INFLUENCE OF TILLAGE AND NITROGEN FERTIL
of Agriculture
and Food Security XWVUTSRQPONMLKJIHGFEDCBA
(D U ] AF S)
VoJ. 4 No. 1, June, 2017
Dutse Journal
INFLUENCE
BIOM ASS
OF TILLAGE
AND NITROGEN
FERTILISER
ON SOIL M ICROBIAL
CARBON AND SOM E SOIL PROPERTIES
IN NORTHERN
GUINEA
SA V ANNAH,
NIGERIA
K. 0., Yusuf,
A. A. AbdulIahi,
Gabasawa,
A. I:, Adeyemo,
Department
Abubakar,
F. J.
of Soil Science, Faculty of AgriculturelInstitute
A. A., Aliyu, I. A. and
for Agricultural
Research,
Ahmadu Bello University, P.M .B. 1044, Samaru, Zaria - Nigeria
*Corresponding
Author Tel.: +234 (0) 8065409850,
e-mail: algabasawiyyu@ yahoo.com
A b s tr a c t
E xc e s s ive
c u ltiva tio n
a c tivitie s .
In
m a na gem ent
s c ie n tis ts
fi e l d
o f s o il c a n
s p ite
of
p r a c tic e s
lo ts
and
of
r e s u lt
in
i n fo r m a t i o n
a va ila b le
w a s c o n d u c te d
se ve r e
decrea se
a va ila b le
s o il m ic r o b e s ,
u n d e r tr o p ic a l a n d s u b tr o p ic a l
e xp e r im e n t
a
c o n d itio n s ,
in m ic r o b ia l
d e p ic tin g
e s p e c ia lly
in c o n tin u o u s ly
R e s e a r c h (IA R ) S a m a r u , Z a r ia , N ig e r ia
a n d R e d u c e d ) a n d n itr o g e n (N ) r a te s
b a c te r ia l p o p u la tio n
o f a c o n tin u o u s ly
(19.67 %)
fr a c t i o n s
w e r e o b se r ve d
c o n ta in e d
4.44 %
and
m ic r o b ia l
b io m a s s
ca rbon
483.89
th a n th e
(POO.05)
Keywords:
s o il
s o ils . A
C o n ve n tio n a l
w a s o b se r ve d
of
and
90
(C T ) th a n R e d u c e d
r e s p e c tive ly.
in C T a n d
kg N h a " ) o n s o il
(5.22 %)
th e
p a r a m e te r s .
A
T illa g e
6 1 9 .4 4
w a s s ta tis tic a lly
in R T . N e ith e r N n o r its in te r a c tio n
any
t o a s s e s s t h e e ffe c t s o f t w o
(0
F u r th e r
a n d s ilt
(R T ),
mg
h ig h e r
w h ic h
kg '!
s o il
(POO.05)
w i t h t i l l a g e h a d s i g n i fi c a n t
resea rch
e ffo r t
is ,
t h e r e fo r e ,
so a s t o a l l o w fo r a b e t t e r u n d e r s t a n d i n g o n t h e s u b j e c t .
o n th e to p ic
Alfisol, bacterial
Introduction
The soil microbial
under
(SM B C )
to
s o il
by
cropped
c r o p p e d A l fi s o l . S t a t i s t i c a l l y h i g h e r c l a y
%, c l a y a n d s i l t fr a c t i o n s
m g kg '! o b s e r ve d
c o n tr ib u tio n
recom m ended
th e ir
i n 2 0 1 3 r a i n y s e a s o n o n a T y p i c H a p l u s t a L J a t t h e r e s e a r c h fa r m
tilla g e p r a c tic e s
1 8 .1 1
and
b e tw e e n
is s t i l l v a g u e l y u n d e r s t o o d
sa m e
o f t h e I n s t i t u t e fo r A g r i c u l t u r a l
(C o n ve n tio n a l
b io m a s s
r e la tio n s h ip s
population,
particle size distribution,
Tillage
Clay, soil reaction
biomass
(SM B),
about
the most
(pH) and OC are among
important
properties
of soil
that
half of which is located in the surface of soil
affect 5M B. Therefore,
profile where most of the nutrient release
also occurs, consists mostly of bacteria and
separates
for example,
generally
have a
higher 5M B as such soils retain more water
and often contain more OC. Also, soil pH
near 7.0 is generally labelled most suitable
for
the
5M B
(Griffin
et
a l.,
2013).
fungi, which decompose
crop soil organic
matter (SOM ) and other residues
in soil
(Griffin e t a l . , 2013). The decomposition
process
releases
such
nutrients
(N) into the soil environment.
such,
made
available
for
as nitrogen
These
crop
M anagement
are, as
of
soils with high clay
crop
residues
5M B being one of the primary
utilisation.
and nutrients
influences
forms of OC
used by the microbial
biomass.
Generally, up to 5 % of the total organic
carbon and N in soil is in the microbial
biomass
(Smith
and Paul, 1990). W hen
microorganisms
die, these
nutrients
are
released
in plant-available
forms.
Soil
microbial biomass is also an early indicator
Retaining crop residues, therefore, provides
a practical means of increasing the 5M B via
increase in the quantity of OC available to
them (Franzluebbers
e t a l.,
1999). Less
disruptive
tillage
operations
can
also
increase the 5M B. This is due to increase in
of changes
the microbial
which
in total soil organic carbon (OC),
is an important
component
of SOM
in
labile
biomass
carbon
that regulates the transformation
and storage
of nutrients (W eaver e t a l . , 1994). The 5M B
aggregate
is affected
The crop types
water
including
practices
by such
and/or
climate,
(Hoyle
factors
carbon
that change
content
of
management
the
soil,
can
soil type and management
et
also
legumes,
al., 2013).
due
286
to
and
their
the
practices
also
fungal
networks
affect
for
through
into
being
the
example,
greater
utilised
5M B.
can
N
the increase
soil.
ensure
Such
soil
protection.
in a rotation
Residues
of
increase
5M B
contents.
Also
griculture and Food Security (DU}AFS)
Vol. 4 No. 1, June, 2017ZYXWVUTSRQPONMLKJIHGFEDCBA
Dutse Journal of
r o ta tio n s
in c lu d in g
in c r e a s e
5M B
lo n g e r
due
to
phases
M ost
o f p a s tu r e
consequent
s o il d is tu r b a n c e .
S o il
m ic r o o r g a n is m s
e n z y m a tic
s u b s ta n c e s
th e
a re
d e g r a d a tio n
f o r th e r e le a s e
m in e r a l
s o il
o f th e s o il
e f f ic ie n c y
a re
a c ti v i ty
v e ry
of
on
c u ltiv a tio n
as
c ro p ,
w e ll
m ic r o - c lim a te
p r o v id e
th e
unique
and
s o il
m a c ro -
and
lo c a tio n
b io lo g y .
T h e re fo re .
p ro c e sse s
b a c te r ia .
The
e x a m p le ,
a c ti v i tie s
in c lu d e
c y c lin g ,
and
w a te r
s m a l1
s o il
th a t
p e rfo rm a n c e
ty p ic a l1 y
p r o k a r y o tic
ra n g e
a
c o n s titu te
fe w
a
lo w
soi 1
er al..
m ic r o m e tr e s
la r g e
m ic r o o r g a n is m s
w ith
of
a
shapes,
r a n g in g
fro m
sp h e re s
ro d s
and
s p ir a ls .
B a c te r ia
w e re
am ong
f ir s t
lif e
fo rm s
p re se n t
in
w a te r ,
a c id ic
to a p p e a r
m ost
a n d in p la n ts a n d a n im a ls
and
2004)
O s k in ,
a lm o s t
a re
b a c te r ia l
c e l1 s in a g r a m
b a c te r ia l
c e lls
an
E a r th
( W h itm a n
b io m a s s
et al.,
d u e to d if f e r e n c e s
th a t e x c e e d s
(H o g a n ,
n u tr ie n ts
r e c y c lin g .
n u tr ie n t
c y c le s
f ix a tio n
h y d r o th e r m a l
th e
b y c o n v e r tin g
v e n ts
s u lp h id e
to e n e r g y
( C h o i, 2 0 1 3 ) .
al.,
2 0 0 8 ).
It
ty p e s
depend
needed
in
on
a
such
in c lim a te ,
to
p a re n t
a n d tim e ( J e n n y ,
in
th e
b e tw e e n
and
(S a m u e l
sought
to e v a lu a te
n itr o g e n
f e r tilis e r
in N o r th e r n
b u t th is
b y s o il s c ie n tis ts
s u b tr o p ic a l
f o r b a c te r ia ;
c o n d itio n s ,
in c o n tin u o u s ly
er al.,
T h is
2 0 0 8 ).
th e r o le s o f tilla g e
on
s o il
m ic r o b ia l
o f a c o n tin u o u s ly
G u in e a
th e
m anagem ent
s o il m ic r o b e s .
and
s o il
d e p ic tin g
soi 1
under
c a rb o n
th e ir
a s w e l1 a s th e ir p o p u la tio n .
a n d a v a ila b le
b io m a s s
is o f te n
b e tw e e n
lo ts o f in f o r m a tio n
la n d s
er
not
b u t a ls o
T h is
th e r e la tio n s h ip
tr o p ic a l
to k n o w
p re se n t
s o il.
u n d e r s to o d
and
In
im p o r ta n t
b io m a s s
(S a m u e l
c ro p p e d
Savannah
zone
of
N ig e r ia .
b a c te r ia
to s u s ta in
( H 2 S ) a n d m e th a n e
et al.,
lo c a tio n
a c tiv itie s
is s till v a g u e ly
paper
s u r r o u n d in g
com pounds
a re
c ro p p e d
n itr o g e n
seeps,
to
but have
(C a rsk y
one
o f b a c te r ia
fro m
e s p e c ia l1 y
and
o n th e m .
in d ic a tin g
r e p o r te d
o f a s o il c a n r e s u lt in a
is o f te n
a c tiv itie s
p r a c tic e
a r e v ita l in
s te p s
a re
p o ta s s iu m
in its m ic r o b ia l
m ic r o b ia l
r e la tio n s h ip s
w a te r
o f a l1 p la n ts
B a c te r ia
a n d c o ld
h y d ro g e n
th e
a m il1 io n
b io lo g ic a l
d is s o lv e d
g e n e ra l
T h e re
c o m m u n itie s
n u tr ie n ts
and
2013;
M any
as
a n d p u tr e f a c tio n
b io lo g ic a l
p r o v id e
th a t
2 0 1 0 ).
d e c re a se
to
f o r m in g
r e g io n
2 0 0 3 ),
fro m
c u ltiv a tio n
d e tr im e n ta l
m il1 io n
b a c te r ia
in th is
r e lie f , o r g a n is m s
v a r io u s
1 9 9 8 ),
th e
p r o d u c tio n .
a r e a ls o
a n o th e r
et al.,
o f fre sh
to w a r d s
p r o p e r tie s
v a ry
o b ta in e d
5 x 1 0 30
a p p r o x im a te ly
a n im a ls
th e
P f ix a tio n
42
o f th e
m a tte r , C E C , to ta l N ,
T hey
w a s te
o f s o il,
s o ils
1 9 9 8 ).
r a d io a c tiv e .
in a m il1 ilitr e
o f a la n d
p H ) in r e a c tio n
m o d e r a te
p o p u la tio n
40
T hese
p o p u la tio n
c o n tr ib u te
T hey
( 4 .0 - 5 .8
th e
( C h o i.
to
p r o d u c tiv ity
a g r ic u ltu r a l
b e a c id ic
th e ir
about
lo w
a
due
2 0 0 3 ).
of
1995; O dunze,
o n ly
e v e ry w h e re
T h e re
2 0 1 3 ).
w a te r
d r a in a g e
(S), a n d e x c h a n g e a b le
a re
( F r e d r ic k s o n
causes
hum an
com m on
s o il,
and
lo w
th a t
is c o m p o s e d
to
in c lu d in g
o n e a r th ,
h a b ita ts ,
h o t s p r in g s .
