Comparison Of Differencing Parameter Estimation From Nonstationer Arfima Model By Gph Method With Cosine Tapering.

(1)

COMPARISON OF DIF F E RE NCING PARAME T E R

E ST IMAT ION F ROM NONST AT IONE R ARF IMA

MODE L BY GPH ME T H OD WIT H COSIN E T APE RING

By


(2)

INTRODUCTION (1)

TIME SERIES MODELS

BASED ON VALUE OF DIFFERENCING PARAMATER (d)

ARMA

d = 0

d

0, d = INTEGER

ARIMA

ARFIMA

d=

REAL


(3)

Long Memory Processes

Long

range

dependence

or

memory

long

means

that

observations

far

away

from

h

eac

other

are

still

strongly

correlated.

The correlation of long memory processes is decay slowly as lag


(4)

INTRODUCTION(2)

Granger

and Joyeux(1980)

Hosking(1981)

Sowell (1992)

-MLE-Geweke and

Porter-Hudak(1983)

-GPH

Method-Reisen(1994)

-SPR

Method-Robinson(1995)

-GPHTr

Method-Hurvich and Ray(1995)

- GPHTa

Method-Velasco(1999b)

-MGPH

Method-Beran(1994)


(5)

-NLS-INTRODUCTION(3)

COMPARISON OF

REGRESSION SPECTRAL

METHODS

Lopes,Olberman

and Reisen(2004)

-Non stationary

ARFIMA-SPR Method is the best

Lopes

and Nunes(2006)

-ARFIMA(0,d,0)-GPH Method is the best


(6)

GOAL OF RE SE ARCH

Comparing accuracy of GPH estimation

methods with cosine tapering of the

differencing parameter (d) and forecasting

result from nonstationary ARFIMA Model


(7)

ARFIMA MODE L(1)

An ARFIMA(p,d,q) model can be defined as foll ows:

t = index of observation (t = 1, 2, . . ., T)

d = differencing parameter (rea l number)

= mean of obervation

  

 

(

B

)

d

1

t

B

z

t

 

2

t


(8)

ARFIMA MODE L(2)

is polinomial AR(p)

is polinomial MA(q)

fractional

differencing

operator

p

p

2

2

1

B

B

..

B

1

)

B

(

2

q

1

2

q

( B )

1

B

d

d

 

 

k

k

0

d

1

B

k

 

1 2 3

2

0 . 5

1

(

)

1

c o s

2

2

1

1

(

)

1

c o s

2

1

2

(

)

0 . 5 4

0 . 4 6

c o s

1

t

t a p

t

T

t

t a p

t

T

t

t a p

t

T


(9)

DIAGRAM

*Generate

Data 1 :

ARFIMA(1,d,0)

and

ARFIMA(0,d,1)

d =0.6, 0.7 and 0.8

N = 600 and 1000

Estimate parameter d by GPH

Method

1. Cosine Bell Taper

2. Hanning Taper

3. Hamming Taper

Determine Mean dan SD estimate

From these methods


(10)

Mean and Standard deviation of

parameter estimation

d

0, 199 0, 783 0, 176 0, 794 0, 167 0, 803 d=0, 8 0, 187 0, 687 0, 176 0, 677 0, 172 0, 695 d=0, 7 0, 162 0, 592 0, 174 0, 583 0, 175 0, 598 d=0, 6

ARFIMA(0,d, 1)

0, 202 0, 834 0, 172 0, 815 0, 179 0, 803 d=0, 8 0, 197 0, 716 0, 170 0, 705 0, 178 0, 712 d=0, 7 0, 168 0, 6111 0, 173 0. 602 0, 172 0, 611 d=0, 6

ARFIMA(1,d, 0) 1000 0, 191 0, 787 0, 201 0, 790 0, 203 0, 791 d=0, 8 0, 187 0, 696 0, 204 0, 685 0, 198 0, 687 d=0, 7 0, 192 0, 585 0, 205 0, 570 0, 201 0, 581 d=0, 6

ARFIMA(0,d, 1)

0, 189 0, 830 0, 193 0, 833 0, 198 0, 840 d=0, 8 0, 192 0, 728 0, 208 0, 731 0, 196 0, 717 d=0, 7 0, 195 0, 617 0, 200 0, 620 0, 195 0, 624 d=0, 6

ARFIMA(1,d, 0) 600

Hamming

d sd(d) Hanning

d sd(d) Cosine Bell

d sd(d)

GPH Est imat ion Met hod Wit h Cosine Taper ARFIMA Model Dat a


(11)

MSE of Forecasting (

h

= 10)

1. 622 1. 633 1. 633 d=0, 8 1. 215 1. 219 1. 219 d=0, 7 1. 258 1. 262 1. 262 d=0, 6

ARFIMA(0,d, 1)

1. 346 1. 352 1. 352 d=0, 8 1. 317 1. 323 1. 323 d=0, 7 1. 360 1. 367 1. 367 d=0, 6

ARFIMA(1,d, 0) 600 1. 229 1. 233 1. 232 d=0, 8 1. 251 1. 255 1. 254 d=0, 7 1. 251 1. 254 1. 254 d=0, 6

ARFIMA(0,d, 1)

1. 336 1. 342 1. 342 d=0, 8 1. 316 1. 322 1. 322 d=0, 7 1. 311 1. 317 1. 316 d=0, 6

ARFIMA(1,d, 0) 300

Hamming Hanning

Cosine Bell

Cosine Taper ARFIMA Model Dat a


(12)

CONCLUSION

1)

GPH method with Cosine Bell Ta

pering shows

the

best

performance

in

ting

estima

the

differencing parameter of ARFIMA(0,d,1)

2)

From ARFIMA(1,d,0) data, GPH method with

Hanning Taper

is

the

best

estimator

all

of

method.

