RUMUS SAS DAN R UNTUK AUGMENTED DESIGN NURYA
LISTING SAS-AUGMENTED DESIGN-RCBD
/*
/*
/*
/*
/*
/*
/*
Augmented Design in a Randomized Complete Block Design */
Original script written by Mateo Vargas */
Modified by Willy B. Suwarno [[email protected]] */
Reference: Patersen, R. G. 1994. Agricultural Field Experiments */
Date: 10 October 2014, Modified: 16 November 2016 */
JANGAN RUNNING SEKALIGUS */
Run satu-persatu anova1 lalu anova 2 lanjut uji LSD */
/* clear log and output */
dm 'log; clear; output; clear';
options pagesize=max formdlim='-' nocenter nonumber nodate;
/* define data set (can be copy-pasted from Excel) */
/* note that there are $ signs after geno, check, and line_vs_check variables' name */
/* indicating that the variables should be read as string (not numeric) */
/* because the name of the checks are not numbers */
data augrcbd;
input
block
geno$
line
check$
line_vs_check$
yield;
cards;
1
C-1
0
C-1
check
2.69
1
1
1
0
cand
3.02
1
2
2
0
cand
2.52
1
3
3
0
cand
3.56
1
4
4
0
cand
2.90
1
5
5
0
cand
3.60
1
6
6
0
cand
3.53
1
7
7
0
cand
3.68
1
C-2
0
C-2
check
4.02
1
8
8
0
cand
3.46
1
9
9
0
cand
3.44
1
10
10
0
cand
2.91
1
11
11
0
cand
2.69
1
12
12
0
cand
4.59
1
13
13
0
cand
2.24
1
14
14
0
cand
3.86
1
C-3
0
C-3
check
3.92
1
15
15
0
cand
4.01
1
16
16
0
cand
2.60
1
17
17
0
cand
3.47
1
18
18
0
cand
2.49
1
19
19
0
cand
2.93
1
20
20
0
cand
3.49
1
21
21
0
cand
4.02
1
C-4
0
C-4
check
2.66
1
22
22
0
cand
3.82
1
23
23
0
cand
2.98
1
24
24
0
cand
2.16
1
25
25
0
cand
2.74
1
26
26
0
cand
2.70
1
27
27
0
cand
1.98
1
28
28
0
cand
2.44
2
C-4
0
C-4
check
2.47
2
29
29
0
cand
2.71
2
30
30
0
cand
3.14
2
31
31
0
cand
2.17
2
32
32
0
cand
3.01
2
33
33
0
cand
3.01
2
34
34
0
cand
2.99
2
35
35
0
cand
3.52
2
C-3
0
C-3
check
3.46
2
36
36
0
cand
2.51
2
37
37
0
cand
1.89
2
38
38
0
cand
3.05
2
39
39
0
cand
1.85
2
40
40
0
cand
3.15
2
41
41
0
cand
3.22
2
42
42
0
cand
3.21
2
C-2
0
C-2
check
3.51
2
43
43
0
cand
2.79
2
44
44
0
cand
3.41
2
45
45
0
cand
3.44
2
46
46
0
cand
3.04
2
47
47
0
cand
2.89
2
48
48
0
cand
2.85
2
49
49
0
cand
2.88
2
C-1
0
C-1
check
2.34
2
50
50
0
cand
3.10
2
51
51
0
cand
3.02
2
52
52
0
cand
2.77
2
53
53
0
cand
3.05
1
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
54
55
56
C-1
57
58
59
60
61
62
63
C-4
64
65
66
67
68
69
70
C-3
71
72
73
74
75
76
77
C-2
78
79
80
81
82
83
84
C-2
85
86
87
88
89
90
91
C-1
92
93
94
95
96
97
98
C-4
99
100
101
102
103
104
105
C-3
106
107
108
109
110
111
112
C-3
113
114
115
116
117
118
119
C-2
120
121
122
123
124
125
126
C-1
54
55
56
0
57
58
59
60
61
62
63
0
64
65
66
67
68
69
70
0
71
72
73
74
75
76
77
0
78
79
80
81
82
83
84
0
85
86
87
88
89
90
91
0
92
93
94
95
96
97
98
0
99
100
101
102
103
104
105
0
106
107
108
109
110
111
112
0
113
114
115
116
117
118
119
0
120
121
122
123
124
125
126
0
0
0
0
C-1
0
0
0
0
0
0
0
C-4
0
0
0
0
