Aquifer - a geologic unit that stores and transmits water

  1.72, Groundwat er Hydrology Prof. Charles Harvey

  

Le ct u r e Pa ck e t # 2 : Aqu ife r s, Por osit y , a n d D a r cy’s La w

  River Lake

  ( Exposed Wat er Precipit at ion

  I nfilt rat ion Table) Unsat urat ed

  Sat urat ed zone Wat er t able zone - Aquifer

  Unsat urat ed Zone, Vadose Zone, Soil Moist ure Zone, Zone of Aerat ion – rock, wat er and air

  Ca pilla r y Fr in ge – region above wat er t able where wat er rises due t o capillary forces in t he porous m edium .

  Sat urat ed Zone, Phreat ic Zone – rock and w at er Wat er Table

  • Top of saturated zone
  • Depressed version of topography
  • Surface waters are m anifestations of the water table – exposed water table

  Aqu ife r - a geologic unit t hat st ores and t ransm it s w at er

  Recharge Area Wat er Table

  Unconfined Aquifer

  Confined or Art esian Aquifer

  

Un con fin e d Aqu ife r – w at er is in cont act w it h at m ospheric pressure – drill and w ell

  hit t he w at er t able

  

Con fin e d Aqu ife r – recharge upgradient forces w at er t o flow dow n and get t rapped

  under an aquiclude. Wat er is under pressure due t o t he weight of t he upgradient w at er and t he confinem ent of t he w at er bet ween “ im perm eable” lay ers. Wat er flows t o surface under art esian pressure in an Art esian Well.

  Aquifer cont am inat ion Cont am inant Source

  Wat er Table Unconfined Aquifer

  Confined or Art esian Aquifer

  I n confined vs. unconfined aquifers

  • Although unconfined aquifers are used for water supply, they are often cont am inat ed by w ast es and chem icals at t he surface.
  • Confined aquifers are less likely to be contam inated and thereby provide supplies of good qualit y.
  • Mechanism s of transport are advection and dispersion.
  • There can be chem ical interactions in aqueous phase or between the water and solid m edia
  • Covered in Contam inant Hydrology course (1.72 is a prerequisite)
I n A.D. 1126, in t he province of Art ois: Wat er Table

  Unconfined Aquifer

  Confined or Art esian Aquifer

  Wat er Table Unconfined Aquifer

  Confined or Art esian Aquifer

  Key Aquifer Propert ies

Por osit y – Percent age volum e occupied by voids. Porosit y is independent of scale.

For exam ple, a pile of m arbles and a pile of beach balls have spherical shape and differing sizes; t he porosit ies are ident ical due t o t he sim ilar shaping.

  Pe r m e a bilit y – Measures t he t ransm ission propert y of t he m edia and t he int erconnect ion of t he pores. Relat ed t o hydraulic conduct ivit y and t ransm issivit y.

  ( m ore lat er) Good aquifer – High porosit y + High perm eabilit y

  • Sand and gravel, sandstone, lim estone, fractured rock, basalt Aqiuiclude, Confining bed, Aquit ard – “ im per m eable” unit form ing a barrier t o groundw at er flow .
  • Granite, shale, clay

  Por osit y

  Well Sort ed I nt ragranular Dissolut ion Poorly Sort ed Decreased Porosit y

  Fract ure by Diogenesis

  

D ioge ne sis – The form at ion of rock; pores fill up w it h precipit at ions of m ineral and

  reduce porosit y

  • A function of grain size distribution, also packing
  • Decreases with depth – com paction and pressure solution

  D e p th ( k il o m e te rs )

  Se con da r y

  50 Porosit y Porosit y increases as dept h decreases. This is on account of t he weight on t op of t he deeper m at erials. Porosit y also t ends t o increase w it h grainsize. Why?

