–8, 60 ‘thermal’, 161
in ternary systems, 69
Newtonian flow, 345, 358
Peritectoid reaction, 58
Nichrome alloy, 382
Permalloys , 191
Nickel aluminides, 312–4
Permittivity, 193
Nimonic alloys, 249, 295 Persistent slip band (PSB), 255–7 Nishiyama orientation relation, 279
Phase, 48
434 Index Phase diagrams:
Piezoelectric effect, 194
principles: Pilling-Bedworth (P-B) ratio, 379 arrest points, 60
Pistons, diesel, 371
binary, 52 Plasma-spray method of coating, 391 double-reciprocal, 327
Plasmon interactions, 142, 153–4 Gibbs triangle, 65
Platinum phthalocyanine, 117 Lever Rule, 52, 56
Plasticity, macroscopic, 235–7 limitations, 59–60
Poisson ratio, 197, 202
liquidus, 52
Polarization, 193, 194
miscibility gap, 123 Polarized light microscopy, 129 Phase Rule, 64
spherulites in polymers, 40 solidus, 52
Polyacrylonitrile (PAN), 366, 408 solvus, 52
Polybutadiene, 36
ternary, 65–72
Polybutylene (PB), 353
Polyester resin, 37, 366
systems; Polyether ketone (PEEK), 366, 409 Al-Cu, 78, 259–60
Polyethylene (PE), 33, 39, 41 Al 2 O 3 SiO 2 , 63
linear low-density (LLDPE), 353 Au-Ni, 73
low-density (LDPE) and high-density (HDPE), 34, 38, Au-Pt, 73
Cr-S-O, 382 ultra-high molecular weight (UHMPE), 353 Cu-Ag, 73
Polygonization, 238
Cu-Be, 53
Polyimides (PI), 367
Cu-Pb, 61–2 Polyisoprene (natural rubber), 36, 354 Cu-Sn, 78
Polymerization:
Cu-Zn, 60, 78 condensation polymerization, 37 Fe-C, 60–1, 274
copolymerization, 35
Fe-Cr, 298
degree of (n), 32–3
vulcanization, 35
2 O 3 SiO 2 , 70–2 Polymethyl methacrylate (PMMA), 38, 352, 357 Mg-Si, 59
Fe-Ni, 298
Polypropylene (PP), 34, 35, 39, 130, 353, 354, 355, 359, Ni-Cu, 52, 73
Ni-Pt, 73 Polystyrene (PS) 34, 38, 40, 352, 354, 355, 356 Ni-S-O, 64–382
Polytetrafluoroethylene (PTFE),352, 366 Pb-Sn, 57
Polytypoids (polytypes), 328, 334 Polyvinyl acetate (PVAc), 34
Si-Al-O-N, 327 Polyvinyl butyrate (PVB), 347 Ti-Al, 309
Polyvinyl chloride (PVC):
Ti-Cu, 309 plasticized, 34, 352, 353, 357 Ti-V, 309
unplasticized (UPVC), 353 ZrO 2 Y 2 O 3 , 330
Porosity, gas:
Phase equilibrium: scavenging treatment of melts, 45–6 Class I reactions, 68
Sievert’s relation, 45
Class II reactions, 69
Pourbaix diagram, 384
Class III reactions, 69 Powder (Debye-Scherrer) method of X-ray analysis, 136, four-phase, 68–9
two-phase, 52–6 Powders, ceramic 322–3, 324–5, 334 three-phase, 56–8, 61–8
Preferred orientation:
Phase Rule, 48–9, 64
annealing texture, 233
Phase transformations:
cube texture, 191, 245
austenite-bainite, 282 deformation textures, 232–3 austenite-martensite, 278–82
Goss texture, 146, 243
ceramics, 63 recrystallization texture, 245 conversions, 24–5
texture transition, 233
devitrification, 31 Preferred (Renard) numbers, 127 diffusionless, 275
Prepregs (pre-impregnated shapes), 366 inversions, 24
Proof-testing, 201, 348
order-disorder transformation, 60
Property ratios, specific:
pure metal, 48 solidification of pure metal, 42 specific heat, changes in, 171
K lc y , 286, 287
thermodynamical aspects, 50
, 169, 369, 407, 413 volumetric changes, 169
Prosthetic materials:
zirconia, 330–31
ear implants, 402
Phenol-formaldehyde resin (P-F; Bakelite), 36, 37, 357 heart valves and arteries, 402–3
Index 435 maxillofacial surgery, 401
Segregation:
plastic surgery, 400 cellular microsegregation, 54–5 tissue repair, 403
Pyroelectric materials, 194
X-ray analysis of, 141 Selected area diffraction (SAD), 148
Quantum theory, 2–4, 170 Semiconductors, 87, 103, 138, 183–5, 195, 336, 340, 392 Sensitization of austenitic steels, 386
