INFLUENCE OF TILLAGE AND NITROGEN FERTIL

of Agriculture
and Food Security XWVUTSRQPONMLKJIHGFEDCBA
(D U ] AF S)
VoJ. 4 No. 1, June, 2017

Dutse Journal

INFLUENCE
BIOM ASS

OF TILLAGE
AND NITROGEN
FERTILISER
ON SOIL M ICROBIAL
CARBON AND SOM E SOIL PROPERTIES
IN NORTHERN
GUINEA
SA V ANNAH,

NIGERIA


K. 0., Yusuf,

A. A. AbdulIahi,

Gabasawa,

A. I:, Adeyemo,

Department

Abubakar,
F. J.
of Soil Science, Faculty of AgriculturelInstitute

A. A., Aliyu, I. A. and
for Agricultural

Research,

Ahmadu Bello University, P.M .B. 1044, Samaru, Zaria - Nigeria

*Corresponding
Author Tel.: +234 (0) 8065409850,
e-mail: algabasawiyyu@ yahoo.com
A b s tr a c t
E xc e s s ive

c u ltiva tio n

a c tivitie s .

In

m a na gem ent
s c ie n tis ts
fi e l d

o f s o il c a n

s p ite


of

p r a c tic e s

lo ts
and

of

r e s u lt

in

i n fo r m a t i o n

a va ila b le

w a s c o n d u c te d

se ve r e


decrea se

a va ila b le

s o il m ic r o b e s ,

u n d e r tr o p ic a l a n d s u b tr o p ic a l

e xp e r im e n t

a

c o n d itio n s ,

in m ic r o b ia l

d e p ic tin g

e s p e c ia lly


in c o n tin u o u s ly

R e s e a r c h (IA R ) S a m a r u , Z a r ia , N ig e r ia
a n d R e d u c e d ) a n d n itr o g e n (N ) r a te s

b a c te r ia l p o p u la tio n

o f a c o n tin u o u s ly

(19.67 %)

fr a c t i o n s

w e r e o b se r ve d

c o n ta in e d

4.44 %


and

m ic r o b ia l

b io m a s s

ca rbon

483.89

th a n th e

(POO.05)

Keywords:

s o il

s o ils . A


C o n ve n tio n a l

w a s o b se r ve d

of

and

90

(C T ) th a n R e d u c e d
r e s p e c tive ly.

in C T a n d

kg N h a " ) o n s o il

(5.22 %)

th e


p a r a m e te r s .

A

T illa g e
6 1 9 .4 4

w a s s ta tis tic a lly

in R T . N e ith e r N n o r its in te r a c tio n

any

t o a s s e s s t h e e ffe c t s o f t w o

(0

F u r th e r


a n d s ilt

(R T ),

mg

h ig h e r

w h ic h

kg '!

s o il

(POO.05)

w i t h t i l l a g e h a d s i g n i fi c a n t

resea rch


e ffo r t

is ,

t h e r e fo r e ,

so a s t o a l l o w fo r a b e t t e r u n d e r s t a n d i n g o n t h e s u b j e c t .

o n th e to p ic

Alfisol, bacterial

Introduction
The soil microbial

under

(SM B C )

to


s o il

by

cropped

c r o p p e d A l fi s o l . S t a t i s t i c a l l y h i g h e r c l a y

%, c l a y a n d s i l t fr a c t i o n s

m g kg '! o b s e r ve d

c o n tr ib u tio n

recom m ended

th e ir

i n 2 0 1 3 r a i n y s e a s o n o n a T y p i c H a p l u s t a L J a t t h e r e s e a r c h fa r m

tilla g e p r a c tic e s

1 8 .1 1

and

b e tw e e n

is s t i l l v a g u e l y u n d e r s t o o d

sa m e

o f t h e I n s t i t u t e fo r A g r i c u l t u r a l
(C o n ve n tio n a l

b io m a s s

r e la tio n s h ip s

population,

particle size distribution,

Tillage

Clay, soil reaction
biomass

(SM B),

about

the most

(pH) and OC are among

important

properties

of soil

that

half of which is located in the surface of soil

affect 5M B. Therefore,

profile where most of the nutrient release
also occurs, consists mostly of bacteria and

separates
for example,
generally
have a
higher 5M B as such soils retain more water
and often contain more OC. Also, soil pH
near 7.0 is generally labelled most suitable
for
the
5M B
(Griffin
et
a l.,
2013).

fungi, which decompose
crop soil organic
matter (SOM ) and other residues
in soil
(Griffin e t a l . , 2013). The decomposition
process

releases

such

nutrients

(N) into the soil environment.
such,

made

available

for

as nitrogen
These

crop

M anagement

are, as

of

soils with high clay

crop

residues

5M B being one of the primary

utilisation.

and nutrients

influences
forms of OC

used by the microbial

biomass.

Generally, up to 5 % of the total organic
carbon and N in soil is in the microbial
biomass
(Smith
and Paul, 1990). W hen
microorganisms
die, these
nutrients
are
released
in plant-available
forms.
Soil
microbial biomass is also an early indicator

Retaining crop residues, therefore, provides
a practical means of increasing the 5M B via
increase in the quantity of OC available to
them (Franzluebbers
e t a l.,
1999). Less
disruptive
tillage
operations
can
also
increase the 5M B. This is due to increase in

of changes

the microbial

which

in total soil organic carbon (OC),

is an important

component

of SOM

in

labile

biomass
carbon

that regulates the transformation
and storage
of nutrients (W eaver e t a l . , 1994). The 5M B

aggregate

is affected

The crop types

water
including
practices

by such

and/or
climate,
(Hoyle

factors

carbon

that change

content

of

management

the
soil,

can

soil type and management
et

also

legumes,

al., 2013).

due

286

to

and

their

the

practices

also

fungal

networks

affect
for

through

into

being
the

example,
greater

utilised
5M B.
can
N

the increase
soil.
ensure

Such
soil

protection.
in a rotation
Residues

of

increase

5M B

contents.