  40

  30

  20

  10

  ( At hy, 1930) Sandst ones ( Blat t , 1979)

  1 Shales Porosit y vs. Dept h Curves

  7

  6

  5

  4

  3

  2

  Pr im a r y

  Tw o Origins of Porosit y

  • Dissolution • Fracture Lit hology

  Q C a lc it e F ra c tu re N u m b e r u a r tz S S C e m e n te d S S L im e s to n e Tw o t ypes of Porosit y

  • I ntergranular o

  Bet w een grains, m ost ly part of t he effect of porosit y, but also dead- end pores

  • I ntragranular o o

  Wit hin grains o Usually not considered part of t he effect ive porosit y I ncredible w ide range of w idt hs and lengt h scales

  • Sim ple dichotom ous m odel - dual porosity Darcy’s Law I n 1856 in Dij on, France, Henry Darcy conduct ed his now fam ous experim ent of pouring w at er t hrough sedim ent - packed pipes t o see how m uch w ould flow t hrough t hem in a given am ount of t im e [ volum e of flow per unit t im e] .
  • 3 Flow t hrough colum n is Q in L / T m ost im port ant quant it y The flow per unit area is spe cific disch a r ge

      Q

      called D a r cia n ve locit y or

      q = w it h unit s of velocit y L/ T – D a r cia n flu x , but not act ual

      A

      velocit y of t he fluid Q h 1

      ∆h h 2 Area, A ∆l

      Flow , Q Darcy showed t hat : Q is in direct ion of decreasing head q is proport ional t o h 2 – h 1 = ∆h, given ∆l fixed, q α ( -∆h) q is inversely proport ional t o ∆l, given ∆h fixed, q α (1/ ∆l)

      The proport ionalit y const ant is K, and flow is from higher t o low er hydraulic head.

      ∆ h dh

      Hydraulic gradient

      q = K − = K − ∆ l dl

      K is hydraulic conduct ivit y and has unit s of velocit y ( L/ T) . I t is a funct ion of bot h m edia and fluid.

      Q is a flow per unit cross sect ion and is n ot the actual velocity of groundwater flow. ∆ h represents the frictional energy loss due to flow through m edia.

      Darcy’s law is a m acroscopic law . I t doesn’t t ell you about t he flow t hrough individual pores. 3 The discharge is Q in L / T

      ∆ h q = K − = KiA

      ∆ l i is com m only used for gradient .

      Not e t he difference bet w een Q and q! What is hydraulic conduct ivit y? K is a propert y of bot h m edia and fluid.

      k ρ g

      Experim ent s show :

      K = µ 2

      ) , a propert y of m edia only

    • K is the intrinsic perm eability (L
    • 3 ρ is the m ass density (M/ L •

        ) µ is the dynam ic viscosity (M/ LT) and m easures the resistance of fluid to

      • shearing t hat is necessary for flow

        Range of Applicabilit y of Darcy’s Law At ext rem e gradient s som e have quest ioned t he applicabilit y of Darcy’s Law ( cont roversial) Low Gradient s

      • Com pacted clays and low gradients
      • Threshold gradient to get flow
      • Below a certain gradient – nonlinear High Gradient s
      • 2

          dh = q c + q c 1 2 dl

        • Term 1 is loss – viscous friction against wall of solids and
        • Term 2 is loss – dissipation of kinetic energy in pores – flow converges and diverges.

          Must have lam inar flow w it hin pores.

          v d Inertial forces ρ

          R = ≡ e µ Viscous forces

          Lam inar in pipes < 2,000 in rocks < 10 U

          D a r cy ’s La w Re a l La w

          L L 2 L 1 Measures of hydraulic conduct ivit y ( L/ T)

        • Com m only cm / s, m / d, ft/ d
        • 2<
        • Older unit, gpd/ ft , or m einzer
        • 2 Measures of perm eabilit y, ( L ) Oft en t he D a r cy Un it is used, recall

            k g dh k g dh ρ ρ q = − Q = 1 cm/s = −

            µ dl cp dl

          1 da r cy is t he perm eabilit y t hat gives a specific discharge of 1 cm / s for a fluid w it h a

          viscosit y of 1 cp under a h ydr a u lic gr a die n t t im e s de n sit y t im e s g of 1 a t m / cm .
          • - 8
          • 2