3)

From

forecasting

result,

Mean

square

Error

(MSE) of GPH method with Hammi

ng taper


(13)

(14)

E STIMATION OF THE DIFFE RE NCING PARAME TE R OF

ARFIMA MODE L BY SPE CTRAL RE GRE SSION ME THOD(1)

1. Construct spectral density function ( SDF) of ARFIMA model

2. Take logarithms of SDF from ARFIMA model

 

 

2

2 2d

2 q a Z

exp(

i

)

f

2sin

,

,

2

exp(

i

)

2

 

 

 

 

 

 

 

 

 

3

w

here

2

W

W

j

W

j

Z

j

j

f

ln f

ln f

0

d ln 1

exp(i

)

ln

f

0

2

j

,

j

1,2,...., T / 2

T


(15)

E STIMATION OF THE DIFFE RE NCING PARAME TE R OF

ARFIMA MODE L BY SPE CTRAL RE GRE SSION ME THOD(2)

3. Add natural logarithm of periodogram to equation

(3) above

4.

Determine

the

periodogram based

on

regression

spectral methods

GPH

 

 

 

 

 

i j

 

 

 

 

 

4

f

I

2

W

j

Z

j

ln I

Z

j

ln f

W

0

dln1

exp

ln

ln

f

W

0

f

j

Z

 

g( T )

 

Z

j

0

t

j

t 1

1

I

2

cos( t.

)

,

2

 


(16)

E STIMATION OF THE DIFFE RE NCING

PARAME TER OF

ARFIMA MODE L BY SPE CTRAL RE GRE SSION ME THOD(3)

GPHta

 

 

 

T 1

 

 

2

Z

j

T 1

2

t

j

t 0

t 0

1

I

tap

2

tap t

 

1 2 3

2

0.5

1

( )

1

cos

2

2

1

1

( )

1

cos

2

1

2

( )

0.54

0.46

cos

1

t

tap

t

T

t

tap

t

T

t

tap

t

T


(17)

E STIMATION OF THE DIFFE RE NCING

PARAME TER OF

ARFIMA MODE L BY

SPE CTRAL RE GRE SSION

ME THOD(4)

5 Estimate d by Ordinary Least Square Me thod.

Where,

 

2

j

Z

j

j

j


(1)

The First International Seminar on Science

and Technology (ISSTE C) 2009 12

CONCLUSION

1)

GPH method with Cosine Bell Ta

pering shows

the

best

performance

in

ting

estima

the

differencing parameter of ARFIMA(0,d,1)

2)

From ARFIMA(1,d,0) data, GPH method with

Hanning Taper

is

the

best

estimator

all

of

method.

3)

From

forecasting

result,

Mean

square

Error

(MSE) of GPH method with Hammi

ng taper

has the least value of all data types.


(2)

(3)

The First International Seminar on Science

and Technology (ISSTE C) 2009 14

E STIMATION OF THE DIFFE RE NCING PARAME TE R OF

ARFIMA MODE L BY SPE CTRAL RE GRE SSION ME THOD(1)

1. Construct spectral density function ( SDF) of ARFIMA model

2. Take logarithms of SDF from ARFIMA model

 

 

2

2 2d

2 q a Z

exp(

i

)

f

2sin

,

,

2

exp(

i

)

2

 

 

 

 

 

 

 

 

 

3

w

here

2

W

W

j

W

j

Z

j

j

f

ln f

ln f

0

d ln 1

exp(i

)

ln

f

0

2

j

,

j

1,2,...., T / 2

T


(4)

E STIMATION OF THE DIFFE RE NCING PARAME TE R OF

ARFIMA MODE L BY SPE CTRAL RE GRE SSION ME THOD(2)

3. Add natural logarithm of periodogram to equation

(3) above

4.

Determine

the

periodogram based

on

regression

spectral methods

GPH

 

 

 

 

 

i j

 

 

 

 

 

4

f

I

2

W

j

Z

j

ln I

Z

j

ln f

W

0

dln1

exp

ln

ln

f

W

0

f

j

Z

 

g( T )

 

Z

j

0

t

j

t 1

1

I

2

cos( t.

)

,

2

 


(5)

The First International Seminar on Science

and Technology (ISSTE C) 2009 16

E STIMATION OF THE DIFFE RE NCING

PARAME TER OF

ARFIMA MODE L BY SPE CTRAL RE GRE SSION ME THOD(3)

GPHta

 

 

 

T 1

 

 

2

Z

j

T 1

2

t

j

t 0

t 0

1

I

tap

2

tap t

 

1 2 3

2

0.5

1

( )

1

cos

2

2

1

1

( )

1

cos

2

1

2

( )

0.54

0.46

cos

1

t

tap

t

T

t

tap

t

T

t

tap

t

T


(6)

E STIMATION OF THE DIFFE RE NCING

PARAME TER OF

ARFIMA MODE L BY

SPE CTRAL RE GRE SSION

ME THOD(4)

5 Estimate d by Ordinary Least Square Me thod.

Where,

 

2

j

Z

j

j

j