Also

griculture and Food Security (DU}AFS)
Vol. 4 No. 1, June, 2017ZYXWVUTSRQPONMLKJIHGFEDCBA

Dutse Journal of

r o ta tio n s

in c lu d in g

in c r e a s e

5M B

lo n g e r

due

to

phases

M ost

o f p a s tu r e

consequent

s o il d is tu r b a n c e .
S o il

m ic r o o r g a n is m s

e n z y m a tic
s u b s ta n c e s
th e

a re

d e g r a d a tio n

f o r th e r e le a s e

m in e r a l

s o il

o f th e s o il
e f f ic ie n c y

a re

a c ti v i ty

v e ry

of
on

c u ltiv a tio n

as

c ro p ,
w e ll

m ic r o - c lim a te
p r o v id e

th e

unique

and

s o il

m a c ro -

and

lo c a tio n

b io lo g y .

T h e re fo re .

p ro c e sse s
b a c te r ia .

The

e x a m p le ,

a c ti v i tie s

in c lu d e

c y c lin g ,

and

w a te r

s m a l1

s o il

th a t

p e rfo rm a n c e

ty p ic a l1 y

p r o k a r y o tic
ra n g e

a

c o n s titu te

fe w
a

lo w

soi 1

er al..

m ic r o m e tr e s

la r g e

m ic r o o r g a n is m s

w ith

of

a

shapes,

r a n g in g

fro m

sp h e re s

ro d s

and

s p ir a ls .

B a c te r ia

w e re

am ong

f ir s t

lif e

fo rm s

p re se n t

in

w a te r ,

a c id ic

to a p p e a r

m ost

a n d in p la n ts a n d a n im a ls
and

2004)

O s k in ,

a lm o s t

a re

b a c te r ia l

c e l1 s in a g r a m

b a c te r ia l

c e lls

an

E a r th

( W h itm a n

b io m a s s

et al.,

d u e to d if f e r e n c e s

th a t e x c e e d s
(H o g a n ,

n u tr ie n ts

r e c y c lin g .

n u tr ie n t

c y c le s

f ix a tio n

h y d r o th e r m a l
th e

b y c o n v e r tin g

v e n ts

s u lp h id e

to e n e r g y

( C h o i, 2 0 1 3 ) .

al.,

2 0 0 8 ).

It

ty p e s

depend

needed

in

on
a

such

in c lim a te ,

to

p a re n t

a n d tim e ( J e n n y ,

in

th e

b e tw e e n

and

(S a m u e l

sought

to e v a lu a te

n itr o g e n

f e r tilis e r

in N o r th e r n

b u t th is

b y s o il s c ie n tis ts

s u b tr o p ic a l

f o r b a c te r ia ;

c o n d itio n s ,

in c o n tin u o u s ly

er al.,

T h is

2 0 0 8 ).

th e r o le s o f tilla g e
on

s o il

m ic r o b ia l

o f a c o n tin u o u s ly
G u in e a

th e

m anagem ent

s o il m ic r o b e s .

and

s o il

d e p ic tin g

soi 1

under

c a rb o n

th e ir

a s w e l1 a s th e ir p o p u la tio n .

a n d a v a ila b le

b io m a s s

is o f te n

b e tw e e n

lo ts o f in f o r m a tio n

la n d s

er
not

b u t a ls o

T h is

th e r e la tio n s h ip

tr o p ic a l

to k n o w

p re se n t

s o il.

u n d e r s to o d

and

In

im p o r ta n t

b io m a s s

(S a m u e l

c ro p p e d

Savannah

zone

of

N ig e r ia .

b a c te r ia

to s u s ta in

( H 2 S ) a n d m e th a n e

et al.,

lo c a tio n

a c tiv itie s

is s till v a g u e ly

paper

s u r r o u n d in g

com pounds

a re

c ro p p e d

n itr o g e n

seeps,

to

but have

(C a rsk y

one

o f b a c te r ia

fro m

e s p e c ia l1 y

and

o n th e m .

in d ic a tin g
r e p o r te d

o f a s o il c a n r e s u lt in a

is o f te n

a c tiv itie s

p r a c tic e

a r e v ita l in

s te p s

a re

p o ta s s iu m

in its m ic r o b ia l

m ic r o b ia l

r e la tio n s h ip s

w a te r

o f a l1 p la n ts

B a c te r ia

a n d c o ld

h y d ro g e n

th e

a m il1 io n

b io lo g ic a l

d is s o lv e d

g e n e ra l

T h e re

c o m m u n itie s

n u tr ie n ts

and

2013;

M any
as

a n d p u tr e f a c tio n

b io lo g ic a l

p r o v id e

th a t

2 0 1 0 ).

d e c re a se

to

f o r m in g

r e g io n

2 0 0 3 ),

fro m

c u ltiv a tio n

d e tr im e n ta l

m il1 io n

b a c te r ia

in th is

r e lie f , o r g a n is m s

v a r io u s

1 9 9 8 ),

th e

p r o d u c tio n .

a r e a ls o

a n o th e r

et al.,

o f fre sh

to w a r d s

p r o p e r tie s

v a ry

o b ta in e d

5 x 1 0 30

a p p r o x im a te ly

a n im a ls

th e

P f ix a tio n

42

o f th e

m a tte r , C E C , to ta l N ,

T hey

w a s te

o f s o il,

s o ils

1 9 9 8 ).