            • I t equals about 10 cm o
            • About 0.831 m / d at 20

              

            I m por t a n t – A t ypical aquifer m easure of t he t ransm ission propert y of m edia for t he

              flow of w at er is given over a t hickness, b 2 Tr a n sm issivit y – T = Kb [ L / T]

              2D

            • Very com m on quantity for site and regional studies
            • Much m ore on this when we get to groundwater flow equation and well tests

              C

            Re la t ion s Be t w e e n Gr a in Siz e a n d H ydr a u lic Con du ct ivit y

            2 10

              ( ) 2 3 T sa S T C g

              σ g = geom et ric m ean st andard deviat ion [ L]

              ρ = densit y [ M/ L 3 ]

              µ = dynam ic viscosit y [ M/ LT]

              φ = t ot al porosit y, account ing for com pact ion [ - ]

              K = hydraulic conduct ivit y [ L/ T]

              ]

              d 1 0 = grain diam et er for w hich 10% of part icles are sm aller [ L] d g = geom et ric m ean grain diam et er [ L] d = represent at ive grain diam et er [ L] g = gravit at ional accelerat ion [ L/ T 2

              = fact or reflect ing pore shape and packing in Kozeny eqn, m od. By Collins [ - ] = fact or in t he Hazen equat ion [ T/ L]

              C = fact or reflect ing pore shape and packing in t he Kozeny- Carm en eqn. [ - ] C T

              Kozeny Equat ion, m odified by Collins ( 1961)

              ⎜⎜ ⎝ ⎛ =

              ρ ⎟⎟ ⎠ ⎞

              K φ µ

              Kozeny- Carm an ( in de Marsily, 1986)

              ) (d C K =

              S C g K

              ⎝ ⎛ = sa

              ρ − ⎟⎟ ⎠ ⎞ ⎜⎜

              ( ) 2 2 3 1 φ φ µ

              Kozeny- Carm an ( in Bear, 1972)

              ⎜⎜ ⎝ ⎛ = d g K

              − ⎟⎟ ⎠ ⎞

              φ µ ρ

              ( ) 2 3 2 1 180 φ

              Krum bein and Monk ( 1942)

              EXP d E K σ − − =

              04 66 . 9 ( 2 g g

              ) 31 . ) 1 ( 760 )(

              Equat ion Hazen ( 1911) Reference

              S sa = surface area exposed t o fluid per unit volum e of solid m edium [ 1/ L] T = t ort uosit y [ - ]

              Rem em ber Darcian Velocit y is not an act ual velocit y; it is discharge per unit area ( area is TOTAL cross sect ion)

              D a r cia n Ve locit y

              Tot al Area Q

              Area of Pore Space Act s like t his

              Average Linear Velocit y

              Pr im a r y por osit y – t he original int erst ices Se con da r y por osit y – secondary dissolut ion or st ruct ural openings ( fract ures,

              fault s, and openings along bedding planes) .

              ρ

              Com pu t e d por osit y - n = 100[ 1- ρ b / p ] 3

              ρ b – bulk densit y, M/ L - &gt; m ass of dry sam ple/ original volum e 3 ρ p – part icle densit y, M/ L - &gt; m ass of dry sam ple/ volum e of m ineral m at t er from w at er- displacem ent t est ( 2.65 g/ cc)

              Effe ct ive por osit y – porosit y available for flow , n e

              Can have isolat ed w at er as dead- end pores or t rapped gas. I MPORTANT t o t ransport !

              − K h K dh

            V = =

            n n dl e e l

              V is t he average linear pore w at er velocit y. Measure of t he rat e of advect ion of a slug of wat er. V is larger t han t he Darcian Velocit y. - &gt; q = n e

              V