NGS
p r o d u c tiv ity .
E x c e s s iv e
w id e
of
c a p a c ity
p h o sp h o ru s
1 9 8 0 ).
in
d o m a in
s o ils
o f lo w o r g a n ic
m a te r ia ls ,
le n g th ,
and
m ost
P , s u lp h u r
2 0 0 8 ).
B a c te r ia ,
c a p a c ity ,
have
(O d u n z e ,
s a id
(K ) (Ja b b a r,
w h ic h
(S a m u e l
and
in te r n a l
im p r o v e d
A lf is o ls
Som e
a g g r e g a te s
poor
a re
The
n u tr ie n t
b in d
(N )
a ls o
in d ic a te
r e g io n 's
fo r
s u p p r e s s io n .
s u b s ta n c e s
in to
enhance
b a c te r ia ,
s ta tu s .
exchange
c a p a c ity
N ig e r ia n
a re a
to
e x a m p le
d y n a m ic s ,
d is e a s e
p ro d u c e
p a r tic le s
of
s o ils
% o f th e r e s id e n t
m ic r o b ia l
fo r
a re
f e r tility
a r e a o f a b o u t 5 .6 m il1 io n k r r r ', a n d a b o u t
o f a p p r o x im a te
p o p u la tio n ,
G u in e a
N ig e r ia
p o te n tia l.
a n d b io c h e m ic a l
g iv e a n in d ic a tio n
m ic r o b ia l
c a tio n
s tr u c tu r e
The
b io lo g ic a l
s o il
of
n itr o g e n
The
f e a tu r e s
o f s o il m ic r o b e s
s u c h a s b io lo g ic a l
to ta l
poor
( D a la l a n d
in te g r a te d
m a tte r ,
c o n c o m ita n t
a re
c o n tin u o u s ly
a r e a ls o lo w in w a te r h o ld in g
in f iltr a tio n
and
o f s o il d u e to th e ir r e la tio n s h ip
a c tiv itie s
b a c te r ia
num ber
ty p e
on
o f a g iv e n
a
assessm ent
s o il
s o il
as
1 9 8 6 ) . T h e a c tiv itie s
M a y e r,
s o il
The
b y lo w in h e r e n t
(P ).
and
m ic r o o r g a n is m s
c h a r a c te r is e d
(C E C ),
1 %
th e ir n u m b e r
h ig h .
I
soi
dependent
w h ile
le s s th a n
of
in th e N o r th e r n
(N G S )
o r g a n ic
fro m
s o ils
la n d s f o u n d
Savannah
T hey
er al.,
(S a m u e l
o c c u p y in g
v o lu m e ,
f o r th e
o r g a n ic
o f n u tr ie n ts
f r a c tio n
b u t u s u a lly
2 0 0 8 ),
im p o r ta n t
o f c o m p le x
u p la n d
c ro p p e d
re d u c e d
Materials and Methods
lif e
The
such as
tr ia l
w as
H a p lu s ta lf
(C H 4)
I n s titu te
287
at
fo r
c o n d u c te d
th e
re se a rc h
A g r ic u ltu r a l
on
a
fa rm
R e se a rc h
T y p ic
of
th e
(IA R )
of A griculture and Food Security (DU}AFS)
V ol. 4 N o. I, June, 2017
D utse Journal
Sam aru,
northern
Zaria.
guinea
(11 Q 11'
by
Sam aru
savannah
determ ination
using the hydrom eter
m ethod
(G ee and Bauder, 1986), the textural cia ses
is located in the
(N G S) of N igeria
and 7Q 38' E) and is characterised
a tropical
Long-term
continental
annual
type
rainfall
w ere
in
the
consequently
5M BC
of clim ate.
w as
m ethod
zone
by
also
the
(N elson
determ ined.
The
fum igation-extraction
and
Sornm ers,
1982;
averages about 1O S0 m m m ostly w ith a peak
at A ugust. The rainfall period starts in M ay,
O kalebo et al., 2002). The effects of tillage
and N rate on soil bacterial population w ere
but often stops in the m onth of Septem ber or
early O ctober. D ry season set in by O ctober
estim ated
and
1991; Baath et al., 1995).
lasts
m oisture
into
the
m onth
and tem perature
are inferred
M ay.
Soil
to
years before
accom m odate
experim ental
2014).
The
soil
of the
as
an
area
soil
w ere
variance
W here
treatm ent
and N rates
pH
and
and W ilson,
subjected
(A N O Y A )
to
using
the
the F-ratios
w ere observed
m eans w ere separated
Significant
to
at S % level of probability,
D ifference
the
using Least
(LSD ).
additional
in the past three
study
of
(G iller
generated
of
be significant
it w as m odified
tillage
factor
bases
G eneralised Linear M odel (G LM ) procedure
of Statistical A nalysis System (SAS) (SAS,
al., 2004;
si te had been under crop rotation
data
analysis
season (June to Septem ber)
and
to less than 20 Q C in the m onths
trial for seven
the
Statistical analysis
The
air tem perature
in the
2S Q C and 28 Q C during
D ecem ber and February (O dunze et
O luw asem ire
et al., 2004). The
betw een
on
size distribution
in the area
to be ustic and isohypertherm ic
respectively.
M ea6n
zone ranges betw een
the rainy
decreases
of
regim es
particle
w as
Results and D iscussion
Effects of tillage and
m icrobial biom ass carbon
years.
loam y
in
texture (Y usuf et al., 2012).
rate
on
soil
Reports have show n that 5M B w as greater in
Treatm ent
and Experim ental
Treatm ents
consisted
com bination
of
fertiliser
D esign
the
a
factorial
class w hile 5M B
of
nitrogen
the m icro- than in m acro-aggregates
of
four
level
w ere
arranged
com binations.
in
a
and
rates (0, 30, 60 and 90 kg N ha")
and tw o tillage (RT and CT) practices.
in
com plete
replicated
contained
the
The treatm ents
randornized
(RCBD )
all
than
possible
(2008).
Each
study
plot
auger at 3 poi nts from
w ith
plots that recei ved 0
air-dried
for
and sieved
som e
physical
Subsam ples
mm
w ere bulked,
O-S
w ere
m esh
and
biochem ical
chem ical
of the soil under
further
sieved
through
to laboratory
result
how ever,
1
N
w as as show n
show ed
betw een
in
a significant
CT (619.44
mg
m g kg"), There w as no
(P.~O .O S)
observed
and
in Figures 1 and 2
(P>O .O S) difference
Significant
analy es.
RT
et al.
by Berner
betw een
and 90 kg N ha'! rates on 5M BC
a 2 m m m esh
and
taken
significant
m icrobial
under
of tillage
kg") and RT (483.89
cm .
and som e portion
through
soil
content
(P ~O .O S) difference
m icro-
in
(Singh
effects
w ere as presented
1. The
size
are higher
increase
respectively.
Effect of tillage on 5M BC
and 90 kg N ha'! levels at a depth of
The sam ples
H ow ever,
Figure
collected
The
to
CT in a study
rate on the 5M BC
thrice.
w ere
found
w ere laid out
design
m icro-aggregates
and 5M BP
1995).
w as
under
in
block
six ridges of 6 m each.
sam ples
than
Singh,
biom ass
These
Sam ple Collection
Soil
m acro-
(Figure
difference
in
5M BC
0
2).
w as,
w ith
the
application of different rates of N fertiliser in
a study by Ethan (2014). Thi m ay be due to
for the
analyses.
som e biotic and abiotic
difference
betw een
oi Is of the locations.
Laboratory
Soil A nalyses
The soil sam ples
pH , particle
m icrobial
w as determ ined
electrode
A gbenin
w ere analy
carbon
(l99S).
m eter
w as, how ever,
and soil
The
The pH
type on 5M BC
2.S
suspensions,
as elaborated
Follow ing
the
significant
oil to
attributable
using
practice
clim ate
by
288
(P[O .O S)
observed
to
by
et al. (2001).
effect
of
tillage
in this w ork m ay be
differences
in
m anagem ent
and also to factors such as soil type,
(rainfall
for m icrobial
PSD
not affected
in a w ork by Caldero'n
(PSD )
in the ratio of I to
pH
5M BC
tillage
ed for
(SM BC).
size distribution
biom ass
w ater and 0.01 M CaCb
glass
The
collected
is usually the lim iting
biom ass)
because
factor
these factors
o f A g ric u ltu re a n d F o o d S e c u rity A( D
V o l. 4 0 .1 , Ju n e , 2 0 1 7
D u tse Jo u rn a l
can change
th e w a te r
o il (H o y le
o r c a rb o n
a n d M u rp h y ,
c o n te n t
2 0 0 6 ; H o y le
et
U ]A F S)
o f io n s to e x c h a n g e
of
site s, a n d th e a c tiv itie s
o f v a rio u s m ic ro o rg a n ism s.
a l;
2 0 1 3 ).
E ffe c ts o f tilla g e a n d N ra te
E ffe c ts
of
tilla g e
and
N
ra te
o n b a c te ria l
It w a s
d u e to pH
p o p u la tio n
S o il p H is a m o n g
o i I m ic ro b ia l
a c id ic
com m on
p o p u la tio n
so il
re p o n e d
d istrib u tio n
th e fa c to rs
d istrib u tio n
o r a lk a lin e
m ic ro b e s
due
o n 'b a c te ria l
p a rtic le
so il a ffe c ts
as
a re
m any
siz e
as
v in e la n d ii
a n d R h i z o b i a s p p . a s th e o p tim u m
p H fo r m o st so ils is n e a r n e u tra l.
so il
p a rtic le
so il
siz e
m ic ro b ia l
w a y s. T h e e ffe c ts
of
ra te o n p a rtic le siz e d istrib u tio n
sh o w n
sig n ific a n t
A zo to b a c te r
th e
in v a rio u :
tilla g e a n d
stru c tu re .
th a t
in flu e n c e s
d istrib u tio n
th a t in flu e n c e
and
su c h
to
d istrib u tio n
b a c te ria l p o p u la tio n
E ffe c ts o f tilla g e a n d N ra te
H ig h ly
on
in
T a b le
d iffe re n c e
1 . T h e re
(P
w as
b e tw e e n
0 .0 5 )
a
th e
tilla g e p ra c tic e s in te rm s o f th e sa n d , silt a n d
c la y d istrib u tio n s
in th e so il. C o n v e n tio n a l
T h e re su lt fo r th e e ffe c t o f tilla g e o n so il p H ,
tilla g e
a s sh o w n
c la y (S.22 %) a n d silt (1 9 .6 7
%) se p a ra te s
th a n th e R T , w h ic h
re c o rd e d
o n ly
and
and
w as
no
b e tw e e n
o n T a b le
1 , in d ic a te d
sig n ific a n t
d iffe re n c e
a n d C a C h ).