r a d io a c tiv e .

in a m il1 ilitr e

o f a la n d

p H ) in r e a c tio n

m o d e r a te

p o p u la tio n

40

T hese

p o p u la tio n

c o n tr ib u te

T hey

( 4 .0 - 5 .8

th e

( C h o i.

to

p r o d u c tiv ity

a g r ic u ltu r a l

b e a c id ic

th e ir

about

lo w

a

due

2 0 0 3 ).

of

1995; O dunze,

o n ly

e v e ry w h e re

T h e re

2 0 1 3 ).

w a te r

d r a in a g e

(S), a n d e x c h a n g e a b le

a re

( F r e d r ic k s o n

causes

hum an

com m on

s o il,

and

lo w

th a t

is c o m p o s e d

to

in c lu d in g

o n e a r th ,

h a b ita ts ,

h o t s p r in g s .

NGS

p r o d u c tiv ity .

E x c e s s iv e

w id e

of

c a p a c ity
p h o sp h o ru s

1 9 8 0 ).

in

d o m a in

s o ils

o f lo w o r g a n ic

m a te r ia ls ,

le n g th ,

and

m ost

P , s u lp h u r

2 0 0 8 ).

B a c te r ia ,

c a p a c ity ,

have

(O d u n z e ,

s a id

(K ) (Ja b b a r,

w h ic h

(S a m u e l

and

in te r n a l

im p r o v e d

A lf is o ls

Som e

a g g r e g a te s

poor

a re

The

n u tr ie n t
b in d

(N )

a ls o

in d ic a te

r e g io n 's

fo r

s u p p r e s s io n .

s u b s ta n c e s

in to

enhance

b a c te r ia ,

s ta tu s .

exchange

c a p a c ity

N ig e r ia n

a re a

to

e x a m p le

d y n a m ic s ,

d is e a s e

p ro d u c e

p a r tic le s

of

s o ils

% o f th e r e s id e n t

m ic r o b ia l

fo r

a re

f e r tility

a r e a o f a b o u t 5 .6 m il1 io n k r r r ', a n d a b o u t

o f a p p r o x im a te

p o p u la tio n ,

G u in e a

N ig e r ia

p o te n tia l.

a n d b io c h e m ic a l

g iv e a n in d ic a tio n

m ic r o b ia l

c a tio n

s tr u c tu r e

The

b io lo g ic a l

s o il

of

n itr o g e n

The

f e a tu r e s

o f s o il m ic r o b e s

s u c h a s b io lo g ic a l

to ta l

poor

( D a la l a n d

in te g r a te d

m a tte r ,

c o n c o m ita n t

a re

c o n tin u o u s ly

a r e a ls o lo w in w a te r h o ld in g

in f iltr a tio n

and

o f s o il d u e to th e ir r e la tio n s h ip

a c tiv itie s

b a c te r ia

num ber

ty p e

on

o f a g iv e n

a

assessm ent

s o il

s o il
as

1 9 8 6 ) . T h e a c tiv itie s

M a y e r,

s o il

The

b y lo w in h e r e n t

(P ).

and

m ic r o o r g a n is m s

c h a r a c te r is e d

(C E C ),

1 %

th e ir n u m b e r

h ig h .

I

soi

dependent

w h ile

le s s th a n

of

in th e N o r th e r n

(N G S )

o r g a n ic

fro m

s o ils

la n d s f o u n d

Savannah
T hey

er al.,

(S a m u e l

o c c u p y in g

v o lu m e ,

f o r th e
o r g a n ic

o f n u tr ie n ts

f r a c tio n

b u t u s u a lly

2 0 0 8 ),

im p o r ta n t

o f c o m p le x

u p la n d

c ro p p e d

re d u c e d

Materials and Methods

lif e

The

such as

tr ia l

w as

H a p lu s ta lf

(C H 4)

I n s titu te

287

at
fo r

c o n d u c te d
th e

re se a rc h

A g r ic u ltu r a l

on

a

fa rm
R e se a rc h

T y p ic
of

th e

(IA R )

of A griculture and Food Security (DU}AFS)
V ol. 4 N o. I, June, 2017

D utse Journal

Sam aru,
northern

Zaria.
guinea

(11 Q 11'
by

Sam aru
savannah

determ ination
using the hydrom eter
m ethod
(G ee and Bauder, 1986), the textural cia ses

is located in the
(N G S) of N igeria

and 7Q 38' E) and is characterised

a tropical

Long-term

continental
annual

type

rainfall

w ere

in

the

consequently

5M BC

of clim ate.

w as

m ethod

zone

by

also
the

(N elson

determ ined.

The

fum igation-extraction

and

Sornm ers,

1982;

averages about 1O S0 m m m ostly w ith a peak
at A ugust. The rainfall period starts in M ay,

O kalebo et al., 2002). The effects of tillage
and N rate on soil bacterial population w ere

but often stops in the m onth of Septem ber or
early O ctober. D ry season set in by O ctober

estim ated

and

1991; Baath et al., 1995).

lasts

m oisture

into

the

m onth

and tem perature

are inferred

M ay.

Soil

to

years before

accom m odate

experim ental

2014).

