Makalah Logam Alkali dan Alkali tanah

Makalah Logam Alkali dan Alkali tanah

BAB I
PENDAHULUAN

1.1 Latar Belakang
Logam-logam Golongan 1 dan 2 dalam Susunan Berkala berturut-turut disebut logam-logam alkali
dan alkali tanah karena logam-logam tersebut membentuk oksida dan hidroksida yang larut dalam air
menghasilkan larutan basa. Logam-logam alkali dan alkali tanah disebut juga logam-logam blok s
karena hanya terdapat satu atau dua elektron pada kulit terluarnya. Elektron terluar ini menempati
tipe orbital s (sub kulit s) dan sifat logam-logam ini seperti energi ionisasi (IE) yang rendah,
ditentukan oleh hilangnya elektron s ini membentuk kation. Golongan 1 Logam Alkali yang kehilangan
satu elektron s1 terluarnya menghasilkan ion M+ dan Golongan 2 Logam Alkali Tanah yang
kehilangan dua elektron s2 terluarnya menghasilkan ion M2+. Sebagai akibatnya, sebagian besar
senyawa dari unsur-unsur Golongan 1 dan 2 cenderung bersifat ionik.
Logam alkali tanah terdiri dari 6 unsur yang terdapat di golongan IIA. Yang termasuk ke dalam
golongan II A yaitu : Berilium (Be), Magnesium (Mg), Calcium (Ca), Stronsium (Sr), Barium (Ba), dan
Radium (Ra). Di sebut logam karena memiliki sifat sifat seperti logam. Disebut alkali karena
mempunyai sifat alkalin atau basa jika direaksikan dengan air. Dan istilah tanah karena oksidasinya
sukar larut dalam air, dan banyak ditemukan dalam bebatuan di kerk bumi. Oleh sebab itu, istilah
“alkali tanah” biasa digunakan untuk menggambarkan kelompok unsur golongan IIA.

Tiap logam memiliki kofigurasi elektron sama seperti gas mulia atau golongan VIII A, setelah di
tambah 2 elektron pada lapisan kulit S paling luar. Contohnya konfigurasi elektron pada Magnesium
(Mg) yaitu : 1s22s22p63s2 atau (Ne) 3s2. Ikatan yang dimiliki kebanyakan senyawa logam alkali tanah
adalah ikatan ionik. Karena, elektron paling luarnya telah siap untuk di lepaskan, agar mencapai
kestabilan.
Unsur alkali tanah memiliki reaktifitas tinggi, sehingga tidak ditemukan dalam bentuk monoatomik ,
unsur ini mudah bereaksi dengan oksigen, dan logam murni yang ada di udara, membentuk lapisan
luar pada oksigen.
Semua logam alkali tanah merupakan logam yang tergolong reaktif meskipun kurang reaktif
dibandingkan unsur alkali, mempunyai kilap logam, relatif lunak dan dapat menghantar panas dan
listrik dengan baik, kecuali berilium. Logam alkali tanah memberikan warna yang khas. Pada
pembakaran senyawa logam alkali akan memberikan warna yang khas yang dapat digunakan sebagai
identifikasi awal adanya logam alkali dalam suatu bahan. Be dan Mg memberikan warna spektrun
pada daerah gelombang elektromagnet, sehingga pada pembakaran magnesium hanya akan
menimbulkan warna nyala yang sangat terang. Ca memberikan warna merah jingga, Sr merah ungu
dan Ba kuning kehijauan.

Senyawa alkali tanah tersebar dalam jumlah banyak di air laut dan mineral (batuan) dalam keadaan
sebagai senyawa dengan bilangan oksidasi +2. Batuan dan mineral yang mengandung unsur alkali
tanah umumnya sebagai senyawa karbonat, silikat atau sulfat, sebab kelarutan senyawa tersebut

sangat kecil. Berilium terdapat sebagai mineral beril (Be3Al2(SiO3)6). Magnesium terdapat sebagai
mineral magnesit (MgCO3), dolomit (CaCO3.MgCO3) dan asbestos (CaMg3(SiO3)4. Kalsium terdapat
pada dolomit, gips (CaSO4.2H2O), dan kalsium fosfat (Ca3(PO4)2). Stonsium terdapat sebagai
mineral selestit (SrSO4) dan barium terdapat sebagai barit (BaSO4) dan BaCO3. radium merupakan
unsur radioaktif alam pitchblende mengandung 0,37 gram Ra per ton bijih.

1.2 Rumusan Masalah
Berdasarkan latar belakang masalah diatas, maka dapat di rumuskan masalah sebagai berikut:
1.

Bagaimana sifat periodik, sifat fisik dan sifat kimia dari logam alkali?