H o w e v e r,
w a te r (5 .0 3 ) a n d th a t in C a C h
h ig h e r
w e re 4 .8 3
sta tistic a lly
re la tiv e
re sp e c tiv e ly ,
th e re
d iffe re n c e
w as
no
b e tw e e n
sig n ific a n tly
c la y
%
w a s,
(P
silt,
h o w e v e r,
(P > 0 .0 5 )
1 , in d ic a te d
stre n g th e n s
th e p o ssib ility
p o p u la tio n
in th e C T
T h is
(P > 0 .0 5 )
is b e c a u se
p re p o n d e ra n t
th e N ra te s (0 k g N h a '
p ro v id e
th e
CT
in su la tin g
90
kg
N
b e tw e e n
The
h a :'.
e ffe c t
of
w h ic h
to
in
(P > 0 .0 5 )
C a C b ).
fo r b o th
B a c te ria l
in te ra c tio n
The
and
th a t
a lth o u g h
in C T
sta tistic a lly
p o p u la tio n
sim ila r,
is e x p e c te d
a s b a c te ria
a re k n o w n
m o re
1 9 9 6 ). H o w e v e r,
and
and
a c tiv ity
D o ra n ,
b a c te ria
and
no
sig n ific a n t
w a s e q u a lly
in d ic a te d
n o sig n ific a n t
b e tw e e n tilla g e ty p e a n d
o f p a rtic le
siz e d istrib u tio n .
th a t N ra te h a d n o sig n ific a n t
to w a rd s
th e ty p e o f so il te x tu re
to b a c te ria l
p o p u la tio n
in
b io m a ss
C
,th is p e r p e c ti v e .
to b a c te ria
R h iz o b ia
do
not
n o d u la te
under
pH
v a lu e
sp e c ie s
and
le ss
C o rre la tio n
(S m ith
of
fix N
th a n
o f a so il in flu e n c e s
c o m p o u n d s,
n e g a tiv e c o rre la tio n
b e tw e e n silt a n d sa n d
se p a ra te s a n d a n e g a tiv e b u t n o n -sig n ific a n t
5 .5
c o rre la tio n
(T a b le
th e so lu b ility
th e re la tiv e
o f so il m ic ro b ia l
a n d so il p a rtic le siz e d istrib u tio n s
T h e re w a s o n ly o n e ig n ific a n t (P '0 .0 I) b u t
(J e n se n a n d T h o m a s, 2 0 1 0 ). M c L e a n (1 9 8 2 )
o b se rv e d
th a t a c id ity , n e u tra lity ,
or
o f v a rio u s
(G ille r
1 9 9 3 ). T h is
a l.,
sh o w e d
a n d , c o n se q u e n tly
a lso
a lk a lin ity
a lso
T h e re
c o n trib u tio n
th is v e ry
d u e to c o n e q u e n t p o o r
lin k e d
1 9 9 6 ).
a lso
e ffe c tiv e ly
w o rst
et
heat
re a c h in g
th e
a n d y so ils,
slo w d o w n o r e v e n h a lt o rg a n ic
m a tte r m in e ra lisa tio n
m ic ro b ia l
re su lt
ra te in te rm
Thi
a c id ic p H , lik e v e ry a lk a lin e p H le v e ls, te n d s
to d ra stic a lly
th e
(P > 0 .0 5 ) in te ra c tio n
th riv e in a p H ra n g e o f b e tw e e n 5 -9 w ith a n
o p tim u m
o f (p H ) 7 (B a a th e t a l . , 1 9 9 5 ;
S m ith a n d D o ra n ,
to th e p ie rc in g
1 9 9 1 ; E n g la n d
se p a ra te s.
in R T th a n
to g ro w
a g a in st
(P > 0 .0 5 ) d iffe re n c e b e tw e e n th e 0 k g N h a '
and 90 kg N ha'
in te rm s o f th e so il
a c tiv ity d e c lin e a t lo w p H le v e ls. T h is' m e a n s
b a c te ria l
re la tiv e ly
w ill
o b se rv e d
g i v e s b a c te ria h ig h e r c h a n c e s fo r survi v a l in
th e C o n v e n tio n a lly th a n R e d u c e d tille d so il.
p H (in w a te r
p o p u la tio n
a re
W ilso n ,
ti lla g e ty p e a n d N ra te w a s a lso n o t
sig n ific a n t
and
th a t in
o f b a c te ria
in R T .
se p a ra te s
a d v a n ta g e
v u ln e ra b ility
b u t c o n v e rse ly ,
th a n
th e Ii n e te x tu re d
in
an
o f h ig h e r b a c te ria l
fro m h ig h su n te m p e ra tu re s
b a c te ria th a n c o a rse te x tu re d
th a t th e p H , in
h ig h e r re la tiv e to
w a s h ig h e r in 0 k g N h a :' c o m p a re d
sig n ific a n t
p ra c tic e
a n d 9 0 k g N h a ") in b o th p H (in w a te r a n d in
th a t o f 0 k g N h a ",
%
th e tilla g e ty p e s
C a C h ).
It is n o te w o rth y
w a te r, fo r 9 0 k g
ha' w a
C aC h
4 .4 4
re sp e c tiv e ly .
no
b e tw e e n
m o re
0 .0 5 )
in te rm s o f sa n d fra c tio n , y e t le ss sa n d w a s
o b se rv e d in C T th a n R T so il. T h is fu rth e r
w h ic h
a lth o u g h
sig n i fic a n t
1 8 .1 1
d iffe re n c e
h a n d , e ffe c t o f N ra te o n th e
so il p H , a s a lso sh o w n b y T a b le
re c o rd e d
T h e re
th e p H in
(4 .6 1 ) fo r R T
to th a t o f C T ,
a n d 4 .6 0
sim ila r.
O n th e o th e r
th a t
( P > O .O S )
th e p H o f R T a n d C T fo r b o th p H
(in w a te r
w e re
th a t th e re
sig n ific a n t
b in d in g
5M B C
289
b e tw e e n
2 ). T h e re
and
(P
any
sa n d a n d c la y p a rtic le s
w as
0 .0 5 )
of
h o w e v e r,
c o rre la tio n
th e
p a rtic le
n e ith e r
a
b e tw e e n
siz e s
nor
D u tse Jo u rn a l
o f A g ric u ltu re
b e tw e e n
th e
o th e r
siz e .
a lth o u g h
not
to
sig n ific a n t
stu d y ,
th e
th a t th e m o re
le ss
th e
p o siti v e
c la y ,
a
5M B C ,
and
th o u g h
in
v ic e -v e rsa .
ta tistic a lly
5M B C
a
m o re
C o n v e n tio n a l
The
on
and
e ffo rts
b a c te ria l
o b se rv e d
T illa g e ,
p a rtic le
siz e
p o p u la tio n
in
and
R educed
th a n
v ic e -v e rsa
d istrib u tio n .
o n th e to p ic
u n d e rsta n d in g
at
to th e fin d in g
w o u ld
M o re
a llo w
b a se d
re se a rc h
fo r a b e tte r
a b o u t th e su b je c t.
of
th is stu d y .
A c k n o w le d g e m e n ts
The
C o n c lu sio n
T h e re su lts
m ic ro b ia l
b e fittin g
w as
so il
sig n ific a n t,
m o re su p p o rt
2017
c o n d itio n
th e
e p a ra te s
b e tw e e n
not
re a ffirm e d ,
le v e l
th e sa n d
c o rre la tio n
le a st in d ic a te d
T h is
S e c u rity IHGFEDCBA
(D U ] AF S)
and Food
V o l. 4 N o . 1 , Ju n e ,
o f th is stu d y sh o w e d
b io m a ss
c a rb o n
w a s sig n ific a n tly
c o n te n t
a ffe c te d
b y N ra te o f a p p lic a tio n
th a t th e so il
o f th e so i
b y tilla g e
I
a u th o rs
a c k n o w le d g e
o f S o il S c ie n c e ,
B e llo
S a m a ru
U n iv e rsity ,
a n d a ll th o se
and not
th e c o n trib u tio n s
o f th e D e p a rtm e n t
A hm adu
- Z a ria ,
th a t c o n tri b u te d
N ig e ria
to th e su c c e ss
o f th is w o rk .
o r p H . B a se d o n p H ,
R e fe re n c e s
A g b e n in ,
J. O . (1 9 9 5 ).
L a b o ra to ry
M anual
I a n d P la n t A n a ly sis
fo r S o i
m e th o d s
and
c e re a l
(se le c te d
c ro p p i n g
Q u e e n sla n d .
d a ta a n a ly sis).
p ro p e rtie s
y ie ld .
B a a th ,
E . A ., F ro te g a rd ,
(1 9 9 5 ).
T . P . a n d F ritz e ,
M ic ro b ia l
stru c tu re
and pH
to so il o rg a n ic
E n g la n d .
in re la tio n
in w o o d -
in so il
in w in te r
Journal
c e re a l
of
S o il
2 4 : 2 6 5 -2 7 9 .
so ils.
L . S ., L e e .
(1 9 9 3 ).
H . and
B a c te ria l
S o il B io lo g y
b io l.
5,
and
in
S o il:
p ro to z o a
on
B io c h e m ic a l.
P e rg a m o n
J. T .
T re v o rs,
S u rv iv a l
E ffe c t o f c la y s
S o il
2 5 : 2 2 9 -2 4 0 .
B io c h e m .
tre n d s
A u stra lia n
Resea r ch,
c le a r c u t o r b u rn e d
fo re st
change
c o m m u n ity
re sp o n se
m a tte r q u a lity
a sh fe rtiliz e d ,
c o n ife ro u s
H.
and
S o u th e rn
1Il
O v e rv ie w
V o l. 2 5 N o .
P re ss
L td .
Pp.
5 2 5 -5 3 1
B e rn e r,
A .,
H ild e rm a n n ,
P fiffn e r,
(2 0 0 8 ).
C ro p
fe rtility
re sp o n se
o rg a n ic
T illa g e
Resea r ch.
and
D e rm is
of
A c tiv ity ,
and
C a rsk y ,
to
re d u c e d
P.
E th a n ,
so il
tilla g e
B io m a
&
S o il
r.,
K a te
J., T a ra w a li,
R.
D .,
M.
F a tty
So c.
G . and
N . (1 9 9 8 ).
M ucun
le g u m e
m u ltip le
w ith
M o n o g r.
Ib a d a n ,
h e rb a
Am .