The

soil

of the

as

an

area

soil

w ere

variance

W here

treatm ent

and N rates

pH

and

and W ilson,

subjected

(A N O Y A )

to

using

the

the F-ratios

w ere observed

m eans w ere separated

Significant

to

at S % level of probability,

D ifference

the

using Least

(LSD ).

additional

in the past three

study

of
(G iller

generated

of

be significant

it w as m odified

tillage

factor

bases

G eneralised Linear M odel (G LM ) procedure
of Statistical A nalysis System (SAS) (SAS,

al., 2004;

si te had been under crop rotation

data

analysis

season (June to Septem ber)
and
to less than 20 Q C in the m onths

trial for seven

the

Statistical analysis
The

air tem perature
in the
2S Q C and 28 Q C during

D ecem ber and February (O dunze et
O luw asem ire
et al., 2004). The

betw een

on

size distribution

in the area

to be ustic and isohypertherm ic

respectively.
M ea6n
zone ranges betw een
the rainy
decreases

of

regim es

particle

w as

Results and D iscussion
Effects of tillage and
m icrobial biom ass carbon

years.

loam y

in

texture (Y usuf et al., 2012).

rate

on

soil

Reports have show n that 5M B w as greater in

Treatm ent

and Experim ental

Treatm ents

consisted

com bination

of

fertiliser

D esign

the

a

factorial

class w hile 5M B

of

nitrogen

the m icro- than in m acro-aggregates

of

four

level

w ere

arranged

com binations.
in

a

and

rates (0, 30, 60 and 90 kg N ha")

and tw o tillage (RT and CT) practices.
in

com plete

replicated

contained

the

The treatm ents

randornized

(RCBD )

all

than

possible

(2008).

Each

study

plot

auger at 3 poi nts from

w ith

plots that recei ved 0

air-dried
for

and sieved

som e

physical

Subsam ples
mm

w ere bulked,

O-S

w ere

m esh

and

biochem ical

chem ical

of the soil under

further

sieved

through

to laboratory

result

how ever,

1

N

w as as show n

show ed

betw een

in

a significant

CT (619.44

mg

m g kg"), There w as no

(P.~O .O S)
observed

and

in Figures 1 and 2

(P>O .O S) difference

Significant

analy es.

RT

et al.

by Berner

betw een

and 90 kg N ha'! rates on 5M BC

a 2 m m m esh

and

taken

significant

m icrobial
under

of tillage

kg") and RT (483.89

cm .

and som e portion

through

soil

content

(P ~O .O S) difference

m icro-

in

(Singh

effects

w ere as presented

1. The

size

are higher

increase

respectively.
Effect of tillage on 5M BC

and 90 kg N ha'! levels at a depth of
The sam ples

H ow ever,

Figure
collected

The
to

CT in a study

rate on the 5M BC

thrice.

w ere

found

w ere laid out
design

m icro-aggregates

and 5M BP

1995).

w as

under

in

block

six ridges of 6 m each.

sam ples

than

Singh,

biom ass

These

Sam ple Collection
Soil

m acro-

(Figure

difference

in

5M BC

0
2).

w as,
w ith

the

application of different rates of N fertiliser in
a study by Ethan (2014). Thi m ay be due to

for the

analyses.

som e biotic and abiotic

difference

betw een

oi Is of the locations.

Laboratory

Soil A nalyses

The soil sam ples
pH , particle
m icrobial

w as determ ined
electrode

A gbenin

w ere analy

carbon

(l99S).

m eter

w as, how ever,

and soil

The

The pH

type on 5M BC

2.S

suspensions,
as elaborated

Follow ing

the

significant

oil to

attributable

using

practice
clim ate

by

288

(P[O .O S)
observed

to

by

et al. (2001).

effect

of

tillage

in this w ork m ay be

differences

in

m anagem ent

and also to factors such as soil type,
(rainfall

for m icrobial

PSD

not affected

in a w ork by Caldero'n

(PSD )

in the ratio of I to
pH

5M BC

tillage

ed for

(SM BC).

size distribution

biom ass

w ater and 0.01 M CaCb
glass

The

collected

is usually the lim iting

biom ass)

because

factor

these factors

o f A g ric u ltu re a n d F o o d S e c u rity A( D
V o l. 4 0 .1 , Ju n e , 2 0 1 7

D u tse Jo u rn a l

can change

th e w a te r

o il (H o y le

o r c a rb o n

a n d M u rp h y ,

c o n te n t

2 0 0 6 ; H o y le

et

U ]A F S)

o f io n s to e x c h a n g e

of

site s, a n d th e a c tiv itie s

o f v a rio u s m ic ro o rg a n ism s.

a l;

2 0 1 3 ).
E ffe c ts o f tilla g e a n d N ra te
E ffe c ts

of

tilla g e

and

N

ra te

o n b a c te ria l

It w a s

d u e to pH

p o p u la tio n

S o il p H is a m o n g
o i I m ic ro b ia l
a c id ic

com m on

p o p u la tio n

so il

re p o n e d

d istrib u tio n

th e fa c to rs

d istrib u tio n
o r a lk a lin e

m ic ro b e s

due

o n 'b a c te ria l

p a rtic le

so il a ffe c ts
as

a re

m any

siz e

as

v in e la n d ii
a n d R h i z o b i a s p p . a s th e o p tim u m
p H fo r m o st so ils is n e a r n e u tra l.

so il

p a rtic le

so il

siz e

m ic ro b ia l

w a y s. T h e e ffe c ts

of

ra te o n p a rtic le siz e d istrib u tio n

sh o w n

sig n ific a n t

A zo to b a c te r

th e

in v a rio u :

tilla g e a n d

stru c tu re .

th a t

in flu e n c e s

d istrib u tio n

th a t in flu e n c e
and

su c h

to

d istrib u tio n

b a c te ria l p o p u la tio n
E ffe c ts o f tilla g e a n d N ra te

H ig h ly

on

in

T a b le

d iffe re n c e

1 . T h e re

(P

w as

b e tw e e n

0 .0 5 )

a
th e

tilla g e p ra c tic e s in te rm s o f th e sa n d , silt a n d
c la y d istrib u tio n s
in th e so il. C o n v e n tio n a l

T h e re su lt fo r th e e ffe c t o f tilla g e o n so il p H ,

tilla g e

a s sh o w n

c la y (S.22 %) a n d silt (1 9 .6 7

%) se p a ra te s

th a n th e R T , w h ic h

re c o rd e d

o n ly

and

and

w as

no

b e tw e e n

o n T a b le

1 , in d ic a te d

sig n ific a n t

d iffe re n c e

a n d C a C h ).