2.

Bagaimana sifat periodik, sifat fisik dan sifat kimia dari logam alkali tanah?

3.

Bagaimana proses kesadahan air?


1.3 Tujuan Makalah
Adapun yang menjadi tujuan masalah dalam penulisan makalah ini adalah sebagai berikut:
1.

Menjelaskan sifat periodik, sifat fisik dan sifat kimia dari logam alkali.

2.

Menjelaskan sifat periodik, sifat fisik dan sifat kimia dari logam alkali tanah.

3.

Menjelaskan proses kesadahan air.

BAB II
PEMBAHASAN
2.1 Golongan Alkali
Logam Alkali (Golongan IA) adalah unsur yang sangat elektropositif (kurang elektronegatif).
Umumnya, logam Alkali berupa padatan dalam suhu ruang. Unsur Alkali terdiri dari Litium (Li),
Natrium (Na), Kalium (K), Rubidium (Rb), Sesium (Cs), dan Fransium (Fr). Fransium merupakan

zatradioaktif. Semuanya merupakan unsur logam yang lunak ( mudah diiris dengan pisau). Padasaat
logam dibersihkan, terlihat warna logam putih mengkilap (seperti perak).Disebut logam alkali karena
oksidanya mudah larut dalam air dan menghasilkan larutanyang bersifat basa (alkalis). Semua logam
alkali sangat reaktif sehingga di alam tidak pernah diperoleh dalamkeadaan bebas. Di alam terdapat
dalam bentuk senyawa.

Dalam satu golongan, dari Litium sampai Sesium, jari-jari unsur akan meningkat. Letak elektron
valensi terhadap inti atom semakin jauh. Oleh sebab itu, kekuatan tarik-menarik antara inti atom
dengan elektron valensi semakin lemah. Dengan demikian, energi ionisasi akan menurun dari Litium
sampai Sesium. Hal yang serupa juga ditemukan pada sifat keelektronegatifan unsur.
Secara umum, unsur Alkali memiliki titik leleh yang cukup rendah dan lunak, sehingga logam Alkali
dapat diiris dengan pisau. Unsur Alkali sangat reaktif, sebab mudah melepaskan elektron (teroksidasi)
agar mencapai kestabilan (konfigurasi elektron ion Alkali menyerupai konfigurasi elektron Gas Mulia).
Dengan demikian, unsur Alkali jarang ditemukan bebas di alam. Unsur Alkali sering dijumpai dalam
bentuk senyawanya. Unsur Alkali umumnya bereaksi dengan unsur lain membentuk senyawa halida,
sulfat, karbonat, dan silikat.

2.1.1 Karakteristik
Beberapa jenis logam alkali. Seperti kelompok lainnya, anggota dari grup ini dapat ditunjukkan dari
konfigurasi elektronnya, terutama kulit terluarnya yang menghasilkan sifat sebagai berikut:

Z
Elemen
Jumlah elektron/kulit
Konfigurasi elektron
3
litium
2, 1
[He]2s1
11
natrium
2, 8, 1
[Ne]3s1
19
kalium
2, 8, 8, 1
[Ar]4s1
37

rubidium
2, 8, 18, 8, 1

[Kr]5s1
55
caesium
2, 8, 18, 18, 8, 1
[Xe]6s1
87
fransium
2, 8, 18, 32, 18, 8, 1
[Rn]7s1

2.1.2 Unsur-Unsur Golongan Alkali.
Unsur-unsur golongan IA disebut juga logam alkali. Unsur-unsur alkali merupakan logam yang sangat
reaktif. Kereaktifan unsur alkali disebabkan kemudahan melepaskan elektron valensi pada kulit ns1
membentuk senyawa dengan bilangan oksidasi +1. Oleh sebab itu, unsur-unsur logam alkali tidak
ditemukan sebagai logam bebas di alam, melainkan berada dalam bentuk senyawa. Sumber utama
logam alkali adalah air laut. Air laut merupakan larutan garam-garam alkali dan alkali tanah dengan
NaCl sebagai zat terlarut utamanya. Jika air laut diuapkan, garam-garam yang terlarut akan
membentuk kristal. Selain air laut, sumber utama logam natrium dan kalium adalah deposit mineral
yang ditambang dari dalam tanah, seperti halit (NaCl), silvit (KCl), dan karnalit (KCl.MgCl.H2O).
Mineral-mineral ini banyak ditemukan di berbagai belahan bumi.