M .,
eous
1.
F re d ric k so n .
B io lo g ic a l
7 9 : 5 2 1 -5 2 8 .
J.
Z a c h a ra ,
K ..
D.
N ig e ria .
C.
Q.
D e e p e st
(2 0 1 3 ).
"M ic ro b e s
S p o t o n E a rth ".
T h riv e
in
R.
C.
L o n g te rm
under
and
M a y e r,
tre n d s
c o n tin u o u s
in
w ith
J.
M.
of
h ig h -le v e l
w a ste -c o n ta m in a te d
se d im e n ts
at
W a sh in g to n
S ta te ".
th e
and
(2 0 0 4 ).
v a d o se
H a n fo rd
site .
A p p lie d
M ic r o b io lo g y.7 0
and
(7 ):
4 2 3 0 -4 1 .
L iv e S c ie n c e
G ee,
D a la l.
(1 9 9 9 ).
L.
"G e o m ic ro b io lo g y
n u c le a r
A g ric -
A.
S o il Q u a lity
S o il S c i.
E n vir o n m e n ta l
C h o i,
D.
F u m ig a tio n -In c u b a tio n :
B a lk w ill.
cover
R . L ., H o n s. F .
Zuberer,
C h lo ro fo rm
S a n g in g a ,
o f T ro p
G e o lo g y,
E n vir o n m e n ta l
A . J., H a n e y ,
A sse ssin g
u e . T IT A , R e s.
2 5 In t. In st.
R ic e .
of
and
and
C an.
S . A ., B e c k e r,
T ia n .
L o w la n d
Journal
and
M ic ro b ia l
2 (1 ):1 6 -2 5 .
F ra n z lu e b b e rs,
M ic ro b ia l
S c i.
on
M . S.
V o l. 6 5 . P p . 6 0 -7 5 .
C h ik o y e ,
under
S c ie n c e s .
P h o sp h o lip id
S o il
s
M anagem ent
E ffe c t
A g r ic u ltu r e
N itro g e n ,
a fte r T illa g e .
W a te r
R a te s
In te r n a tio n a l
1 0 1 : 8 9 -9 6 .
E.
S . (2 0 1 4 ).
itro g e n
E . R . (2 0 0 I ). S h o rt-T e rm
D y n a m ic s
A c id s
A .,
and
m a n a g e m e n t.
F. J., L o u ise ,
C a ld e ro 'n ,
F lie b b a c h ,
U ., a n d M a d e r,
y ie ld
under
r.,
I.,
L ., N ig g li,
K.
J.
fe rtility
c u ltiv a tio n
W.
and
B a u d e r,
(1 9 8 6 ).
P a rtic le
S iz e
A n a ly sis.
of
so il
(e d .) M e th o d s
of
and
e d n .)
ASA
290
G.
No
9
S o il
1.
In
W.
(1 9 8 6 ).
H lu te r,
A n a ly sis
In c .
SSSA
A.
(2 nd
In c .
M adison,
409.
G iller,
K.
W ashington
E.
and
N itrogen
D .C
W ilson,
C ropping
pp.
K.
Fixation
J.
in
383-
M cL ean,
(1991).
E . O . (1982).
R.
K eeney,
H.
and
of
soil
Society
(2013);
R eport
atural
C ard
on
Sustai nable
R esource
U se
A griculture;
in
D epartm ent
A griculture
of
S. and
Bacteria. In: D raggan,
C leveland,
C ouncil
C.
J.
elson,
D . W . and Som m ers,
N o.
R.
9,
H.
Seasonal
O dunze,
M urphy,
A.
C.
w ith stubble
and
44: 407-423.
c.,
versus
burning.
O dunze,
for increasing
A.
for
c.,
(1995).
of
farm ing
potential
for
m ixed
m oist
savannas.
G.
for
C rop
1.
K uenem an,
E . A . (E ds).
C outounou,
of
and
the
M anual,
N utrients", IPN I
T oday,
0.2.
Plant
Atala,
T.
0.,
K.,
A.
A lim i,
A ..
S. A .
lof
im provem ent
soil
in
savanna
of
the
igeria.
K . W . and W oorner,
L aboratory
M ethods
A nalysis:
Second
and SA C R E D
and
O luw asem ire,
held
of
A W orking
E dition.
T SB -C IA T
A frica, N airobi,
K enya.
B enin.
K . O . and A labi S. O . (2004).
E cological
1994,
Im pact
Pp.
igerian
Sudan
Savanna
and
O skin, B . (2013).
Plant
"Intra-terrestrials:
T hrives in O cean Floor". L ive
Science.
utrition
291
pollution
orthern
agro-ecological
zones.
Nigerian
Journal
Resources. 5: 23-31.
L . (20 I 0). "Soil
C hanging
pattern.
and environm ental
G uinea
N ew
of
of
R ainfal
E cology
Springer-V erlag,
A vailability
F.,
A ., B abalola,
legum es
Plant
Processes
D . R . and T hom as,
pH
D ..
S. V ., and A dediran,
G uinea
and
in the
Jensen,
P.
A.
K atung.
A m adji,
Proceedings
H . (1980). T he soil resource:
37
J.
J. R ., G athua,
Soil
104.
Studies.
Y ork.
R.,
G rain
P. L . (2002).
V . M .,
Septem ber,
R epublic
O kalebo,
B . T.,
N.
C ontrol.
Food Agric. Environ. 2: 218-226.
Savannas
W orkshop
19-23,
87-
Sanginga,
G uinea
and R ainfall
the
C onstraints
K ang,
0,
E .,
O gunw ole,
northern
the
T he
in
I. 0., M anyonga,
R.
of an IIT A lFA O
from
and
Production.
A kobundu,
C arsky
system s:
farm ing
N igerian
B ., A dam u,
(2004).
and
In: M oist
of A frica: Potential
and
Am. Soc.
S. A ., de H aan,
A koneguon,
E w ansiha,
sy tem s.
E nergy
evolution
R.
Soils. V ol. 33. Pg.
T araw ali,
productivity
A.
C hem ical
E rosion
E. N.
0..
soil organic carbon
agricultural
(2003).
C ., lw afor,
A hrnad,
Soil Research. 51(8): 657-667.
M.
D.
A nalysis
2,
Schultze-Krafr,
T.,
M ., O verheu,
D . V . (2013). C apacity
stocks in dryland
K eeney,
83-98.
1O .10711SR 05183
D ' A ntuono
and M urphy,
m icrobial
of Soil Research.
D O l:
I
Properties.
Journal of African
associated
retention
Journal
9
A m erican
L . E . (1982).
Soil C onditions
Param eter
V . (2006).
in
and di versity
Australian
H oyle, F.
D.
changes
function
Jenny,
N um ber
DC.
of E arth.
and
2.
M adison.
of Soil
Part
Savanna
F. C .
(E ds.).
Part
Agron., M adison, W I, pp. 539-579.
and the
W ashington
E ncyclopedia
lim e
T otal C arbon,
O rganic
C arbon,
and
O rganic
M atter.
In: Page,
A . L ..
M icrobiological
(E ds.),
for Science
E nvironm ent,
Jabbar,
edition.
of A gronom y,
M iller,
and Food.
C . M . (2010).
N ational
H oyle,
R.
of A gronom y.
(E ds.). M ethods
H ogan,
D.
T., H oyle, F. C . and M urphy, D . V.
G riffin,
and
m icrobiological
Second
in the Series
pH
A . L ., M iller,
analysis.
and
properties.
U K . Pp.
Soil
In: Page,
C hem ical
CAB
W allingford,
!
requirem ent.
M ethods
T ropical
System s.
International,
245-299.
I
of A griculture and Food Security (DUJAF
V ol. 4 N o. 1, June, 2017
D utse Journal
of
L ife
Soil
Dutse Journal of Agriculture and Food SecurityDCBA
(D U ] A F S)
Vol. 4 No. 1, June, 2017ZYXWVUTSRQPONMLKJIHGFEDCBA
S a m u e l,
A . D ., D o m u ta ,
S a n d o r,
e f f e c ts
on
R o m a n ia n
SAS
e .,
M . (2 0 0 8 ).
C io b a n u ,
F ie ld
s o il
enzym es
A g r ic .
R esea rch
(2 0 1 4 ).
S ta tis tic a l
I n s titu te ,
SAS
9 .4 . S A S
and
D o ra n ,
e.
and
m anagem ent
a c ti v itie s .
2 4 /2 0 0 8
A n a ly s is
S y s te m
I n s titu te ,
I n c .,
C a ry , N e .
S m ith ,
J.
L.
M e a su re m e n t
e le c tr ic a l
and
S c ie n c e
L.
M e th o d s
fo r
a n a ly s is .
S o il
S o c ie ty
of
and
P a u l,
E.
of
S p e c ia l
A.
(1 9 9 0 ).
S o il
E s tim a tio n .
The
M ic r o b ia l
p.
J . a n d S to tz k y ,
3 5 7 -3 9 6 .
In :
G . ( E d s .) .
V o l. 6 . M a r c e ll
S o il
D e k k e r,
Y o rk .
R . W ., A n g le ,
B e z d ic e k ,
e.
S .,
D ., S m ith ,
and
W o llu m ,
S o il
A n a ly s is :
and
A.
m a jo r ity .
S ta te s
of
P r o p e r tie s .
(2 0 1 2 ).
a n d W ie b e ,
th e
th e
of
unseen
N a tio n a l
th e
U n ite d
A . A ., A b u b a k a r
E f f e c ts
le v e ls
of
A nnual
c o n fe re n c e
S o c ie ty
N ig e r ia
K ano,
F.
G abasaw a,
o f c ro p
m a iz e
v a r y in g
U n iv e r s ity ,
S o il
In c .
9 5 (1 2 ): 6 5 7 8 -8 3 .
A . A . and
on
of
S c ie n c e s
A . A , I b r a h im
tilla g e
D . e.
P r o k a r y o te s :
o f A m e r ic a .
A b d u lla h i,
of
o f A m e r ic a ,
P r o c e e d in g s
Aca dem y
A.
M e th o d s
2 M ic r o b io lo g ic a l
W . B ., C o le m a n
W . J. (1 9 9 8 ).
P .,
T a b a ta b a i,
(1 9 9 4 ).
P a rt
S o c ie ty
B o tto m le y ,
S .,
B io c h e m ic a l
S c ie n c e
Y usuf
A m e r ic a
4 9 : 1 6 9 -1 8 2 .
B io c h e m is tr y .
W h itm a n
and
s o il
In :
B io m a s s
W e a v e r,
pH
fo r
q u a lity
S ig n if ic a n c e
B o lla g ,
of
(1 9 9 6 ).
s o il
P u b lic a tio n ,
N ew
use
a n a ly s is .
a s s e s s in g
J.
W.
c o n d u c tiv ity
q u a lity
S m ith ,
J.
J..,
A . I.
r o ta tio n
and
p r o d u c tiv ity
n itr o g e n .
at
4 6 th
o f th e A g r ic u ltu r a l
(A S N ),
5 th
-
B a y e ro
9 th N o v e m b e r ,
2012.