H o w e v e r,

w a te r (5 .0 3 ) a n d th a t in C a C h
h ig h e r

w e re 4 .8 3
sta tistic a lly

re la tiv e

re sp e c tiv e ly ,

th e re

d iffe re n c e

w as

no

b e tw e e n

sig n ific a n tly

c la y

%

w a s,

(P

silt,

h o w e v e r,

(P > 0 .0 5 )

1 , in d ic a te d

stre n g th e n s

th e p o ssib ility

p o p u la tio n

in th e C T

T h is

(P > 0 .0 5 )

is b e c a u se

p re p o n d e ra n t

th e N ra te s (0 k g N h a '

p ro v id e

th e

CT

in su la tin g

90

kg

N

b e tw e e n

The

h a :'.

e ffe c t

of

w h ic h

to

in

(P > 0 .0 5 )
C a C b ).

fo r b o th

B a c te ria l

in te ra c tio n

The

and

th a t

a lth o u g h

in C T

sta tistic a lly

p o p u la tio n

sim ila r,

is e x p e c te d

a s b a c te ria

a re k n o w n

m o re

1 9 9 6 ). H o w e v e r,

and

and

a c tiv ity

D o ra n ,

b a c te ria

and

no

sig n ific a n t

w a s e q u a lly

in d ic a te d

n o sig n ific a n t

b e tw e e n tilla g e ty p e a n d

o f p a rtic le

siz e d istrib u tio n .

th a t N ra te h a d n o sig n ific a n t

to w a rd s

th e ty p e o f so il te x tu re

to b a c te ria l

p o p u la tio n

in

b io m a ss

C

,th is p e r p e c ti v e .

to b a c te ria

R h iz o b ia

do

not

n o d u la te

under

pH

v a lu e

sp e c ie s
and
le ss

C o rre la tio n

(S m ith
of

fix N

th a n

o f a so il in flu e n c e s
c o m p o u n d s,

n e g a tiv e c o rre la tio n
b e tw e e n silt a n d sa n d
se p a ra te s a n d a n e g a tiv e b u t n o n -sig n ific a n t

5 .5

c o rre la tio n
(T a b le

th e so lu b ility

th e re la tiv e

o f so il m ic ro b ia l

a n d so il p a rtic le siz e d istrib u tio n s
T h e re w a s o n ly o n e ig n ific a n t (P '0 .0 I) b u t

(J e n se n a n d T h o m a s, 2 0 1 0 ). M c L e a n (1 9 8 2 )
o b se rv e d
th a t a c id ity , n e u tra lity ,
or

o f v a rio u s

(G ille r

1 9 9 3 ). T h is

a l.,

sh o w e d

a n d , c o n se q u e n tly

a lso

a lk a lin ity

a lso

T h e re

c o n trib u tio n

th is v e ry

d u e to c o n e q u e n t p o o r

lin k e d

1 9 9 6 ).

a lso

e ffe c tiv e ly

w o rst
et

heat

re a c h in g
th e
a n d y so ils,

slo w d o w n o r e v e n h a lt o rg a n ic

m a tte r m in e ra lisa tio n
m ic ro b ia l

re su lt

ra te in te rm
Thi

a c id ic p H , lik e v e ry a lk a lin e p H le v e ls, te n d s
to d ra stic a lly

th e

(P > 0 .0 5 ) in te ra c tio n

th riv e in a p H ra n g e o f b e tw e e n 5 -9 w ith a n
o p tim u m
o f (p H ) 7 (B a a th e t a l . , 1 9 9 5 ;
S m ith a n d D o ra n ,

to th e p ie rc in g

1 9 9 1 ; E n g la n d

se p a ra te s.

in R T th a n
to g ro w

a g a in st

(P > 0 .0 5 ) d iffe re n c e b e tw e e n th e 0 k g N h a '
and 90 kg N ha'
in te rm s o f th e so il

a c tiv ity d e c lin e a t lo w p H le v e ls. T h is' m e a n s
b a c te ria l

re la tiv e ly

w ill

o b se rv e d

g i v e s b a c te ria h ig h e r c h a n c e s fo r survi v a l in
th e C o n v e n tio n a lly th a n R e d u c e d tille d so il.

p H (in w a te r

p o p u la tio n

a re

W ilso n ,

ti lla g e ty p e a n d N ra te w a s a lso n o t

sig n ific a n t
and

th a t in

o f b a c te ria

in R T .

se p a ra te s

a d v a n ta g e

v u ln e ra b ility

b u t c o n v e rse ly ,

th a n

th e Ii n e te x tu re d
in

an

o f h ig h e r b a c te ria l

fro m h ig h su n te m p e ra tu re s
b a c te ria th a n c o a rse te x tu re d

th a t th e p H , in
h ig h e r re la tiv e to

w a s h ig h e r in 0 k g N h a :' c o m p a re d

sig n ific a n t

p ra c tic e

a n d 9 0 k g N h a ") in b o th p H (in w a te r a n d in

th a t o f 0 k g N h a ",

%

th e tilla g e ty p e s

C a C h ).
It is n o te w o rth y
w a te r, fo r 9 0 k g
ha' w a
C aC h

4 .4 4

re sp e c tiv e ly .

no

b e tw e e n

m o re

0 .0 5 )

in te rm s o f sa n d fra c tio n , y e t le ss sa n d w a s
o b se rv e d in C T th a n R T so il. T h is fu rth e r

w h ic h

a lth o u g h

sig n i fic a n t

1 8 .1 1

d iffe re n c e

h a n d , e ffe c t o f N ra te o n th e

so il p H , a s a lso sh o w n b y T a b le

re c o rd e d

T h e re

th e p H in

(4 .6 1 ) fo r R T

to th a t o f C T ,

a n d 4 .6 0
sim ila r.