Radiant tubes (gas-fired furnaces), 336 Shape-memory effect (SME), 315 Radiation damage:
‘Sharkskin’ (plastics), 360
damage cascades, 121–3 Shear strength of crystals, theoretical, 90–1 displacement spike, 88
Shear stress for slip, resolved 203–4 electron miroscopy, 149
Sheet moulding compounds (SMC), 357, 366 growth and swelling, 121–3
Shrinkage:
induced precipitation, 123
firing, 325
induced segregation, 123
plastics, 361
microscopy, 149
silicon nitride, 326
neutron ‘annealing’ of metals, 90
solidification, 43
ordered alloys, 123–4
SI units, 420–1
radiation hardening, 225
Sialons, 326–9
thermal spike, 88
Sievert relation, gas, 45
void formation, 104
Reaction-sintering (bonding), 325, 335
Silicon carbide, 24, 334–7
Read-Shockley formula, 97
Silicon-lithium detector, 152
Reciprocal lattice, 141, 148, 156
Silicon nitride, 326
Recovery stage of annealing, 86, 237–8, 246 hot-isostatically-pressed (HIPSN), 326 Recrystallization, 146, 239–42, 243, 293, 319, 342
hot-pressed (HPSN), 326
REFEL silicon carbide, 334 reaction-bonded (RBSN), 325–6 Refractories:
Single crystals:
production for research, 47
modulus of rupture, 201 slip and lattice rotation, 204–5 pyrometric cone equivalent (PCE), 62
stress-strain curves, 226
refractoriness, 63, 322
turbine blades, 46, 250, 307
spalling, 322 X-ray diffraction analysis, 135 types:
Sink-marks (plastics), 361
alumina, 63, 323–4 Sintered aluminium powder (SAP), 242, 250 aluminosilicate 62–3
Sintering, 119, 243, 322, 325, 330 carbon, 337
Size factor, in alloying, 73, 77
insulating, 322 Skiing boots bindings, skis, poles, 417 mullite, 63
Slip:
silica, 63 comparison with twinning, 203 silicon carbide, 334–5
critical resolved shear stress, 205 zirconia, 330–1
dislocation movement, 92–4, 110–1 Relative valency effect, in alloying, 73, 74
lines and bands, 205, 211
Relaxation modulus (polymers), 351
multiple, 205–6
Relaxation time (anelastic), 176, 359 overshooting of primary system, 206 Reptation in polymers, 41
persistent slip band (PSB), 255–6 Resins, thermosetting, 36–8, 357–8, 415
resolved shear stress, 203–4 Resolution, 126
systems in metals, 204
Reversion (retrogression), 260
see also Cross-slip
Rubber:
Snowboarding equipment, 416
decomposition, 164
Sol-gel process, 323
hard (Ebonite), 35
Solders, 56
natural, 354
Solid solution:
repeat units, 36
ceramic, 326
silicone, 36, 371 complete miscibility in ternary system, 66 styrene-butadiene-, 36, 354
coring in, 53–4 extended (continuous), 52
SI units, 420–1
interstitial, 76
diagram (fatigue), 200
ordered, 79
Schmid’s Law, 233 Primary (terminal), 52–3, 74–5 Season-cracking of brass, 386
solvus, 53
Secondary ion mass spectrometry (SIMS) 163–4
substitutional, 73, 79
‘Seeds’ in glass, 117 see also Hume-Rothery Rules
436 Index Solidification:
Strain-anneal technique, for single crystals, 47 cellular front, 54–5
Strain-hardening, see Work-hardening dendritic, 43–4
Strain ratio (R), 234
directional (DS), 46–7, 374 Strength-probability-time (SPT) diagrams, 348 kinectics, of, 81–2
Strengthening, see Hardening plane-front, 43–4
Stress:
pure metal, of, 42
chemical, 89
volume changes, 170
cycles (fatigue), 252–4
Solidus, 52 flow, 203, 206, 219, 233, 235, 268 Solution heat-treatment, 259–60
intensity factor (K), 286
Spark plugs, 324
nominal, 197
Specific heat (capacity), 170–1, 179 Peierls-Nabarro, 207, 213, 288, 312 Specific modulus, 321
relaxation in polymers, 351, 359–60 Spherulites, see Crystallinity in polymers