0
0
0
C-3
0
0
0
0
0
0
0
C-2
0
0
0
0
0
0
0
C-2
0
0
0
0
0
0
0
C-1
0
0
0
0
0
0
0
C-4
0
0
0
0
0
0
0
C-3
0
0
0
0
0
0
0
C-3
0
0
0
0
0
0
0
C-2
0
0
0
0
0
0
0
C-1
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
2.78
2.00
2.03
2.52
3.16
3.12
2.24
3.82
3.29
3.93
3.67
2.79
2.89
3.43
3.46
3.81
3.06
3.06
3.70
3.57
3.31
4.22
2.41
2.94
2.59
3.27
2.91
3.55
3.58
3.05
2.50
2.28
3.52
2.87
3.03
4.20
3.46
3.18
3.76
3.07
3.49
3.73
4.10
2.39
2.97
2.53
3.76
3.11
3.68
3.30
4.29
3.31
3.90
3.35
3.07
2.45
3.48
3.41
3.06
2.98
2.56
3.07
2.67
2.97
3.09
3.32
2.72
3.20
3.43
3.10
3.38
3.47
3.66
4.11
3.50
3.74
3.90
3.03
3.82
3.19
4.73
2.65
3.52
2.34
2
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
;
127
128
129
130
131
132
133
C-4
134
135
136
137
138
139
140
127
128
129
130
131
132
133
0
134
135
136
137
138
139
140
0
0
0
0
0
0
0
C-4
0
0
0
0
0
0
0
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
3.68
3.94
3.75
2.70
3.99
3.26
3.89
2.70
3.36
3.77
3.76
2.71
2.81
2.48
3.14
/* print data */
proc print data=augrcbd;
title1 'Plot Data for Analysis';
run;
/* perform anova for the block and treatment (as a whole) effects */
proc glm data=augrcbd;
class block geno;
model yield = block geno /ss3;
title1 'ANOVA for Augmented Design - RCBD - Block Adjusted and Whole-Treatment Adjusted';
run;
/* perform anova for partitioning the treatment effect */
proc glm data=augrcbd;
class block line_vs_check check line;
model yield = block line_vs_check check line(check) /ss1;
title1 'ANOVA for Augmented Design - RCBD - Treatment-Partitions Adjusted';
run;
/* calculate adjusted means (lsmeans) using PROC MIXED */
proc mixed data=augrcbd;
class block line_vs_check check line;
model yield = block check line(check);
lsmeans line(check) /pdiff;
ods output lsmeans=LSMEANS diffs=DIFFS tests3=DOF;
ods listing exclude lsmeans diffs FitStatistics;
title1 'PROC MIXED for calculating LSMEANS';
run;
/*
proc print data=lsmeans;
run;
*/
/* prepare a list of adjusted means */
data adjmeans;
set lsmeans;
AdjMean = Estimate;
keep line check AdjMean StdErr;
run;
proc sort data=adjmeans;
by descending AdjMean;
run;
proc print data=adjmeans;
var line check AdjMean StdErr;
title1 'Adjusted Means and Standard Error Associated';
run;
/* calculate LSD, grand mean, and CV */
proc means data=DIFFS mean noprint;
output out=StdErrInd;
var StdErr;
run;
data StandardError;
set StdErrInd;
if _stat_='MEAN';
Standard_Error=StdErr;
keep Standard_Error;
run;
proc means data=lsmeans mean noprint;
output out=lmeansInd;
3
data GrandMean;
set lmeansInd;
if _stat_='MEAN';
Grand_Mean=Estimate;
keep Grand_Mean;
run;
data DOF1;
set DOF;
effect=lowcase(effect);
if effect ='line(check)';
Den_DF=DenDF;
keep Den_DF;
run;
data LSD_CV;
merge StandardError DOF1 GrandMean;
t=tinv(1-0.05/2,Den_DF);
LSD=t*Standard_Error;