O n th e o th e r
th a t

( P > O .O S )

th e p H o f R T a n d C T fo r b o th p H

(in w a te r
w e re

th a t th e re

sig n ific a n t

b in d in g

5M B C

289

b e tw e e n

2 ). T h e re
and

(P
any

sa n d a n d c la y p a rtic le s
w as

0 .0 5 )

of

h o w e v e r,
c o rre la tio n

th e

p a rtic le

n e ith e r

a

b e tw e e n
siz e s

nor

D u tse Jo u rn a l

o f A g ric u ltu re

b e tw e e n

th e

o th e r

siz e .

a lth o u g h

not

to

sig n ific a n t

stu d y ,
th e

th a t th e m o re

le ss

th e

p o siti v e
c la y ,

a

5M B C ,

and

th o u g h

in

v ic e -v e rsa .

ta tistic a lly

5M B C

a

m o re

C o n v e n tio n a l

The

on

and

e ffo rts

b a c te ria l

o b se rv e d
T illa g e ,

p a rtic le

siz e

p o p u la tio n

in

and

R educed

th a n

v ic e -v e rsa

d istrib u tio n .

o n th e to p ic

u n d e rsta n d in g

at

to th e fin d in g

w o u ld

M o re
a llo w

b a se d
re se a rc h

fo r a b e tte r

a b o u t th e su b je c t.

of

th is stu d y .

A c k n o w le d g e m e n ts
The

C o n c lu sio n
T h e re su lts
m ic ro b ia l

b e fittin g
w as

so il

sig n ific a n t,

m o re su p p o rt

2017

c o n d itio n

th e

e p a ra te s

b e tw e e n

not

re a ffirm e d ,
le v e l

th e sa n d

c o rre la tio n

le a st in d ic a te d

T h is

S e c u rity IHGFEDCBA
(D U ] AF S)

and Food

V o l. 4 N o . 1 , Ju n e ,

o f th is stu d y sh o w e d
b io m a ss

c a rb o n

w a s sig n ific a n tly

c o n te n t

a ffe c te d

b y N ra te o f a p p lic a tio n

th a t th e so il
o f th e so i

b y tilla g e

I

a u th o rs

a c k n o w le d g e

o f S o il S c ie n c e ,

B e llo

S a m a ru

U n iv e rsity ,

a n d a ll th o se

and not

th e c o n trib u tio n s

o f th e D e p a rtm e n t

A hm adu

- Z a ria ,

th a t c o n tri b u te d

N ig e ria

to th e su c c e ss

o f th is w o rk .

o r p H . B a se d o n p H ,

R e fe re n c e s
A g b e n in ,

J. O . (1 9 9 5 ).

L a b o ra to ry

M anual

I a n d P la n t A n a ly sis

fo r S o i
m e th o d s

and

c e re a l

(se le c te d

c ro p p i n g

Q u e e n sla n d .

d a ta a n a ly sis).

p ro p e rtie s
y ie ld .

B a a th ,

E . A ., F ro te g a rd ,
(1 9 9 5 ).

T . P . a n d F ritz e ,

M ic ro b ia l

stru c tu re

and pH

to so il o rg a n ic

E n g la n d .

in re la tio n
in w o o d -

in so il

in w in te r
Journal

c e re a l

of

S o il

2 4 : 2 6 5 -2 7 9 .

so ils.

L . S ., L e e .

(1 9 9 3 ).

H . and

B a c te ria l

S o il B io lo g y

b io l.

5,

and

in

S o il:

p ro to z o a

on

B io c h e m ic a l.

P e rg a m o n

J. T .

T re v o rs,

S u rv iv a l

E ffe c t o f c la y s

S o il

2 5 : 2 2 9 -2 4 0 .

B io c h e m .

tre n d s

A u stra lia n

Resea r ch,

c le a r c u t o r b u rn e d
fo re st

change

c o m m u n ity

re sp o n se

m a tte r q u a lity

a sh fe rtiliz e d ,
c o n ife ro u s

H.

and

S o u th e rn

1Il

O v e rv ie w

V o l. 2 5 N o .

P re ss

L td .

Pp.

5 2 5 -5 3 1
B e rn e r,

A .,

H ild e rm a n n ,

P fiffn e r,
(2 0 0 8 ).

C ro p

fe rtility

re sp o n se
o rg a n ic

T illa g e

Resea r ch.

and

D e rm is

of

A c tiv ity ,

and

C a rsk y ,

to

re d u c e d

P.

E th a n ,

so il
tilla g e

B io m a

&

S o il

r.,

K a te

J., T a ra w a li,

R.

D .,

M.

F a tty
So c.

G . and

N . (1 9 9 8 ).

M ucun

le g u m e

m u ltip le

w ith

M o n o g r.
Ib a d a n ,

h e rb a

Am .