Tabel 3.7 Mineral Utama Logam Alkali
Unsur
Sumber Utama
Litium
Spodumen, LiAl(Si2O6)
Natrium
NaCl
Kalium

KCl
Rubidium
Lepidolit, Rb2(FOH)2Al2(SiO3)3
Cesium
Pollusit, Cs4Al4Si9O26.H2O
Pembentukan mineral Logam Alkali tersebut melalui proses yang lama. Mineral Logam Alkali berasal
dari air laut yang menguap dan garam-garam terlarut mengendap sebagai mineral. Kemudian, secara
perlahan mineral Logam Alkali tersebut tertimbun oleh debu dan tanah sehingga banyak ditemukan
tidak jauh dari pantai. Logam alkali lain diperoleh dari mineral aluminosilikat. Litium terdapat dalam
bentuk spodumen, LiAl(SiO3)2. Rubidium terdapat dalam mineral lepidolit. Cesium diperoleh dari

pollusit yang sangat jarang, CsAl(SiO3)2.H2O. Fransium bersifat radioaktif.

2.1.3 Sifat-Sifat Unsur Logam Alkali.
Unsur-unsur logam alkali semuanya logam yang sangat reaktif dengan sifat-sifat fisika ditunjukkan
pada Tabel 3.8. Logam alkali sangat reaktif dalam air. Oleh karena tangan kita mengandung air, logam
alkali tidak boleh disentuh langsung oleh tangan. Tabel 3.8 Sifat-Sifat Fisika Logam Alkali
Sifat Sifat
Li
Na
K
Rb
Cs
Titik leleh (°C)
181
97,8
63,6
38,9
28,4
Titik didih (°C)
1347


883
774
688
678
Massa jenis (g cm–3)
0,53
0,97
0,86
1,53
1,88
Keelektronegatifan
1,0
0,9
0,8
0,8
0,7
Jari-jari ion ( )
0,9
1,7

1,5
1,67
1,8
Semua unsur golongan IA berwarna putih keperakan berupa logam padat, kecuali cesium berwujud
cair pada suhu kamar. Logam alkali Natrium merupakan logam lunak dan dapat dipotong dengan
pisau. Logam alkali Kalium lebih lunak dari natrium. Pada Tabel 3.8 tampak bahwa logam litium,
natrium, dan kalium mempunyai massa jenis kurang dari 1,0 g cm–3. Akibatnya, logam tersebut
terapung dalam air. Akan tetapi, ketiga logam ini sangat reaktif terhadap air dan reaksinya bersifat
eksplosif disertai nyala.
Sifat-sifat fisika logam alkali seperti lunak dengan titik leleh rendah menjadi petunjuk bahwa ikatan
logam antaratom dalam alkali sangat lemah. Ini akibat jari-jari atom logam alkali relatif besar

dibandingkan unsur-unsur lain dalam satu periode. Penurunan titik leleh dari logam alkali litium ke
cesium disebabkan oleh jari-jari atom yang makin besar sehingga mengurangi kekuatan ikatan
antaratom logam. Logam-logam alkali merupakan reduktor paling kuat, seperti ditunjukkan oleh
potensial reduksi standar yang negatif.

Tabel 3.9 Potensial Reduksi Standar Logam Alkali
Logam Alkali
Li

Na
K
Rb
Cs
Potensial reduksi (V)
–3,05
–2,71
–2,93
–2,99
–3,02
Keelektronegatifan logam alkali pada umumnya rendah (cesium paling rendah), yang berarti logam
tersebut cenderung membentuk kation. Sifat logam alkali ini juga didukung oleh energi ionisasi
pertama yang rendah, sedangkan energi ionisasi kedua sangat tinggi sehingga hanya ion dengan
biloks +1 yang dapat dibentuk oleh logam alkali. Semua logam alkali dapat bereaksi dengan air.
Reaksi logam alkali melibatkan pergantian hidrogen dari air oleh logam membentuk suatu basa kuat
disertai pelepasan gas hidrogen.
2Na(s) + 2H2O(l) → 2NaOH(aq) + H2(g)
Kereaktifan logam alkali terhadap air menjadi sangat kuat dari atas ke bawah dalam tabel periodik.
Sepotong logam litium jika dimasukkan ke dalam air akan bergerak di sekitar permukaan air disertai
pelepasan gas H2. Logam alkali Kalium bereaksi sangat dahsyat disertai ledakan dan nyala api
berwarna ungu. Dalam udara terbuka, logam alkali bereaksi dengan oksigen membentuk oksida.
Logam alkali Litium membentuk Li2O, natrium membentuk Na2O, tetapi produk yang dominan
adalah natrium peroksida (Na2O2). Jika kalium dibakar dengan oksigen, produk dominan adalah
kalium superoksida (K2O), suatu senyawa berwarna kuning-jingga. Oksida ini merupakan senyawa ion
dari ion K+ dan ion O2–.