resolved shear, 203–4, 220, 222 Spinels:
tensor, 202
degree of inversion, 27
true, 198
ferrospinels (ferrites), 27 yield, variation with temperature and strain rate, 208–9 inverse, 27
Stress-corrosion:
oxide scale, 381
ceramics, of, 348
structure, 26–7
cracking (SCC), 386
Spinodal decomposition, 273–4
Stress-recrystallization, 342
Sputtering yield (Y), 389–90 Stress-strain curve, 197, 226–7, 362 Squeeze-casting, 370
Stretcher strain markings, 212 Stacking fault:
Stroh (fracture) mechanism, 288 ceramics, in, 103, 115–6
Styrene-butadiene-rubber (SBR), 36, 354 corrosion, effect on, 386
Superalloys:
cross-slip, 101–2
alloying elements, 305–8
energy, 48, 98, 100 eutectic (NITAC, COTAC), 374 extrinsic, 102
hot corrosion of, 64
imaging in electron microscope, 158, 159 Superconductors, 26, 181, 185–7 intrinsic, 102, 105
Superlattice, see Ordering of atoms ordered structures, 113–4
Superplasticity, 220–1, 317–8 structure, 99–102, 112
Surface (interfacial) energy:
tetrahedra, 93, 104, 107–8
ductile failure, 293
width, 101
grain growth, 242–3
work-hardening, 227 hydrogen embrittlement, 291 Stacking sequences:
nucleation, influence on, 81–2 cubic structures, 19, 112
particle-coarsening, 272–3 fcc crystals, 99, 102
sintering, 243
hexagonal structures, 19, 110–1
triple junctions, 99
intercalation compounds, 343–4 Surgical materials see Prosthetic materials precipitation-hardening, 269
Swell, degree of, 359
pyrolytic graphite, 341–2
Symmetry in crystals:
Laue patterns, 135
porcelains, 70 point and space groups, 18 Steels, types of:
tetrahedral, 18
alloy, 278, 298–9, 302–3 Synchro-shear (Kronberg), 116 austenitic (stainless), 291, 298, 303
Synchrotron radiation studies (SRS), 162–3 designation (BS) of steels, 302–3
dual-phase (DP), 300–1 Tacticity, in polymers; syndio-, iso- and atacticity, 35, 39 duplex, 416
Talc (French chalk), 9, 30
high-strength low-alloy (HSLA), 286, 299–30 TD (thoria-dispersed)-nickel, 250, 295, 307 maraging, 299, 416
Temper embrittlement, 291
mechanically-alloyed (MA), 301–2 Tempering of martensite, 282–3 non-strain-ageing, 212
Tennis racket frames and strings, 407–9 plain carbon, 277, 297–8
Tensile test, 198, see also Yielding, discontinuous Stereographic projection, 16
Thermal analysis, 164–6
preferred orientation, 232–3 Thermal expansion, 168–70, 372, 407 slip, 205
Thermistor (PTC), 185
Thompson tetrahedron, 105 Thermodynamic criteria for equilibrium: Stiffness constants, elastic, 202
entropy, 49–50, 74–5, 374 Stirling’s approximation, 85
free energy, 49–50
‘Stones’ in glass, 117 aqueous corrosion, 382–4 Strain-age hardening, 211, 215, 217–8
oxidation of metals, 376–82
Index 437 recrystallization, 239
chemical stress, 89–90
transformation, of, 171–2
clustering, 104, 120, 269
variation with temperature/composition, 50, 75
creep mechanisms, 247–9
heat content, 49
definition, 84
Thermo-mechanical (THT) treatments, 283
di-vacancies, 89
Thermocouple sheaths, 323
diffusion of, 174–5
Thermoforming of plastics, 356–8
emission, 122
Thermogravimetric analysis (TGA), 164, 379 equilibrium concentration, 85 Thermoplastics, 32–5
fatigue, 254
adhesive, 415 Frenkel defect (vacancy-interstitial pair), 86 copolymer, 35
precipitation, role during, 268–71 flow defects 360–1
Schottky defect (vacancy pair), 86 molecular mass distribution, 33
structural repeat units, typical, 35
Thermosets, 36–8, 357–8, 375, 415 Vacuum melting and degassing, 45 Thompson tetrahedron:
Vapour deposition:
bcc crystals, 112–3 chemical (CVD), 323, 342, 368, 388 cph crystals, 108–12
physical (PVD), 388–90
defect (stacking fault) tetrahedra, 111–2 plasma-assisted chemical (PACVD), 388 fcc crystals 106–7
plasma-assisted physical (PAPVD), 390 ionic crystals, 114–5
Varistor, 185
stair-rod dislocations, 107
Vegard’s Law, 168
Throwing power, 388
Viscoelasticity, 35, 351, 359
Time-temperature-transformation (TTT) diagrams, 274–6,
Titanium alloys, 308–12, 410, 414
thermoplastic melts, 358–9
˛ -stabilizers, in, 308
Voids:
ˇ -stabilizers, in, 308 debonding in composites, 371 commercial, 310–11
ductile fracture, 104, 293
processing, 312
fatigue failure, 256–8
Titanium aluminides, 314–15
formation of, 90, 104
Tool tips, 329
gas-filled, 104
Transducers, 194
irradiation swelling, 122–3
Transformation-toughening (zirconia), 330
sintering, 119
Transformer laminations, 243 von Mises yield criterion, 220, 287 Transistor, 184
Vulcanization, 35
Transmutation of elements, 88
Vycor glass, 48, 333
Tresca yield criterion, 235–6 Turbine blades:
Wagner-Hauffe Rule, 380
ceramic, 322 Waste management (plastics), 354–5 directional solidification of, 46–7
Wave number, 181
superalloys, 305–8
Weld decay, 386
Wiedemann-Franz law, 181
boundary, 98–9 Widmanst¨atten structure, 53, 83, 262 boundary energy, 101
‘Windows’, ceramic, 196
comparison with slip, 203
dislocation (pole) mechanism, 223–4
cell structure, 406
fracture, 224
properties, 407
impurities, effect of, 223
types, 407
prestrain, effect of 223 Work (strain)-hardening, 226–32 stacking sequence, 102, 244
brittle behaviour, 289–90
Tyres, automobile, 353
creep, during, 246–7 dislocation-dislocation interaction, 212
Undercooling, 42
jog theory, 93–4
constitutional, 54–5 Lomer-Cottrell barrier, 103, 107 effect on rate of precipitation, 81
relation to slip, 206
Uranium, 122
Taylor model, 226
Urea-formaldehyde (U-F) resin, 36, 415
X-ray diffraction:
Vacancies:
methods of analysis:
activation energy of formation, 89 diffractometry (XRD), 137–8 activation energy of migration, 89
Laue, 135, 261
438 Index X-ray diffraction: (cont.)
Si-Li detector, 151
topography, 138 wavelength- and energy-dispersive spectrometers, 150–1 powder (Debye-Scherrer), 136, 179 principles: ‘absent’ reflections, 139–40, 141
YBCO (1–2-3 compound) superconductor, 187 asterism, 238, 267
Yielding, discontinuous:
atomic scattering factor, 139 effect of overstraining, 211 Bragg law, 134
effects of temperature and grain size, 217–8 determination of lattice parameters, 140
L¨uders band formation, 211–2 determination of solvus, 140
ordered alloys, 214
intensity of diffraction, 138–40
strain age-hardening, 211
line-broadening, 140–41 yield point (upper, lower), 211 reciprocal lattice, 141–2
Young’s modulus, 197, 203, 321 see also Property ratios reflection (line) number (N), 134
Yttria, 326, 330
small angle scattering (SAS), 141, 261, 262 Yttrium-aluminium-garnet (YAG), 328 structure-factor equation, 139–40
X-rays: Z(AF) micro-analysis technique, 152 absorption coefficients, 133, 162
Zener drag equation, 242–3
characteristic, 133, 150–2
Zeolites, 30
continuous (‘white’) spectrum, 133, 161
Zirconia, 330–1
diffraction by crystals, 134 fully-stabilized cubic (CSZ), 330 extended X-ray absorption fine-structure spectroscopy
partially-stabilized (PSZ), 330, 331 (EXAFS), 163
refractories, 330–1
filtering, 134 tetragonal zirconia polycrystal (TZP), 330, 331 intensity measurement, 138
toughened alumina (ZT(A)), 331 scattering amplitudes, 162
Zone-refining, 46, 55–6, 185