M .,

eous

1.

F re d ric k so n .

B io lo g ic a l

7 9 : 5 2 1 -5 2 8 .

J.

Z a c h a ra ,

K ..

D.

N ig e ria .

C.

Q.

D e e p e st

(2 0 1 3 ).

"M ic ro b e s

S p o t o n E a rth ".

T h riv e

in

R.

C.

L o n g te rm
under

and

M a y e r,

tre n d s
c o n tin u o u s

in

w ith

J.

M.

of

h ig h -le v e l

w a ste -c o n ta m in a te d

se d im e n ts

at

W a sh in g to n

S ta te ".

th e

and

(2 0 0 4 ).
v a d o se

H a n fo rd

site .

A p p lie d

M ic r o b io lo g y.7 0

and
(7 ):

4 2 3 0 -4 1 .

L iv e S c ie n c e
G ee,

D a la l.

(1 9 9 9 ).

L.

"G e o m ic ro b io lo g y
n u c le a r

A g ric -

A.

S o il Q u a lity

S o il S c i.

E n vir o n m e n ta l

C h o i,

D.

F u m ig a tio n -In c u b a tio n :

B a lk w ill.

cover

R . L ., H o n s. F .

Zuberer,

C h lo ro fo rm

S a n g in g a ,

o f T ro p

G e o lo g y,

E n vir o n m e n ta l

A . J., H a n e y ,

A sse ssin g

u e . T IT A , R e s.

2 5 In t. In st.

R ic e .

of

and

and

C an.

S . A ., B e c k e r,

T ia n .

L o w la n d

Journal

and

M ic ro b ia l

2 (1 ):1 6 -2 5 .

F ra n z lu e b b e rs,

M ic ro b ia l

S c i.

on

M . S.

V o l. 6 5 . P p . 6 0 -7 5 .

C h ik o y e ,

under

S c ie n c e s .

P h o sp h o lip id
S o il

s

M anagem ent

E ffe c t

A g r ic u ltu r e

N itro g e n ,

a fte r T illa g e .

W a te r

R a te s

In te r n a tio n a l

1 0 1 : 8 9 -9 6 .
E.

S . (2 0 1 4 ).
itro g e n

E . R . (2 0 0 I ). S h o rt-T e rm

D y n a m ic s
A c id s

A .,

and

m a n a g e m e n t.

F. J., L o u ise ,

C a ld e ro 'n ,

F lie b b a c h ,

U ., a n d M a d e r,

y ie ld

under

r.,

I.,

L ., N ig g li,

K.

J.

fe rtility
c u ltiv a tio n

W.

and

B a u d e r,

(1 9 8 6 ).

P a rtic le

S iz e

A n a ly sis.

of

so il

(e d .) M e th o d s

of

and

e d n .)

ASA

290

G.

No

9

S o il

1.

In

W.

(1 9 8 6 ).

H lu te r,

A n a ly sis
In c .

SSSA

A.
(2 nd
In c .

M adison,
409.
G iller,

K.

W ashington

E.

and

N itrogen

D .C

W ilson,

C ropping

pp.

K.

Fixation

J.

in

383-

M cL ean,

(1991).

E . O . (1982).

R.

K eeney,

H.

and
of

soil

Society

(2013);

R eport

atural

C ard

on

Sustai nable

R esource

U se

A griculture;

in

D epartm ent

A griculture

of

S. and

Bacteria. In: D raggan,

C leveland,
C ouncil

C.

J.

elson,

D . W . and Som m ers,

N o.

R.
9,

H.

Seasonal

O dunze,

M urphy,

A.

C.

w ith stubble

and

44: 407-423.

c.,

versus

burning.

O dunze,

for increasing

A.

for

c.,

(1995).
of

farm ing

potential

for

m ixed

m oist

savannas.

G.

for

C rop

1.

K uenem an,

E . A . (E ds).

C outounou,

of

and

the

M anual,

N utrients", IPN I
T oday,
0.2.

Plant

Atala,

T.

0.,

K.,
A.

A lim i,

A ..
S. A .

lof

im provem ent

soil

in

savanna

of

the

igeria.

K . W . and W oorner,

L aboratory

M ethods

A nalysis:

Second

and SA C R E D

and

O luw asem ire,

held

of

A W orking

E dition.

T SB -C IA T

A frica, N airobi,

K enya.

B enin.

K . O . and A labi S. O . (2004).

E cological

1994,

Im pact

Pp.

igerian

Sudan

Savanna

and

O skin, B . (2013).

Plant

"Intra-terrestrials:

T hrives in O cean Floor". L ive
Science.

utrition

291

pollution
orthern

agro-ecological

zones.
Nigerian
Journal
Resources. 5: 23-31.

L . (20 I 0). "Soil

C hanging
pattern.

and environm ental

G uinea

N ew

of

of

R ainfal

E cology

Springer-V erlag,

A vailability

F.,

A ., B abalola,

legum es

Plant

Processes

D . R . and T hom as,
pH

D ..

S. V ., and A dediran,

G uinea

and

in the

Jensen,

P.
A.

K atung.
A m adji,

Proceedings

H . (1980). T he soil resource:
37

J.

J. R ., G athua,

Soil

104.

Studies.
Y ork.

R.,

G rain

P. L . (2002).

V . M .,

Septem ber,

R epublic

O kalebo,

B . T.,
N.

C ontrol.

Food Agric. Environ. 2: 218-226.

Savannas

W orkshop

19-23,

87-

Sanginga,

G uinea

and R ainfall

the

C onstraints
K ang,

0,

E .,

O gunw ole,

northern

the
T he

in

I. 0., M anyonga,

R.

of an IIT A lFA O
from

and

Production.