CV=(Standard_Error/Grand_Mean)*100;
run;
title1 'LSD, Grand Mean, and CV';
proc print Data = LSD_CV;
run;
/* end of code */
OUTPUT SAS-AUGMENTED DESIGN-RCBD
Plot Data for Analysis
line_vs_
Obs block geno line check
check
yield
1
1
C-1
0
C-1
check
2.69
2
1
1
1
0
cand
3.02
3
1
2
2
0
cand
2.52
4
1
3
3
0
cand
3.56
5
1
4
4
0
cand
2.90
6
1
5
5
0
cand
3.60
7
1
6
6
0
cand
3.53
8
1
7
7
0
cand
3.68
9
1
C-2
0
C-2
check
4.02
10
1
8
8
0
cand
3.46
11
1
9
9
0
cand
3.44
12
1
10
10
0
cand
2.91
13
1
11
11
0
cand
2.69
14
1
12
12
0
cand
4.59
15
1
13
13
0
cand
2.24
16
1
14
14
0
cand
3.86
17
1
C-3
0
C-3
check
3.92
18
1
15
15
0
cand
4.01
---------------------dan seterusnya---------------------146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
127
128
129
130
131
132
133
C-4
134
135
136
137
138
139
140
127
0
128
0
129
0
130
0
131
0
132
0
133
0
0
C-4
134
0
135
0
136
0
137
0
138
0
139
0
140
0
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
3.68
3.94
3.75
2.70
3.99
3.26
3.89
2.70
3.36
3.77
3.76
2.71
2.81
2.48
3.14
ANOVA for Augmented Design - RCBD - Block Adjusted and Whole-Treatment Adjusted
The GLM Procedure
Class Level Information
Class
block
geno
Levels Values
5 12345
144 1 10 100 101 102 103 104 105 106 107 108 109 11 110 111 112 113 114 115 116 117
118 119 12 120 121 122 123 124 125 126 127 128 129 13 130 131 132 133 134 135 136
137 138 139 14 140 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 31 32 33 34
35 36 37 38 39 4 40 41 42 43 44 45 46 47 48 49 5 50 51 52 53 54 55 56 57 58 59 6
4
60 61 62 63 64 65 66 67 68 69 7 70 71 72 73 74 75 76 77 78 79 8 80 81 82 83 84 85
86 87 88 89 9 90 91 92 93 94 95 96 97 98 99 C-1 C-2 C-3 C-4
Number of observations
160
ANOVA for Augmented Design - RCBD - Block Adjusted and Whole-Treatment Adjusted
The GLM Procedure
Dependent Variable: yield
Sum of
Source
DF
Squares
Mean Square F Value Pr > F
Model
147
48.73268437
0.33151486
4.09 0.0045
Error
12
0.97271000
0.08105917
Corrected Total
159
49.70539437
R-Square
Coeff Var
Root MSE yield Mean
0.980430
8.983656
0.284709
3.169188
Source
block
geno
DF
4
143
Type III SS
Mean Square F Value Pr > F
0.38957000
0.09739250
1.20 0.3599
43.55966813
0.30461306
3.76 0.0067
ANOVA for Augmented Design - RCBD - Treatment-Partitions Adjusted
The GLM Procedure
Class Level Information
Class
Levels Values
block
5 12345
line_vs_check
2 cand check
check
5 0 C-1 C-2 C-3 C-4
line
141 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
Number of observations
160
Dependent Variable: yield
Sum of
Source
DF
Squares
Mean Square F Value Pr > F
Model
147
48.73268438
0.33151486
4.09 0.0045
Error
12
0.97271000
0.08105917
Corrected Total
159
49.70539437
R-Square
Coeff Var
Root MSE yield Mean
0.980430
8.983656
0.284709
3.169188
Source
block
line_vs_check
check
line(check)
DF
4
Type I SS
Mean Square F Value Pr > F