292
and Food Security XWVUTSRQPONMLKJIHGFEDCBA
(D U ] AF S)
VoJ. 4 No. 1, June, 2017
Dutse Journal
INFLUENCE
BIOM ASS
OF TILLAGE
AND NITROGEN
FERTILISER
ON SOIL M ICROBIAL
CARBON AND SOM E SOIL PROPERTIES
IN NORTHERN
GUINEA
SA V ANNAH,
NIGERIA
K. 0., Yusuf,
A. A. AbdulIahi,
Gabasawa,
A. I:, Adeyemo,
Department
Abubakar,
F. J.
of Soil Science, Faculty of AgriculturelInstitute
A. A., Aliyu, I. A. and
for Agricultural
Research,
Ahmadu Bello University, P.M .B. 1044, Samaru, Zaria - Nigeria
*Corresponding
Author Tel.: +234 (0) 8065409850,
e-mail: algabasawiyyu@ yahoo.com
A b s tr a c t
E xc e s s ive
c u ltiva tio n
a c tivitie s .
In
m a na gem ent
s c ie n tis ts
fi e l d
o f s o il c a n
s p ite
of
p r a c tic e s
lo ts
and
of
r e s u lt
in
i n fo r m a t i o n
a va ila b le
w a s c o n d u c te d
se ve r e
decrea se
a va ila b le
s o il m ic r o b e s ,
u n d e r tr o p ic a l a n d s u b tr o p ic a l
e xp e r im e n t
a
c o n d itio n s ,
in m ic r o b ia l
d e p ic tin g
e s p e c ia lly
in c o n tin u o u s ly
R e s e a r c h (IA R ) S a m a r u , Z a r ia , N ig e r ia
a n d R e d u c e d ) a n d n itr o g e n (N ) r a te s
b a c te r ia l p o p u la tio n
o f a c o n tin u o u s ly
(19.67 %)
fr a c t i o n s
w e r e o b se r ve d
c o n ta in e d
4.44 %
and
m ic r o b ia l
b io m a s s
ca rbon
483.89
th a n th e
(POO.05)
Keywords:
s o il
s o ils . A
C o n ve n tio n a l
w a s o b se r ve d
of
and
90
(C T ) th a n R e d u c e d
r e s p e c tive ly.
in C T a n d
kg N h a " ) o n s o il
(5.22 %)
th e
p a r a m e te r s .
A
T illa g e
6 1 9 .4 4
w a s s ta tis tic a lly
in R T . N e ith e r N n o r its in te r a c tio n
any
t o a s s e s s t h e e ffe c t s o f t w o
(0
F u r th e r
a n d s ilt
(R T ),
mg
h ig h e r
w h ic h
kg '!
s o il
(POO.05)
w i t h t i l l a g e h a d s i g n i fi c a n t
resea rch
e ffo r t
is ,
t h e r e fo r e ,
so a s t o a l l o w fo r a b e t t e r u n d e r s t a n d i n g o n t h e s u b j e c t .
o n th e to p ic
Alfisol, bacterial
Introduction
The soil microbial
under
(SM B C )
to
s o il
by
cropped
c r o p p e d A l fi s o l . S t a t i s t i c a l l y h i g h e r c l a y
%, c l a y a n d s i l t fr a c t i o n s
m g kg '! o b s e r ve d
c o n tr ib u tio n
recom m ended
th e ir
i n 2 0 1 3 r a i n y s e a s o n o n a T y p i c H a p l u s t a L J a t t h e r e s e a r c h fa r m
tilla g e p r a c tic e s
1 8 .1 1
and
b e tw e e n
is s t i l l v a g u e l y u n d e r s t o o d
sa m e
o f t h e I n s t i t u t e fo r A g r i c u l t u r a l
(C o n ve n tio n a l
b io m a s s
r e la tio n s h ip s
population,
particle size distribution,
Tillage
Clay, soil reaction
biomass
(SM B),
about
the most
(pH) and OC are among
important
properties
of soil
that
half of which is located in the surface of soil
affect 5M B. Therefore,
profile where most of the nutrient release
also occurs, consists mostly of bacteria and
separates
for example,
generally
have a
higher 5M B as such soils retain more water
and often contain more OC. Also, soil pH
near 7.0 is generally labelled most suitable
for
the
5M B
(Griffin
et
a l.,
2013).
fungi, which decompose
crop soil organic
matter (SOM ) and other residues
in soil
(Griffin e t a l . , 2013). The decomposition
process
releases
such
nutrients
(N) into the soil environment.
such,
made
available
for
as nitrogen
These
crop
M anagement
are, as
of
soils with high clay
crop
residues
5M B being one of the primary
utilisation.
and nutrients
influences
forms of OC
used by the microbial
biomass.
Generally, up to 5 % of the total organic
carbon and N in soil is in the microbial
biomass
(Smith
and Paul, 1990). W hen
microorganisms
die, these
nutrients
are
released
in plant-available
forms.
Soil
microbial biomass is also an early indicator
Retaining crop residues, therefore, provides
a practical means of increasing the 5M B via
increase in the quantity of OC available to
them (Franzluebbers
e t a l.,
1999). Less
disruptive
tillage
operations
can
also
increase the 5M B. This is due to increase in
of changes
the microbial
which
in total soil organic carbon (OC),
is an important
component
of SOM
in
labile
biomass
carbon
that regulates the transformation
and storage
of nutrients (W eaver e t a l . , 1994). The 5M B
aggregate
is affected
The crop types
water
including
practices
by such
and/or
climate,
(Hoyle
factors
carbon
that change
content
of
management
the
soil,
can
soil type and management
et
also
legumes,
al., 2013).
due
286
to
and
their
the
practices
also
fungal
networks
affect
for
through
into
being
the
example,
greater
utilised
5M B.
can
N
the increase
soil.
ensure
Such
soil
protection.
in a rotation
Residues
of
increase
5M B
contents.
Also
griculture and Food Security (DU}AFS)
Vol. 4 No. 1, June, 2017ZYXWVUTSRQPONMLKJIHGFEDCBA
Dutse Journal of
r o ta tio n s
in c lu d in g
in c r e a s e
5M B
lo n g e r
due
to
phases
M ost
o f p a s tu r e
consequent
s o il d is tu r b a n c e .
S o il
m ic r o o r g a n is m s
e n z y m a tic
s u b s ta n c e s
th e
a re
d e g r a d a tio n
f o r th e r e le a s e
m in e r a l
s o il
o f th e s o il
e f f ic ie n c y
a re
a c ti v i ty
v e ry
of
on
c u ltiv a tio n
as
c ro p ,
w e ll
m ic r o - c lim a te
p r o v id e
th e
unique
and
s o il
m a c ro -
and
lo c a tio n
b io lo g y .
T h e re fo re .
p ro c e sse s
b a c te r ia .
The
e x a m p le ,
a c ti v i tie s
in c lu d e
c y c lin g ,
and
w a te r
s m a l1
s o il
th a t
p e rfo rm a n c e
ty p ic a l1 y
p r o k a r y o tic
ra n g e
a
c o n s titu te
fe w
a
lo w
soi 1
er al..
m ic r o m e tr e s
la r g e
m ic r o o r g a n is m s
w ith
of
a
shapes,
r a n g in g
fro m
sp h e re s
ro d s
and
s p ir a ls .
B a c te r ia
w e re
am ong
f ir s t
lif e
fo rm s
p re se n t
in
w a te r ,
a c id ic
to a p p e a r
m ost
a n d in p la n ts a n d a n im a ls
and
2004)
O s k in ,
a lm o s t
a re
b a c te r ia l
c e l1 s in a g r a m
b a c te r ia l
c e lls
an
E a r th
( W h itm a n
b io m a s s
et al.,
d u e to d if f e r e n c e s
th a t e x c e e d s
(H o g a n ,
n u tr ie n ts
r e c y c lin g .
n u tr ie n t
c y c le s
f ix a tio n
h y d r o th e r m a l
th e
b y c o n v e r tin g
v e n ts
s u lp h id e
to e n e r g y
( C h o i, 2 0 1 3 ) .
al.,
2 0 0 8 ).
It
ty p e s
depend
needed
in
on
a
such
in c lim a te ,
to
p a re n t
a n d tim e ( J e n n y ,
in
th e
b e tw e e n
and
(S a m u e l
sought
to e v a lu a te
n itr o g e n
f e r tilis e r
in N o r th e r n
b u t th is
b y s o il s c ie n tis ts
s u b tr o p ic a l
f o r b a c te r ia ;
c o n d itio n s ,
in c o n tin u o u s ly
er al.,
T h is
2 0 0 8 ).
th e r o le s o f tilla g e
on
s o il
m ic r o b ia l
o f a c o n tin u o u s ly
G u in e a
th e
m anagem ent
s o il m ic r o b e s .
and
s o il
d e p ic tin g
soi 1
under
c a rb o n
th e ir
a s w e l1 a s th e ir p o p u la tio n .
a n d a v a ila b le
b io m a s s
is o f te n
b e tw e e n
lo ts o f in f o r m a tio n
la n d s
er
not
b u t a ls o
T h is
th e r e la tio n s h ip
tr o p ic a l
to k n o w
p re se n t
s o il.
u n d e r s to o d
and
In
im p o r ta n t
b io m a s s
(S a m u e l
c ro p p e d
Savannah
zone
of
N ig e r ia .
b a c te r ia
to s u s ta in
( H 2 S ) a n d m e th a n e
et al.,
lo c a tio n
a c tiv itie s
is s till v a g u e ly
paper
s u r r o u n d in g
com pounds
a re
c ro p p e d
n itr o g e n
seeps,
to
but have
(C a rsk y
one
o f b a c te r ia
fro m
e s p e c ia l1 y
and
o n th e m .
in d ic a tin g
r e p o r te d
o f a s o il c a n r e s u lt in a
is o f te n
a c tiv itie s
p r a c tic e
a r e v ita l in
s te p s
a re
p o ta s s iu m
in its m ic r o b ia l
m ic r o b ia l
r e la tio n s h ip s
w a te r
o f a l1 p la n ts
B a c te r ia
a n d c o ld
h y d ro g e n
th e
a m il1 io n
b io lo g ic a l
d is s o lv e d
g e n e ra l
T h e re
c o m m u n itie s
n u tr ie n ts
and
2013;
M any
as
a n d p u tr e f a c tio n
b io lo g ic a l
p r o v id e
th a t
2 0 1 0 ).
d e c re a se
to
f o r m in g
r e g io n
2 0 0 3 ),
fro m
c u ltiv a tio n
d e tr im e n ta l
m il1 io n
b a c te r ia
in th is
r e lie f , o r g a n is m s
v a r io u s
1 9 9 8 ),
th e
p r o d u c tio n .
a r e a ls o
a n o th e r
et al.,
o f fre sh
to w a r d s
p r o p e r tie s
v a ry
o b ta in e d
5 x 1 0 30
a p p r o x im a te ly
a n im a ls
th e
P f ix a tio n
42
o f th e
m a tte r , C E C , to ta l N ,
T hey
w a s te
o f s o il,
s o ils
1 9 9 8 ).
r a d io a c tiv e .
in a m il1 ilitr e
o f a la n d
p H ) in r e a c tio n
m o d e r a te
p o p u la tio n
40
T hese
p o p u la tio n
c o n tr ib u te
T hey
( 4 .0 - 5 .8
th e
( C h o i.
to
p r o d u c tiv ity
a g r ic u ltu r a l
b e a c id ic
th e ir
about
lo w
a
due
2 0 0 3 ).
of
1995; O dunze,
o n ly
e v e ry w h e re
T h e re
2 0 1 3 ).
w a te r
d r a in a g e
(S), a n d e x c h a n g e a b le
a re
( F r e d r ic k s o n
causes
hum an
com m on
s o il,
and
lo w
th a t
is c o m p o s e d
to
in c lu d in g
o n e a r th ,
h a b ita ts ,
h o t s p r in g s .