A kobundu,
C arsky

system s:
farm ing

N igerian

B ., A dam u,

(2004).
and

In: M oist

of A frica: Potential

and

Am. Soc.

S. A ., de H aan,

A koneguon,

E w ansiha,

sy tem s.

E nergy

evolution

R.

Soils. V ol. 33. Pg.

T araw ali,

productivity
A.

C hem ical

E rosion

E. N.

0..

soil organic carbon
agricultural

(2003).

C ., lw afor,

A hrnad,

Soil Research. 51(8): 657-667.
M.

D.

A nalysis

2,

Schultze-Krafr,

T.,

M ., O verheu,

D . V . (2013). C apacity

stocks in dryland

K eeney,

83-98.

1O .10711SR 05183

D ' A ntuono

and M urphy,

m icrobial

of Soil Research.

D O l:

I

Properties.

Journal of African

associated

retention

Journal

9

A m erican

L . E . (1982).

Soil C onditions

Param eter

V . (2006).

in

and di versity

Australian

H oyle, F.

D.

changes

function

Jenny,

N um ber

DC.

of E arth.

and

2.

M adison.

of Soil

Part

Savanna
F. C .

(E ds.).
Part

Agron., M adison, W I, pp. 539-579.

and the

W ashington

E ncyclopedia

lim e

T otal C arbon,
O rganic
C arbon,
and
O rganic
M atter.
In: Page,
A . L ..

M icrobiological

(E ds.),

for Science

E nvironm ent,

Jabbar,

edition.

of A gronom y,

M iller,

and Food.

C . M . (2010).

N ational

H oyle,

R.

of A gronom y.

(E ds.). M ethods
H ogan,

D.

T., H oyle, F. C . and M urphy, D . V.

G riffin,

and

m icrobiological

Second

in the Series

pH

A . L ., M iller,

analysis.

and

properties.

U K . Pp.

Soil

In: Page,

C hem ical

CAB

W allingford,

!

requirem ent.
M ethods

T ropical

System s.

International,
245-299.

I

of A griculture and Food Security (DUJAF
V ol. 4 N o. 1, June, 2017

D utse Journal

of

L ife

Soil

Dutse Journal of Agriculture and Food SecurityDCBA
(D U ] A F S)
Vol. 4 No. 1, June, 2017ZYXWVUTSRQPONMLKJIHGFEDCBA
S a m u e l,

A . D ., D o m u ta ,

S a n d o r,
e f f e c ts

on

R o m a n ia n

SAS

e .,

M . (2 0 0 8 ).

C io b a n u ,

F ie ld

s o il

enzym es

A g r ic .

R esea rch

(2 0 1 4 ).

S ta tis tic a l

I n s titu te ,

SAS

9 .4 . S A S

and

D o ra n ,

e.

and

m anagem ent
a c ti v itie s .
2 4 /2 0 0 8

A n a ly s is

S y s te m

I n s titu te ,

I n c .,

C a ry , N e .
S m ith ,

J.

L.

M e a su re m e n t
e le c tr ic a l

and

S c ie n c e

L.

M e th o d s

fo r

a n a ly s is .

S o il

S o c ie ty

of

and

P a u l,

E.

of

S p e c ia l

A.

(1 9 9 0 ).

S o il

E s tim a tio n .

The

M ic r o b ia l

p.

J . a n d S to tz k y ,

3 5 7 -3 9 6 .

In :

G . ( E d s .) .

V o l. 6 . M a r c e ll

S o il

D e k k e r,

Y o rk .

R . W ., A n g le ,

B e z d ic e k ,

e.

S .,

D ., S m ith ,

and

W o llu m ,

S o il

A n a ly s is :

and

A.

m a jo r ity .

S ta te s

of

P r o p e r tie s .

(2 0 1 2 ).

a n d W ie b e ,
th e
th e

of

unseen

N a tio n a l

th e

U n ite d

A . A ., A b u b a k a r

E f f e c ts

le v e ls

of

A nnual

c o n fe re n c e

S o c ie ty

N ig e r ia
K ano,

F.

G abasaw a,

o f c ro p

m a iz e

v a r y in g

U n iv e r s ity ,

S o il

In c .

9 5 (1 2 ): 6 5 7 8 -8 3 .

A . A . and

on

of

S c ie n c e s

A . A , I b r a h im

tilla g e

D . e.

P r o k a r y o te s :

o f A m e r ic a .

A b d u lla h i,

of

o f A m e r ic a ,

P r o c e e d in g s

Aca dem y

A.

M e th o d s

2 M ic r o b io lo g ic a l

W . B ., C o le m a n

W . J. (1 9 9 8 ).

P .,

T a b a ta b a i,

(1 9 9 4 ).

P a rt

S o c ie ty

B o tto m le y ,

S .,

B io c h e m ic a l

S c ie n c e

Y usuf

A m e r ic a

4 9 : 1 6 9 -1 8 2 .

B io c h e m is tr y .

W h itm a n

and
s o il

In :

B io m a s s

W e a v e r,

pH

fo r

q u a lity

S ig n if ic a n c e

B o lla g ,

of

(1 9 9 6 ).

s o il

P u b lic a tio n ,

N ew

use

a n a ly s is .

a s s e s s in g

J.

W.

c o n d u c tiv ity

q u a lity

S m ith ,

J.

J..,

A . I.

r o ta tio n

and

p r o d u c tiv ity

n itr o g e n .

at
4 6 th

o f th e A g r ic u ltu r a l
(A S N ),
5 th

-

B a y e ro

9 th N o v e m b e r ,

2012.

292