MODULASI PSK (PHASE SHIFT KEYING)

  MODULASI PSK (PHASE SHIFT KEYING) Sistem Komunikasi Prodi D3 TT

  Yuyun Siti Rohmah, ST.,MT

BINARY SHIFT KEYING

  2

  Binary Shift Keying (BPSK)

   Perubahan Parameter Fasa dari sinyal pembawa sesuai dengan sinyal informasi.

   Menggunakan alternatif-alternatif fasa gelombang sinus utk mengkodekan bit-bit dimana Fasa dipisahkan 180 derajat  Sederhana utk diimplementasikan, tidak efisien dalam penggunaan bandwidth.

   Sangat kokoh, sering digunakan secara extensif pada komunikasi satelit.

  3

  Blok Sistem BPSK A cos( 2 f t) ; b ( t )" 1 "

    c s ( t )

   A cos( 2 f t) ; b ( t )" "

    c

  

  4

  Data Carrier

  Carrier+  BPSK waveform 1 1 0 1 0 1

  Contoh Sinyal BPSK

  5

  

Konstelasi sinyal BPSK

 Fasa dipisahkan 180 derajat.

  6

  '0' binary )

) 2 cos( (

  '1' binary )

) 2 cos( (

  2

  1   

     A t f t s A t f t s c c c c

  Q State

  1 State

  7

  f S(f) f c f c + R f c - R f c + 2R f c - 2R BW min BW min =2B N = 2.Rb/2 B N

  =Bandwidth Nyquist

  Spektrum Sinyal BPSK

  MODULASI QPSK (QUADRATURE SHIFT KEYING)

  8

  Quadrature Phase Shift Keying

  • • Teknik modulasi multilevel : 2 bit per symbol

  • Lebih efisien spektrum, lebih kompleks receiver.
  • Dua kali lebih efisien bandwidth daripada BPSK

  Q

  00 State

  01 State

  11 State

  10 State Phase of Carrier: /4, 3/4, 5/4, 7/4

  9

  • cos+sin cos-sin
  • cos-sin

  • 0.5
  • 0.5
  • >1.5 <>1.5
  • 1
  •   1.5 0.2 0.4 0.6 0.8

      QPSK

      cos+sin

      10

      11

      01

      00

      1

      1.5 0.2 0.4 0.6 0.8

      1

      0.5

      1

      1

      0.5

      1

      1.5 0.2 0.4 0.6 0.8

      1

      0.5

      1

      1.5 0.2 0.4 0.6 0.8

      1

      0.5

      4 bentuk gelombang berbeda:

    • 0.5
    • >1.5 <>1.5
    • 1
      • 0.5

      10 Bentuk Sinyal

        Blok Sistem QPSK

        11

        

      Bandpass modulation: Signal Space &amp; Vector

       Bandpass modulation: The process of converting data signal to a sinusoidal waveform where its amplitude, phase or frequency, or a combination of them, is varied in accordance with the transmitting data.  Bandpass signal ( General Condition ):

      2 E

        i s ( t )h ( t ) cos t( i1 )t( t )tT

           

         i c i

        T h ( t ) E

        where is the baseband pulse shape with energy . h

         We assume here (otherwise will be stated): h ( t )  is a rectangular pulse shape with unit energy.

        M

        1  Gray coding is used for mapping bits to symbols.

        EE E s i s

         i

        1 

        M

         denotes average symbol energy given by

        12

        

      Phase Shift Keying (PSK)

      I. PSK signal waveform (transmitted signal):

        , phase: ,

        Can you show that

         

        

        

           

                

              

      2

      is symbol energy. is symbol inter .

        va

        4 i i i

        ( ?

        l

        )

        T i E s t dt

        T E

        

        

        M M   

        

      2

      r

        2 ( ) cos[ ( )] , 1 (

          7 / 2 1/ 2

        ,

        2 ) , , i i i

        E s t i

      t t t

        T t

        M T i M

           

             

        3

         Phase (examples):  Symbol energy and symbol interval

        5

        3 , , , 0

        2 7 , , ,

        BPSK( 2) : , 0 QPSK(

        4

        4

        4

        4 ) : o

      II. Signal space representation

        Note: decomposition of PSK signal waveform:

        2 ( ) cos( ), ( ) sin( ) t t t t T T

        (examples)

         

           

        E E

      s t t t t t

      T T

        2 ( ) cos[ ( )]cos( ) sin[ ( )]sin( ) i i i

        2

             

        2

        1) Orthonormal basis: 2) Signal vector :

        2

        1

         s

          

           

        M M M   

        2 ( ) : cos , si , 1, , n i i i i E E s t i

        2

      3) Constellations:

        Signal space representation (cont.)