NGS
p r o d u c tiv ity .
E x c e s s iv e
w id e
of
c a p a c ity
p h o sp h o ru s
1 9 8 0 ).
in
d o m a in
s o ils
o f lo w o r g a n ic
m a te r ia ls ,
le n g th ,
and
m ost
P , s u lp h u r
2 0 0 8 ).
B a c te r ia ,
c a p a c ity ,
have
(O d u n z e ,
s a id
(K ) (Ja b b a r,
w h ic h
(S a m u e l
and
in te r n a l
im p r o v e d
A lf is o ls
Som e
a g g r e g a te s
poor
a re
The
n u tr ie n t
b in d
(N )
a ls o
in d ic a te
r e g io n 's
fo r
s u p p r e s s io n .
s u b s ta n c e s
in to
enhance
b a c te r ia ,
s ta tu s .
exchange
c a p a c ity
N ig e r ia n
a re a
to
e x a m p le
d y n a m ic s ,
d is e a s e
p ro d u c e
p a r tic le s
of
s o ils
% o f th e r e s id e n t
m ic r o b ia l
fo r
a re
f e r tility
a r e a o f a b o u t 5 .6 m il1 io n k r r r ', a n d a b o u t
o f a p p r o x im a te
p o p u la tio n ,
G u in e a
N ig e r ia
p o te n tia l.
a n d b io c h e m ic a l
g iv e a n in d ic a tio n
m ic r o b ia l
c a tio n
s tr u c tu r e
The
b io lo g ic a l
s o il
of
n itr o g e n
The
f e a tu r e s
o f s o il m ic r o b e s
s u c h a s b io lo g ic a l
to ta l
poor
( D a la l a n d
in te g r a te d
m a tte r ,
c o n c o m ita n t
a re
c o n tin u o u s ly
a r e a ls o lo w in w a te r h o ld in g
in f iltr a tio n
and
o f s o il d u e to th e ir r e la tio n s h ip
a c tiv itie s
b a c te r ia
num ber
ty p e
on
o f a g iv e n
a
assessm ent
s o il
s o il
as
1 9 8 6 ) . T h e a c tiv itie s
M a y e r,
s o il
The
b y lo w in h e r e n t
(P ).
and
m ic r o o r g a n is m s
c h a r a c te r is e d
(C E C ),
1 %
th e ir n u m b e r
h ig h .
I
soi
dependent
w h ile
le s s th a n
of
in th e N o r th e r n
(N G S )
o r g a n ic
fro m
s o ils
la n d s f o u n d
Savannah
T hey
er al.,
(S a m u e l
o c c u p y in g
v o lu m e ,
f o r th e
o r g a n ic
o f n u tr ie n ts
f r a c tio n
b u t u s u a lly
2 0 0 8 ),
im p o r ta n t
o f c o m p le x
u p la n d
c ro p p e d
re d u c e d
Materials and Methods
lif e
The
such as
tr ia l
w as
H a p lu s ta lf
(C H 4)
I n s titu te
287
at
fo r
c o n d u c te d
th e
re se a rc h
A g r ic u ltu r a l
on
a
fa rm
R e se a rc h
T y p ic
of
th e
(IA R )
of A griculture and Food Security (DU}AFS)
V ol. 4 N o. I, June, 2017
D utse Journal
Sam aru,
northern
Zaria.
guinea
(11 Q 11'
by
Sam aru
savannah
determ ination
using the hydrom eter
m ethod
(G ee and Bauder, 1986), the textural cia ses
is located in the
(N G S) of N igeria
and 7Q 38' E) and is characterised
a tropical
Long-term
continental
annual
type
rainfall
w ere
in
the
consequently
5M BC
of clim ate.
w as
m ethod
zone
by
also
the
(N elson
determ ined.
The
fum igation-extraction
and
Sornm ers,
1982;
averages about 1O S0 m m m ostly w ith a peak
at A ugust. The rainfall period starts in M ay,
O kalebo et al., 2002). The effects of tillage
and N rate on soil bacterial population w ere
but often stops in the m onth of Septem ber or
early O ctober. D ry season set in by O ctober
estim ated
and
1991; Baath et al., 1995).
lasts
m oisture
into
the
m onth
and tem perature
are inferred
M ay.
Soil
to
years before
accom m odate
experim ental
2014).
The
soil
of the
as
an
area
soil
w ere
variance
W here
treatm ent
and N rates
pH
and
and W ilson,
subjected
(A N O Y A )
to
using
the
the F-ratios
w ere observed
m eans w ere separated
Significant
to
at S % level of probability,
D ifference
the
using Least
(LSD ).
additional
in the past three
study
of
(G iller
generated
of
be significant
it w as m odified
tillage
factor
bases
G eneralised Linear M odel (G LM ) procedure
of Statistical A nalysis System (SAS) (SAS,
al., 2004;
si te had been under crop rotation
data
analysis
season (June to Septem ber)
and
to less than 20 Q C in the m onths
trial for seven
the
Statistical analysis
The
air tem perature
in the
2S Q C and 28 Q C during
D ecem ber and February (O dunze et
O luw asem ire
et al., 2004). The
betw een
on
size distribution
in the area
to be ustic and isohypertherm ic
respectively.
M ea6n
zone ranges betw een
the rainy
decreases
of
regim es
particle
w as
Results and D iscussion
Effects of tillage and
m icrobial biom ass carbon
years.
loam y
in
texture (Y usuf et al., 2012).
rate
on
soil
Reports have show n that 5M B w as greater in
Treatm ent
and Experim ental
Treatm ents
consisted
com bination
of
fertiliser
D esign
the
a
factorial
class w hile 5M B
of
nitrogen
the m icro- than in m acro-aggregates
of
four
level
w ere
arranged
com binations.
in
a
and
rates (0, 30, 60 and 90 kg N ha")
and tw o tillage (RT and CT) practices.
in
com plete
replicated
contained
the
The treatm ents
randornized
(RCBD )
all
than
possible
(2008).
Each
study
plot
auger at 3 poi nts from
w ith
plots that recei ved 0
air-dried
for
and sieved
som e
physical
Subsam ples
mm
w ere bulked,
O-S
w ere
m esh
and
biochem ical
chem ical
of the soil under
further
sieved
through
to laboratory
result
how ever,
1
N
w as as show n
show ed
betw een
in
a significant
CT (619.44
mg
m g kg"), There w as no
(P.~O .O S)
observed
and
in Figures 1 and 2
(P>O .O S) difference
Significant
analy es.
RT
et al.
by Berner
betw een
and 90 kg N ha'! rates on 5M BC
a 2 m m m esh
and
taken
significant
m icrobial
under
of tillage
kg") and RT (483.89
cm .
and som e portion
through
soil
content
(P ~O .O S) difference
m icro-
in
(Singh
effects
w ere as presented
1. The
size
are higher
increase
respectively.
Effect of tillage on 5M BC
and 90 kg N ha'! levels at a depth of
The sam ples
H ow ever,
Figure
collected
The
to
CT in a study
rate on the 5M BC
thrice.
w ere
found
w ere laid out
design
m icro-aggregates
and 5M BP
1995).
w as
under
in
block
six ridges of 6 m each.
sam ples
than
Singh,
biom ass
These
Sam ple Collection
Soil
m acro-
(Figure
difference
in
5M BC
0
2).
w as,
w ith
the
application of different rates of N fertiliser in
a study by Ethan (2014). Thi m ay be due to
for the
analyses.
som e biotic and abiotic
difference
betw een
oi Is of the locations.
Laboratory
Soil A nalyses
The soil sam ples
pH , particle
m icrobial
w as determ ined
electrode
A gbenin
w ere analy
carbon
(l99S).
m eter
w as, how ever,
and soil
The
The pH
type on 5M BC
2.S
suspensions,
as elaborated
Follow ing
the
significant
oil to
attributable
using
practice
clim ate
by
288
(P[O .O S)
observed
to
by
et al. (2001).
effect
of
tillage
in this w ork m ay be
differences
in
m anagem ent
and also to factors such as soil type,
(rainfall
for m icrobial
PSD
not affected
in a w ork by Caldero'n
(PSD )
in the ratio of I to
pH
5M BC
tillage
ed for
(SM BC).
size distribution
biom ass
w ater and 0.01 M CaCb
glass
The
collected
is usually the lim iting
biom ass)
because
factor
these factors
o f A g ric u ltu re a n d F o o d S e c u rity A( D
V o l. 4 0 .1 , Ju n e , 2 0 1 7
D u tse Jo u rn a l
can change
th e w a te r
o il (H o y le
o r c a rb o n
a n d M u rp h y ,
c o n te n t
2 0 0 6 ; H o y le
et
U ]A F S)
o f io n s to e x c h a n g e
of
site s, a n d th e a c tiv itie s
o f v a rio u s m ic ro o rg a n ism s.
a l;
2 0 1 3 ).
E ffe c ts o f tilla g e a n d N ra te
E ffe c ts
of
tilla g e
and
N
ra te
o n b a c te ria l
It w a s
d u e to pH
p o p u la tio n
S o il p H is a m o n g
o i I m ic ro b ia l
a c id ic
com m on
p o p u la tio n
so il
re p o n e d
d istrib u tio n
th e fa c to rs
d istrib u tio n
o r a lk a lin e
m ic ro b e s
due
o n 'b a c te ria l
p a rtic le
so il a ffe c ts
as
a re
m any
siz e
as
v in e la n d ii
a n d R h i z o b i a s p p . a s th e o p tim u m
p H fo r m o st so ils is n e a r n e u tra l.
so il
p a rtic le
so il
siz e
m ic ro b ia l
w a y s. T h e e ffe c ts
of
ra te o n p a rtic le siz e d istrib u tio n
sh o w n
sig n ific a n t
A zo to b a c te r
th e
in v a rio u :
tilla g e a n d
stru c tu re .
th a t
in flu e n c e s
d istrib u tio n
th a t in flu e n c e
and
su c h
to
d istrib u tio n
b a c te ria l p o p u la tio n
E ffe c ts o f tilla g e a n d N ra te
H ig h ly
on
in
T a b le
d iffe re n c e
1 . T h e re
(P
w as
b e tw e e n
0 .0 5 )
a
th e
tilla g e p ra c tic e s in te rm s o f th e sa n d , silt a n d
c la y d istrib u tio n s
in th e so il. C o n v e n tio n a l
T h e re su lt fo r th e e ffe c t o f tilla g e o n so il p H ,
tilla g e
a s sh o w n
c la y (S.22 %) a n d silt (1 9 .6 7
%) se p a ra te s
th a n th e R T , w h ic h
re c o rd e d
o n ly
and
and
w as
no
b e tw e e n
o n T a b le
1 , in d ic a te d
sig n ific a n t
d iffe re n c e
a n d C a C h ).