5.17301625
1.29325406
15.95
/*
/*
/*
/*
/*
/*
/*
Augmented Design in a Randomized Complete Block Design */
Original script written by Mateo Vargas */
Modified by Willy B. Suwarno [[email protected]] */
Reference: Patersen, R. G. 1994. Agricultural Field Experiments */
Date: 10 October 2014, Modified: 16 November 2016 */
JANGAN RUNNING SEKALIGUS */
Run satu-persatu anova1 lalu anova 2 lanjut uji LSD */
/* clear log and output */
dm 'log; clear; output; clear';
options pagesize=max formdlim='-' nocenter nonumber nodate;
/* define data set (can be copy-pasted from Excel) */
/* note that there are $ signs after geno, check, and line_vs_check variables' name */
/* indicating that the variables should be read as string (not numeric) */
/* because the name of the checks are not numbers */
data augrcbd;
input
block
geno$
line
check$
line_vs_check$
yield;
cards;
1
C-1
0
C-1
check
2.69
1
1
1
0
cand
3.02
1
2
2
0
cand
2.52
1
3
3
0
cand
3.56
1
4
4
0
cand
2.90
1
5
5
0
cand
3.60
1
6
6
0
cand
3.53
1
7
7
0
cand
3.68
1
C-2
0
C-2
check
4.02
1
8
8
0
cand
3.46
1
9
9
0
cand
3.44
1
10
10
0
cand
2.91
1
11
11
0
cand
2.69
1
12
12
0
cand
4.59
1
13
13
0
cand
2.24
1
14
14
0
cand
3.86
1
C-3
0
C-3
check
3.92
1
15
15
0
cand
4.01
1
16
16
0
cand
2.60
1
17
17
0
cand
3.47
1
18
18
0
cand
2.49
1
19
19
0
cand
2.93
1
20
20
0
cand
3.49
1
21
21
0
cand
4.02
1
C-4
0
C-4
check
2.66
1
22
22
0
cand
3.82
1
23
23
0
cand
2.98
1
24
24
0
cand
2.16
1
25
25
0
cand
2.74
1
26
26
0
cand
2.70
1
27
27
0
cand
1.98
1
28
28
0
cand
2.44
2
C-4
0
C-4
check
2.47
2
29
29
0
cand
2.71
2
30
30
0
cand
3.14
2
31
31
0
cand
2.17
2
32
32
0
cand
3.01
2
33
33
0
cand
3.01
2
34
34
0
cand
2.99
2
35
35
0
cand
3.52
2
C-3
0
C-3
check
3.46
2
36
36
0
cand
2.51
2
37
37
0
cand
1.89
2
38
38
0
cand
3.05
2
39
39
0
cand
1.85
2
40
40
0
cand
3.15
2
41
41
0
cand
3.22
2
42
42
0
cand
3.21
2
C-2
0
C-2
check
3.51
2
43
43
0
cand
2.79
2
44
44
0
cand
3.41
2
45
45
0
cand
3.44
2
46
46
0
cand
3.04
2
47
47
0
cand
2.89
2
48
48
0
cand
2.85
2
49
49
0
cand
2.88
2
C-1
0
C-1
check
2.34
2
50
50
0
cand
3.10
2
51
51
0
cand
3.02
2
52
52
0
cand
2.77
2
53
53
0
cand
3.05
1
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
54
55
56
C-1
57
58
59
60
61
62
63
C-4
64
65
66
67
68
69
70
C-3
71
72
73
74
75
76
77
C-2
78
79
80
81
82
83
84
C-2
85
86
87
88
89
90
91
C-1
92
93
94
95
96
97
98
C-4
99
100
101
102
103
104
105
C-3
106
107
108
109
110
111
112
C-3
113
114
115
116
117
118
119
C-2
120
121
122
123
124
125
126
C-1
54
55
56
0
57
58
59
60
61
62
63
0
64
65
66
67
68
69
70
0
71
72
73
74
75
76
77
0
78
79
80
81
82
83
84
0
85
86
87
88
89
90
91
0
92
93
94
95
96
97
98
0
99
100
101
102
103
104
105
0
106
107
108
109
110
111
112
0
113
114
115
116
117
118
119
0
120
121
122
123
124
125
126
0
0
0
0
C-1
0
0
0
0
0
0
0
C-4
0
0
0
0
0
0
0
C-3
0
0
0
0
0
0
0
C-2
0
0
0
0
0
0
0
C-2
0
0
0