      4) A proof of signal space representation

        Signal space vector for each waveform s

        2 T cos[ ( )]sin( ) T sin[ ( )] sin[2 ( cos[ ( )]cos( ) os[ ( )] cos[2 (

        

        

        

             

           

        1

        1

        2

        2 ( ) ( )

        2 T T c cos[ ( )]

        ( ) ( )

        ] n )

            

        ) i ] s [

        

      T

      i i T i i i T i i i i i i T i a s t t dt a s t t dt E dt E dt

        E t t t dt E t t t d E t t t E t t t t t

                   

         

         

           

            

        

          

         

             

           ( )] t

        

        

        i

        2

        (t)

        15

        2

        2

        2

        2

        2

        1

        1

        2 ( ) 2 sin ( ) 2 [1 cos(

        ( )

        2

        cos( )sin( ) sin(2 ) / 1.

         Bases are orthonormal 

        . ( ) ( )

        2

        cos ( ) [1 cos

        2

        2 )]/ 2

        1 (2 )]

        2 0.

        / 2 T

        T T T T T

      t dt T t dt T t

      t dt T dt T t t t dt t t dt T t t d d d t t T t

        

        

          

           

             

        Signal space representation (cont.)

        h(t) is considered?  Signal waveform:

      5) What happens if baseband pulse-shaping

        1

        M M M  

           

        E s t h t t t T

        2 ( ) ( ) cos[ ( )] i i

        s

        

           

           

        i i i i E E s t i

        2

        , 1, , n

         Use basis (note that h(t) can be assumed normalized):  Signal space vector is still:  Conclusion: there is no difference in signal space whether pulse-shaping is considered. We can study only PSK instead of the more general PM.

        2

        

            

        T T

        2 ( ) ( ) cos( ), ( ) ( )sin( ) t h t t t h t t

        2

        2 ( ) : cos , si PSK modulator s t

        ( ) a   E i i h t

        ( )

        2 T cos(  t ) Special case: BPSK modulator

         a

        binary h t

        ( ) i

        1

        s t ( )

        bits

        i

        Symbol Note:

        T t

        2 cos(  ) map

        Inputs are signal- a space vector. i

        2 General case: M-ary PSK modulator

         h t

        ( ) Carriers are in basis

        T t

        2 sin(  ) form.

        s t ( )  a

        2 T cos(  t )  a

        2 T sin(  t ) i i i

        1

        2 s

         a aEi MEi M ( , ) cos(2 ), sin(2 ) i i i

        1

        

      2

         Bandwidth of PSK signal waveform  Just like DSB modulation: 

        Exercise : Consider QPSK transmission with date rate 2000 bps. The magnitude of the signal si (t) is √2E/T =1 volt.

        a) What is the minimum PSK signal bandwidth?

        b) Find the signal space points

        c) Draw the constellation d) Find signal waveform for transmitting {1001}.

        18 PSK baseband

        2 W W

        2 PSK baseband,min

        3

        1 a) (log ) 2000 / 2 1000.

        2 2 2 1000Hz.

        b) ( cos 2 4, sin 2 4), where / 2 0.5 10 , 1, , 4 d) Define mapping as: {00:0, 01: , 10: 2, 11: 3 2}. Then {10} ( ) cos( s b s i

        R R M W W R E i E i E T i s t t     

         

                      s

        2 2). {01} ( ) cos( ) s t t        Phase ( ) in ( ) is different from phase of (phase in signal space) i i i

         t s t s Demodulation and detection Demodulation: The receiver signal is converted to baseband, filtered and sampled.

        Detection: Sampled values are used for detection using a decision rule such as ML detection rule.