H o w e v e r,
w a te r (5 .0 3 ) a n d th a t in C a C h
h ig h e r
w e re 4 .8 3
sta tistic a lly
re la tiv e
re sp e c tiv e ly ,
th e re
d iffe re n c e
w as
no
b e tw e e n
sig n ific a n tly
c la y
%
w a s,
(P
silt,
h o w e v e r,
(P > 0 .0 5 )
1 , in d ic a te d
stre n g th e n s
th e p o ssib ility
p o p u la tio n
in th e C T
T h is
(P > 0 .0 5 )
is b e c a u se
p re p o n d e ra n t
th e N ra te s (0 k g N h a '
p ro v id e
th e
CT
in su la tin g
90
kg
N
b e tw e e n
The
h a :'.
e ffe c t
of
w h ic h
to
in
(P > 0 .0 5 )
C a C b ).
fo r b o th
B a c te ria l
in te ra c tio n
The
and
th a t
a lth o u g h
in C T
sta tistic a lly
p o p u la tio n
sim ila r,
is e x p e c te d
a s b a c te ria
a re k n o w n
m o re
1 9 9 6 ). H o w e v e r,
and
and
a c tiv ity
D o ra n ,
b a c te ria
and
no
sig n ific a n t
w a s e q u a lly
in d ic a te d
n o sig n ific a n t
b e tw e e n tilla g e ty p e a n d
o f p a rtic le
siz e d istrib u tio n .
th a t N ra te h a d n o sig n ific a n t
to w a rd s
th e ty p e o f so il te x tu re
to b a c te ria l
p o p u la tio n
in
b io m a ss
C
,th is p e r p e c ti v e .
to b a c te ria
R h iz o b ia
do
not
n o d u la te
under
pH
v a lu e
sp e c ie s
and
le ss
C o rre la tio n
(S m ith
of
fix N
th a n
o f a so il in flu e n c e s
c o m p o u n d s,
n e g a tiv e c o rre la tio n
b e tw e e n silt a n d sa n d
se p a ra te s a n d a n e g a tiv e b u t n o n -sig n ific a n t
5 .5
c o rre la tio n
(T a b le
th e so lu b ility
th e re la tiv e
o f so il m ic ro b ia l
a n d so il p a rtic le siz e d istrib u tio n s
T h e re w a s o n ly o n e ig n ific a n t (P '0 .0 I) b u t
(J e n se n a n d T h o m a s, 2 0 1 0 ). M c L e a n (1 9 8 2 )
o b se rv e d
th a t a c id ity , n e u tra lity ,
or
o f v a rio u s
(G ille r
1 9 9 3 ). T h is
a l.,
sh o w e d
a n d , c o n se q u e n tly
a lso
a lk a lin ity
a lso
T h e re
c o n trib u tio n
th is v e ry
d u e to c o n e q u e n t p o o r
lin k e d
1 9 9 6 ).
a lso
e ffe c tiv e ly
w o rst
et
heat
re a c h in g
th e
a n d y so ils,
slo w d o w n o r e v e n h a lt o rg a n ic
m a tte r m in e ra lisa tio n
m ic ro b ia l
re su lt
ra te in te rm
Thi
a c id ic p H , lik e v e ry a lk a lin e p H le v e ls, te n d s
to d ra stic a lly
th e
(P > 0 .0 5 ) in te ra c tio n
th riv e in a p H ra n g e o f b e tw e e n 5 -9 w ith a n
o p tim u m
o f (p H ) 7 (B a a th e t a l . , 1 9 9 5 ;
S m ith a n d D o ra n ,
to th e p ie rc in g
1 9 9 1 ; E n g la n d
se p a ra te s.
in R T th a n
to g ro w
a g a in st
(P > 0 .0 5 ) d iffe re n c e b e tw e e n th e 0 k g N h a '
and 90 kg N ha'
in te rm s o f th e so il
a c tiv ity d e c lin e a t lo w p H le v e ls. T h is' m e a n s
b a c te ria l
re la tiv e ly
w ill
o b se rv e d
g i v e s b a c te ria h ig h e r c h a n c e s fo r survi v a l in
th e C o n v e n tio n a lly th a n R e d u c e d tille d so il.
p H (in w a te r
p o p u la tio n
a re
W ilso n ,
ti lla g e ty p e a n d N ra te w a s a lso n o t
sig n ific a n t
and
th a t in
o f b a c te ria
in R T .
se p a ra te s
a d v a n ta g e
v u ln e ra b ility
b u t c o n v e rse ly ,
th a n
th e Ii n e te x tu re d
in
an
o f h ig h e r b a c te ria l
fro m h ig h su n te m p e ra tu re s
b a c te ria th a n c o a rse te x tu re d
th a t th e p H , in
h ig h e r re la tiv e to
w a s h ig h e r in 0 k g N h a :' c o m p a re d
sig n ific a n t
p ra c tic e
a n d 9 0 k g N h a ") in b o th p H (in w a te r a n d in
th a t o f 0 k g N h a ",
%
th e tilla g e ty p e s
C a C h ).
It is n o te w o rth y
w a te r, fo r 9 0 k g
ha' w a
C aC h
4 .4 4
re sp e c tiv e ly .
no
b e tw e e n
m o re
0 .0 5 )
in te rm s o f sa n d fra c tio n , y e t le ss sa n d w a s
o b se rv e d in C T th a n R T so il. T h is fu rth e r
w h ic h
a lth o u g h
sig n i fic a n t
1 8 .1 1
d iffe re n c e
h a n d , e ffe c t o f N ra te o n th e
so il p H , a s a lso sh o w n b y T a b le
re c o rd e d
T h e re
th e p H in
(4 .6 1 ) fo r R T
to th a t o f C T ,
a n d 4 .6 0
sim ila r.
O n th e o th e r
th a t
( P > O .O S )
th e p H o f R T a n d C T fo r b o th p H
(in w a te r
w e re
th a t th e re
sig n ific a n t
b in d in g
5M B C
289
b e tw e e n
2 ). T h e re
and
(P
any
sa n d a n d c la y p a rtic le s
w as
0 .0 5 )
of
h o w e v e r,
c o rre la tio n
th e
p a rtic le
n e ith e r
a
b e tw e e n
siz e s
nor
D u tse Jo u rn a l
o f A g ric u ltu re
b e tw e e n
th e
o th e r
siz e .
a lth o u g h
not
to
sig n ific a n t
stu d y ,
th e
th a t th e m o re
le ss
th e
p o siti v e
c la y ,
a
5M B C ,
and
th o u g h
in
v ic e -v e rsa .
ta tistic a lly
5M B C
a
m o re
C o n v e n tio n a l
The
on
and
e ffo rts
b a c te ria l
o b se rv e d
T illa g e ,
p a rtic le
siz e
p o p u la tio n
in
and
R educed
th a n
v ic e -v e rsa
d istrib u tio n .
o n th e to p ic
u n d e rsta n d in g
at
to th e fin d in g
w o u ld
M o re
a llo w
b a se d
re se a rc h
fo r a b e tte r
a b o u t th e su b je c t.
of
th is stu d y .
A c k n o w le d g e m e n ts
The
C o n c lu sio n
T h e re su lts
m ic ro b ia l
b e fittin g
w as
so il
sig n ific a n t,
m o re su p p o rt
2017
c o n d itio n
th e
e p a ra te s
b e tw e e n
not
re a ffirm e d ,
le v e l
th e sa n d
c o rre la tio n
le a st in d ic a te d
T h is
S e c u rity IHGFEDCBA
(D U ] AF S)
and Food
V o l. 4 N o . 1 , Ju n e ,
o f th is stu d y sh o w e d
b io m a ss
c a rb o n
w a s sig n ific a n tly
c o n te n t
a ffe c te d
b y N ra te o f a p p lic a tio n
th a t th e so il
o f th e so i
b y tilla g e
I
a u th o rs
a c k n o w le d g e
o f S o il S c ie n c e ,
B e llo
S a m a ru
U n iv e rsity ,
a n d a ll th o se
and not
th e c o n trib u tio n s
o f th e D e p a rtm e n t
A hm adu
- Z a ria ,
th a t c o n tri b u te d
N ig e ria
to th e su c c e ss
o f th is w o rk .
o r p H . B a se d o n p H ,
R e fe re n c e s
A g b e n in ,
J. O . (1 9 9 5 ).
L a b o ra to ry
M anual
I a n d P la n t A n a ly sis
fo r S o i
m e th o d s
and
c e re a l
(se le c te d
c ro p p i n g
Q u e e n sla n d .
d a ta a n a ly sis).
p ro p e rtie s
y ie ld .
B a a th ,
E . A ., F ro te g a rd ,
(1 9 9 5 ).
T . P . a n d F ritz e ,
M ic ro b ia l
stru c tu re
and pH
to so il o rg a n ic
E n g la n d .
in re la tio n
in w o o d -
in so il
in w in te r
Journal
c e re a l
of
S o il
2 4 : 2 6 5 -2 7 9 .
so ils.
L . S ., L e e .
(1 9 9 3 ).
H . and
B a c te ria l
S o il B io lo g y
b io l.
5,
and
in
S o il:
p ro to z o a
on
B io c h e m ic a l.
P e rg a m o n
J. T .
T re v o rs,
S u rv iv a l
E ffe c t o f c la y s
S o il
2 5 : 2 2 9 -2 4 0 .
B io c h e m .
tre n d s
A u stra lia n
Resea r ch,
c le a r c u t o r b u rn e d
fo re st
change
c o m m u n ity
re sp o n se
m a tte r q u a lity
a sh fe rtiliz e d ,
c o n ife ro u s
H.
and
S o u th e rn
1Il
O v e rv ie w
V o l. 2 5 N o .
P re ss
L td .
Pp.
5 2 5 -5 3 1
B e rn e r,
A .,
H ild e rm a n n ,
P fiffn e r,
(2 0 0 8 ).
C ro p
fe rtility
re sp o n se
o rg a n ic
T illa g e
Resea r ch.
and
D e rm is
of
A c tiv ity ,
and
C a rsk y ,
to
re d u c e d
P.
E th a n ,
so il
tilla g e
B io m a
&
S o il
r.,
K a te
J., T a ra w a li,
R.
D .,
M.
F a tty
So c.
G . and
N . (1 9 9 8 ).
M ucun
le g u m e
m u ltip le
w ith
M o n o g r.
Ib a d a n ,
h e rb a
Am .
M .,
eous
1.