0
0
0
0
C-1
0
0
0
0
0
0
0
C-4
0
0
0
0
0
0
0
C-3
0
0
0
0
0
0
0
C-3
0
0
0
0
0
0
0
C-2
0
0
0
0
0
0
0
C-1
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
check
2.78
2.00
2.03
2.52
3.16
3.12
2.24
3.82
3.29
3.93
3.67
2.79
2.89
3.43
3.46
3.81
3.06
3.06
3.70
3.57
3.31
4.22
2.41
2.94
2.59
3.27
2.91
3.55
3.58
3.05
2.50
2.28
3.52
2.87
3.03
4.20
3.46
3.18
3.76
3.07
3.49
3.73
4.10
2.39
2.97
2.53
3.76
3.11
3.68
3.30
4.29
3.31
3.90
3.35
3.07
2.45
3.48
3.41
3.06
2.98
2.56
3.07
2.67
2.97
3.09
3.32
2.72
3.20
3.43
3.10
3.38
3.47
3.66
4.11
3.50
3.74
3.90
3.03
3.82
3.19
4.73
2.65
3.52
2.34
2
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
;
127
128
129
130
131
132
133
C-4
134
135
136
137
138
139
140
127
128
129
130
131
132
133
0
134
135
136
137
138
139
140
0
0
0
0
0
0
0
C-4
0
0
0
0
0
0
0
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
3.68
3.94
3.75
2.70
3.99
3.26
3.89
2.70
3.36
3.77
3.76
2.71
2.81
2.48
3.14
/* print data */
proc print data=augrcbd;
title1 'Plot Data for Analysis';
run;
/* perform anova for the block and treatment (as a whole) effects */
proc glm data=augrcbd;
class block geno;
model yield = block geno /ss3;
title1 'ANOVA for Augmented Design - RCBD - Block Adjusted and Whole-Treatment Adjusted';
run;
/* perform anova for partitioning the treatment effect */
proc glm data=augrcbd;
class block line_vs_check check line;
model yield = block line_vs_check check line(check) /ss1;
title1 'ANOVA for Augmented Design - RCBD - Treatment-Partitions Adjusted';
run;
/* calculate adjusted means (lsmeans) using PROC MIXED */
proc mixed data=augrcbd;
class block line_vs_check check line;
model yield = block check line(check);
lsmeans line(check) /pdiff;
ods output lsmeans=LSMEANS diffs=DIFFS tests3=DOF;
ods listing exclude lsmeans diffs FitStatistics;
title1 'PROC MIXED for calculating LSMEANS';
run;
/*
proc print data=lsmeans;
run;
*/
/* prepare a list of adjusted means */
data adjmeans;
set lsmeans;
AdjMean = Estimate;
keep line check AdjMean StdErr;
run;
proc sort data=adjmeans;
by descending AdjMean;
run;
proc print data=adjmeans;
var line check AdjMean StdErr;
title1 'Adjusted Means and Standard Error Associated';
run;
/* calculate LSD, grand mean, and CV */
proc means data=DIFFS mean noprint;
output out=StdErrInd;
var StdErr;
run;
data StandardError;
set StdErrInd;
if _stat_='MEAN';
Standard_Error=StdErr;
keep Standard_Error;
run;
proc means data=lsmeans mean noprint;
output out=lmeansInd;
3
data GrandMean;
set lmeansInd;
if _stat_='MEAN';
Grand_Mean=Estimate;
keep Grand_Mean;
run;
data DOF1;
set DOF;
effect=lowcase(effect);
if effect ='line(check)';
Den_DF=DenDF;
keep Den_DF;
run;
data LSD_CV;
merge StandardError DOF1 GrandMean;
t=tinv(1-0.05/2,Den_DF);
LSD=t*Standard_Error;
CV=(Standard_Error/Grand_Mean)*100;
run;
title1 'LSD, Grand Mean, and CV';