        1  t

        N z z Decision circuits (ML detector) m

        1 z

        ) (t r

        N

        ) (t

         T

        T ) (

        19

         z

        1

        

        

      N

      z z

           

             

        ˆ Demodulation Detection Demodulations type: Some notations 

         Carrier: s t A ttt   f

        ( )  ( ) cos[  ( )], 

        2  Modulation types with respect to carrier parameters

        Modulatio Varying Demodulation n parameter Coherent or t

         ( ) PSK noncoherent

        A tt both ( ) and ( ) Coherent or

        QAM noncoherent Coherent or

         FSK

        Noncoherent Two dimensional modulation, demodulation and detection (M-PSK)

         M-ary Phase Shift Keying (M-PSK)

        2 sin 2 cos sin

          

          

          

           

          

          

        M i t a t a t ss

        E a M i E a t T t t T t

        E E M i

        i i s s i s i c c i i i

        , , ( 1 ) ) ( ) (

        2 ) (

        2 ) ( cos

        1

        21

        1

        2

        2

        1

        2

        1

        2

        2

        2 ) (    

          2 cos

        E t s c

      s

      i

        M i t T

           

           

         

             Two dimensional mod… (MPSK)

        22

        2 s

        1 s

        

      5

      s

        “001” “011” “010” “101”

      “111”

      “100”

        ) (

        1 t

        

        1 s s

        6 s

        E “00” “11”

        ) (

        2 t

        

        3 s

        4 s “10” “01” QPSK (M=4) BPSK (M=2)

        8 s

        

        ) (

        

        1  t

        2 s

        1 s b

        E “0” “1” b

        E  ) (

        2 t

        3 s

        2 t

        7 s “110”

        ) (

        1  t

        4 s

        2 s s

        E “000”

        ) (

        8PSK (M=8) Demodulation BPSK

         BPSK with coherent detection:

        s

        2

        2

        E

        Eb

        “0” “1” b

        s b E

        1

        2

        23

        1  t

        ) (

        ˆ z

        Decision Circuits Compare z with threshold. m

         ) (t r

        1 t

        ) (

         T

        

      1  s s Error probability …

         BPSK with coherent detection (with perfect carrier synchronization):

        1 t

        ) | (

        1 m p z z

        ) | (

        2 s

        1 s

        E

        E b

         b

        ) (

        24

          N Q P B s s

           

        

      1

         

        2

        2 / 2 /

        N E Q P b B

           

        2     

        2 m p z z

        Demodulation M-PSK

        decide s

        2

        2

        2

          

        2 t

        ) (

        1  t

        3 ) (

        s

        4

        3

         Coherent detection of Q-PSK

        decide s

        2

        decide s

        1

        s

        1

        decide s

        4

        s

        2

        1

           

      1 N

           

        1

        I BPSK C

        Q p p b e b b c e b

        Q p p N E

        E Q p N E Q N E

        25 Decision Region QPSK s

           

        1

        2

        2

        1

        2

            

        2

        2

           

            

        

           

           

           

           

              

           

           

        

      Power Spectra of M-Ary PSK

           

         

      M f T c M E f S

        Tf c E f S B b b B

        2

        2

        2 log sin log

        2 sin 2 

        

        26

        QPSK vs. BPSK

         Let’s compare the two based on BER and bandwidth

        BER Bandwidth

      BPSK QPSK BPSK QPSK

        b R b /2

        EQUAL

        2     

           

        N E Q P b B

        2     

           

        N E Q P b B

      27 R

        Error probability …  Coherent detection of M-PSK

        1 s

        3 s

        i

        ) ( 1t

        4 s

        2 s s

        E “000”

        ) ( 2 t

        is a noisy estimate of the transmitted 

        ˆ

      8-PSK

        5 s “001” “011” “010” “101” “111” “100”

          

        7 s “110”

        6 s

        8 s

        2 ) ( ). (

        2

        Y dt t t r r

           T

        ˆ 

        1 ) ( ). ( m

        1

        T X r dt t t r

        

        Decision variable  r   

         ) (t r

        2 t

        ) (

         T

        1  t

        28

         T

        | ˆ |    i

         ˆ

        X Y arctan

        Compute Choose smallest

        ˆ z

        ) (

        Error probability … Coherent

        

        detection of MPSK …  The detector compares the phase of observation vector to M-1 thresholds.

         Due to the circular symmetry of the signal space, we have: M

         / M

        1 P M   P M   P s   P s   pd  ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( )

        E C c m c 1 ˆ

         

         / M  

        M m

        

        1 where

          E E

        2 s s

        2 

          p    

        ( ) cos( ) exp sin ; | | ˆ

          

        N N

        2    It can be shown that (for M &gt; 4)

        or  

      2 E

         s   

        

        2 log M E      b

        2

         

        P M Q

        

        ( )  2 sin E   

        P ( M )

        2 Q sin

            E

        N M

        29   

          

        N M

          

         Probability of symbol error for M- PSK

      • M = 2
      • “The same average symbol energy for different sizes of signal space”

        30 E

        P / dB

        N E b

        Note!

        k

      THANK YOU

        31