F re d ric k so n .
B io lo g ic a l
7 9 : 5 2 1 -5 2 8 .
J.
Z a c h a ra ,
K ..
D.
N ig e ria .
C.
Q.
D e e p e st
(2 0 1 3 ).
"M ic ro b e s
S p o t o n E a rth ".
T h riv e
in
R.
C.
L o n g te rm
under
and
M a y e r,
tre n d s
c o n tin u o u s
in
w ith
J.
M.
of
h ig h -le v e l
w a ste -c o n ta m in a te d
se d im e n ts
at
W a sh in g to n
S ta te ".
th e
and
(2 0 0 4 ).
v a d o se
H a n fo rd
site .
A p p lie d
M ic r o b io lo g y.7 0
and
(7 ):
4 2 3 0 -4 1 .
L iv e S c ie n c e
G ee,
D a la l.
(1 9 9 9 ).
L.
"G e o m ic ro b io lo g y
n u c le a r
A g ric -
A.
S o il Q u a lity
S o il S c i.
E n vir o n m e n ta l
C h o i,
D.
F u m ig a tio n -In c u b a tio n :
B a lk w ill.
cover
R . L ., H o n s. F .
Zuberer,
C h lo ro fo rm
S a n g in g a ,
o f T ro p
G e o lo g y,
E n vir o n m e n ta l
A . J., H a n e y ,
A sse ssin g
u e . T IT A , R e s.
2 5 In t. In st.
R ic e .
of
and
and
C an.
S . A ., B e c k e r,
T ia n .
L o w la n d
Journal
and
M ic ro b ia l
2 (1 ):1 6 -2 5 .
F ra n z lu e b b e rs,
M ic ro b ia l
S c i.
on
M . S.
V o l. 6 5 . P p . 6 0 -7 5 .
C h ik o y e ,
under
S c ie n c e s .
P h o sp h o lip id
S o il
s
M anagem ent
E ffe c t
A g r ic u ltu r e
N itro g e n ,
a fte r T illa g e .
W a te r
R a te s
In te r n a tio n a l
1 0 1 : 8 9 -9 6 .
E.
S . (2 0 1 4 ).
itro g e n
E . R . (2 0 0 I ). S h o rt-T e rm
D y n a m ic s
A c id s
A .,
and
m a n a g e m e n t.
F. J., L o u ise ,
C a ld e ro 'n ,
F lie b b a c h ,
U ., a n d M a d e r,
y ie ld
under
r.,
I.,
L ., N ig g li,
K.
J.
fe rtility
c u ltiv a tio n
W.
and
B a u d e r,
(1 9 8 6 ).
P a rtic le
S iz e
A n a ly sis.
of
so il
(e d .) M e th o d s
of
and
e d n .)
ASA
290
G.
No
9
S o il
1.
In
W.
(1 9 8 6 ).
H lu te r,
A n a ly sis
In c .
SSSA
A.
(2 nd
In c .
M adison,
409.
G iller,
K.
W ashington
E.
and
N itrogen
D .C
W ilson,
C ropping
pp.
K.
Fixation
J.
in
383-
M cL ean,
(1991).
E . O . (1982).
R.
K eeney,
H.
and
of
soil
Society
(2013);
R eport
atural
C ard
on
Sustai nable
R esource
U se
A griculture;
in
D epartm ent
A griculture
of
S. and
Bacteria. In: D raggan,
C leveland,
C ouncil
C.
J.
elson,
D . W . and Som m ers,
N o.
R.
9,
H.
Seasonal
O dunze,
M urphy,
A.
C.
w ith stubble
and
44: 407-423.
c.,
versus
burning.
O dunze,
for increasing
A.
for
c.,
(1995).
of
farm ing
potential
for
m ixed
m oist
savannas.
G.
for
C rop
1.
K uenem an,
E . A . (E ds).
C outounou,
of
and
the
M anual,
N utrients", IPN I
T oday,
0.2.
Plant
Atala,
T.
0.,
K.,
A.
A lim i,
A ..
S. A .
lof
im provem ent
soil
in
savanna
of
the
igeria.
K . W . and W oorner,
L aboratory
M ethods
A nalysis:
Second
and SA C R E D
and
O luw asem ire,
held
of
A W orking
E dition.
T SB -C IA T
A frica, N airobi,
K enya.
B enin.
K . O . and A labi S. O . (2004).
E cological
1994,
Im pact
Pp.
igerian
Sudan
Savanna
and
O skin, B . (2013).
Plant
"Intra-terrestrials:
T hrives in O cean Floor". L ive
Science.
utrition
291
pollution
orthern
agro-ecological
zones.
Nigerian
Journal
Resources. 5: 23-31.
L . (20 I 0). "Soil
C hanging
pattern.
and environm ental
G uinea
N ew
of
of
R ainfal
E cology
Springer-V erlag,
A vailability
F.,
A ., B abalola,
legum es
Plant
Processes
D . R . and T hom as,
pH
D ..
S. V ., and A dediran,
G uinea
and
in the
Jensen,
P.
A.
K atung.
A m adji,
Proceedings
H . (1980). T he soil resource:
37
J.
J. R ., G athua,
Soil
104.
Studies.
Y ork.
R.,
G rain
P. L . (2002).
V . M .,
Septem ber,
R epublic
O kalebo,
B . T.,
N.
C ontrol.
Food Agric. Environ. 2: 218-226.
Savannas
W orkshop
19-23,
87-
Sanginga,
G uinea
and R ainfall
the
C onstraints
K ang,
0,
E .,
O gunw ole,
northern
the
T he
in
I. 0., M anyonga,
R.
of an IIT A lFA O
from
and
Production.
A kobundu,
C arsky
system s:
farm ing
N igerian
B ., A dam u,
(2004).
and
In: M oist
of A frica: Potential
and
Am. Soc.
S. A ., de H aan,
A koneguon,
E w ansiha,
sy tem s.
E nergy
evolution
R.
Soils. V ol. 33. Pg.
T araw ali,
productivity
A.
C hem ical
E rosion
E. N.
0..
soil organic carbon
agricultural
(2003).
C ., lw afor,
A hrnad,
Soil Research. 51(8): 657-667.
M.
D.
A nalysis
2,
Schultze-Krafr,
T.,
M ., O verheu,
D . V . (2013). C apacity
stocks in dryland
K eeney,
83-98.
1O .10711SR 05183
D ' A ntuono
and M urphy,
m icrobial
of Soil Research.
D O l:
I
Properties.
Journal of African
associated
retention
Journal
9
A m erican
L . E . (1982).
Soil C onditions
Param eter
V . (2006).
in
and di versity
Australian
H oyle, F.
D.
changes
function
Jenny,
N um ber
DC.
of E arth.
and
2.
M adison.
of Soil
Part
Savanna
F. C .
(E ds.).
Part
Agron., M adison, W I, pp. 539-579.
and the
W ashington
E ncyclopedia
lim e
T otal C arbon,
O rganic
C arbon,
and
O rganic
M atter.
In: Page,
A . L ..
M icrobiological
(E ds.),
for Science
E nvironm ent,
Jabbar,
edition.
of A gronom y,
M iller,
and Food.
C . M . (2010).
N ational
H oyle,
R.
of A gronom y.
(E ds.). M ethods
H ogan,
D.
T., H oyle, F. C . and M urphy, D . V.
G riffin,
and
m icrobiological
Second
in the Series
pH
A . L ., M iller,
analysis.
and
properties.
U K . Pp.
Soil
In: Page,
C hem ical
CAB
W allingford,
!
requirem ent.
M ethods
T ropical
System s.
International,
245-299.
I
of A griculture and Food Security (DUJAF
V ol. 4 N o. 1, June, 2017
D utse Journal
of
L ife
Soil
Dutse Journal of Agriculture and Food SecurityDCBA
(D U ] A F S)
Vol. 4 No. 1, June, 2017ZYXWVUTSRQPONMLKJIHGFEDCBA
S a m u e l,
A . D ., D o m u ta ,
S a n d o r,
e f f e c ts
on
R o m a n ia n
SAS
e .,
M . (2 0 0 8 ).
C io b a n u ,
F ie ld
s o il
enzym es
A g r ic .
R esea rch
(2 0 1 4 ).
S ta tis tic a l
I n s titu te ,
SAS
9 .4 . S A S
and
D o ra n ,
e.
and
m anagem ent
a c ti v itie s .
2 4 /2 0 0 8
A n a ly s is
S y s te m
I n s titu te ,
I n c .,
C a ry , N e .
S m ith ,
J.
L.
M e a su re m e n t
e le c tr ic a l
and
S c ie n c e
L.
M e th o d s
fo r
a n a ly s is .
S o il
S o c ie ty
of
and
P a u l,
E.
of
S p e c ia l
A.
(1 9 9 0 ).
S o il
E s tim a tio n .
The
M ic r o b ia l
p.
J . a n d S to tz k y ,
3 5 7 -3 9 6 .
In :
G . ( E d s .) .
V o l. 6 . M a r c e ll
S o il
D e k k e r,
Y o rk .
R . W ., A n g le ,
B e z d ic e k ,
e.
S .,
D ., S m ith ,
and
W o llu m ,
S o il
A n a ly s is :
and
A.
m a jo r ity .
S ta te s
of
P r o p e r tie s .
(2 0 1 2 ).
a n d W ie b e ,
th e
th e
of
unseen
N a tio n a l
th e
U n ite d
A . A ., A b u b a k a r
E f f e c ts
le v e ls
of
A nnual
c o n fe re n c e
S o c ie ty
N ig e r ia
K ano,
F.
G abasaw a,
o f c ro p
m a iz e
v a r y in g
U n iv e r s ity ,
S o il
In c .
9 5 (1 2 ): 6 5 7 8 -8 3 .
A . A . and
on
of
S c ie n c e s
A . A , I b r a h im
tilla g e
D . e.
P r o k a r y o te s :
o f A m e r ic a .
A b d u lla h i,
of
o f A m e r ic a ,
P r o c e e d in g s
Aca dem y
A.
M e th o d s
2 M ic r o b io lo g ic a l
W . B ., C o le m a n
W . J. (1 9 9 8 ).
P .,
T a b a ta b a i,
(1 9 9 4 ).
P a rt
S o c ie ty
B o tto m le y ,
S .,
B io c h e m ic a l
S c ie n c e
Y usuf
A m e r ic a
4 9 : 1 6 9 -1 8 2 .
B io c h e m is tr y .
W h itm a n
and
s o il
In :
B io m a s s
W e a v e r,
pH
fo r
q u a lity
S ig n if ic a n c e
B o lla g ,
of
(1 9 9 6 ).
s o il
P u b lic a tio n ,
N ew
use
a n a ly s is .
a s s e s s in g
J.
W.
c o n d u c tiv ity
q u a lity
S m ith ,
J.
J..,
A . I.
r o ta tio n
and
p r o d u c tiv ity
n itr o g e n .
at
4 6 th
o f th e A g r ic u ltu r a l
(A S N ),
5 th
-
B a y e ro
9 th N o v e m b e r ,
2012.
292