proc print Data = LSD_CV;
run;
/* end of code */
OUTPUT SAS-AUGMENTED DESIGN-RCBD
Plot Data for Analysis
line_vs_
Obs block geno line check
check
yield
1
1
C-1
0
C-1
check
2.69
2
1
1
1
0
cand
3.02
3
1
2
2
0
cand
2.52
4
1
3
3
0
cand
3.56
5
1
4
4
0
cand
2.90
6
1
5
5
0
cand
3.60
7
1
6
6
0
cand
3.53
8
1
7
7
0
cand
3.68
9
1
C-2
0
C-2
check
4.02
10
1
8
8
0
cand
3.46
11
1
9
9
0
cand
3.44
12
1
10
10
0
cand
2.91
13
1
11
11
0
cand
2.69
14
1
12
12
0
cand
4.59
15
1
13
13
0
cand
2.24
16
1
14
14
0
cand
3.86
17
1
C-3
0
C-3
check
3.92
18
1
15
15
0
cand
4.01
---------------------dan seterusnya---------------------146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
127
128
129
130
131
132
133
C-4
134
135
136
137
138
139
140
127
0
128
0
129
0
130
0
131
0
132
0
133
0
0
C-4
134
0
135
0
136
0
137
0
138
0
139
0
140
0
cand
cand
cand
cand
cand
cand
cand
check
cand
cand
cand
cand
cand
cand
cand
3.68
3.94
3.75
2.70
3.99
3.26
3.89
2.70
3.36
3.77
3.76
2.71
2.81
2.48
3.14
ANOVA for Augmented Design - RCBD - Block Adjusted and Whole-Treatment Adjusted
The GLM Procedure
Class Level Information
Class
block
geno
Levels Values
5 12345
144 1 10 100 101 102 103 104 105 106 107 108 109 11 110 111 112 113 114 115 116 117
118 119 12 120 121 122 123 124 125 126 127 128 129 13 130 131 132 133 134 135 136
137 138 139 14 140 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 31 32 33 34
35 36 37 38 39 4 40 41 42 43 44 45 46 47 48 49 5 50 51 52 53 54 55 56 57 58 59 6
4
60 61 62 63 64 65 66 67 68 69 7 70 71 72 73 74 75 76 77 78 79 8 80 81 82 83 84 85
86 87 88 89 9 90 91 92 93 94 95 96 97 98 99 C-1 C-2 C-3 C-4
Number of observations
160
ANOVA for Augmented Design - RCBD - Block Adjusted and Whole-Treatment Adjusted
The GLM Procedure
Dependent Variable: yield
Sum of
Source
DF
Squares
Mean Square F Value Pr > F
Model
147
48.73268437
0.33151486
4.09 0.0045
Error
12
0.97271000
0.08105917
Corrected Total
159
49.70539437
R-Square
Coeff Var
Root MSE yield Mean
0.980430
8.983656
0.284709
3.169188
Source
block
geno
DF
4
143
Type III SS
Mean Square F Value Pr > F
0.38957000
0.09739250
1.20 0.3599
43.55966813
0.30461306
3.76 0.0067
ANOVA for Augmented Design - RCBD - Treatment-Partitions Adjusted
The GLM Procedure
Class Level Information
Class
Levels Values
block
5 12345
line_vs_check
2 cand check
check
5 0 C-1 C-2 C-3 C-4
line
141 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
Number of observations
160
Dependent Variable: yield
Sum of
Source
DF
Squares
Mean Square F Value Pr > F
Model
147
48.73268438
0.33151486
4.09 0.0045
Error
12
0.97271000
0.08105917
Corrected Total
159
49.70539437
R-Square
Coeff Var
Root MSE yield Mean
0.980430
8.983656
0.284709
3.169188
Source
block
line_vs_check
check
line(check)
DF
4
Type I SS
Mean Square F Value Pr > F
5.17301625
1.29325406
15.95