Sifat-sifat logam Alkali:
1. Sangat reaktif
2. Bereaksi dengan halogen membentuk garam
3. Bereaksi dengan air membentuk basa kuat
4. Elektron terluar 1
5. Lunak
6. Titik lebur rendah
7. Massa Jenis rendah
8. Potensial untuk ionisasi sangat rendah
9. Tingkat elektronegativitas : Li > Na > K > Rb > Cs > Fr
10. Tingkat reaktivitas : Li < Na < K < Rb < Cs < Fr
11. Titik lebur dan titik uap : Li > Na > K > Rb > Cs > Fr

2.1.4 Titik Didih & Titik beku serta kerapatan
Semakin besar titik didih maka semakin besar nomor atom. Semakin besar Nomor atom maka
semakin besar pula kerapatan pada atom tersebut, maka semakin banyak membentuk ikatannya dan
semakin membutuhkan waktu yang lama untuk memisahkan ikatan—ikatan tersebut sehingga titik
didih dan titik beku semakin tinggi.

2.1.5 Energi Ionisasi Logam Alkali
Misalnya natrium, Na. Persamaan ionisasinya dapat ditulis sebagai berikut:
Na(g) + EI-I --> Na+(g) + e
Bagaimana menjelaskan persamaan reaksi di atas?
Energi ionisasi pertama adalah sejumlah energi yang diperlukan oleh suatu atom netral dalam wujud
gas, Na(g) untuk melepaskan satu elektron yang terikat paling lemah, membentuk ion positif dalam
bentuk gas, Na+(g).
Mengapa atom Na dan ion Na+ keduanya dalam bentuk gas? Menurut kenyataan, jika logam
natrium direaksikan dengan gas khlor, persamaan reaksinya adalah:
2 Na(s) + Cl2(g) --> 2 NaCl(s).

Sekarang kita kembali ke EI-I. Mungkinkah logam alkali menjadi ion +2 dengan melepaskan elektron
kedua yang memerlukan EI-II? Tidak mungkin. Mangapa? Setelah menjadi ion Na+(2,8), sudah stabil,
isoelektronik dengan Ne(2,8). EI-II lebih besar dibanding EI-I karena jumlah muatan positif inti lebih
besar dari muatan negatif elektron, sehingga jari-jari ionnya juga sudah mengecil. Karena EI-II sangat
besar, maka logam alkali hanya membentuk ion +1 sesuai elektron valensinya.

2.1.6 Afinitas Elektron
Afinitas elektron adalah energi yang menyertai proses penambahan 1 elektron pada satu atom netral
dalam wujud gas, sehingga terbentuk ion bermuatan –1. Afinitas elektron juga dinyatakan dalam kJ
mol–1. Unsur yang memiliki afinitas elektron bertanda negatif, berarti mempunyai kecenderungan
lebih besar dalam menyerap elektron daripada unsur yang afinitas elektronnya bertanda positif.
Makin negatif nilai afinitas elektron, maka makin besar kecenderungan unsur tersebut dalam
menyerap elektron (kecenderungan membentuk ion negatif). Dari sifat ini dapat disimpulkan bahwa:
1.

Dalam satu golongan, afinitas elektron cenderung berkurang dari atas ke bawah.

2. Dalam satu periode, afinitas elektron cenderung bertambah dari kiri ke kanan.
3. Kecuali unsur alkali tanah dan gas mulia, semua unsur golongan utama mempunyai afinitas
elektron bertanda negatif. Afinitas elektron terbesar dimiliki oleh golongan halogen.

2.1.7 Keelektronegatifan
Keelektronegatifan adalah kemampuan atau kecenderungan suatu atom untuk menangkap atau
menarik elektron dari atom lain. Misalnya, fluorin memiliki kecenderungan menarik elektron lebih
kuat daripada hidrogen. Jadi, dapat disimpulkan bahwa keelektronegatifan fluorin lebih besar
daripada hidrogen. Konsep keelektronegatifan ini pertama kali diajukan oleh Linus Pauling (1901 –
1994) pada tahun 1932.
Unsur-unsur yang segolongan, keelektronegatifan makin ke bawah makin kecil sebab gaya tarik inti
makin lemah. Sedangkan unsur-unsur yang seperiode, keelektronegatifan makin ke kanan makin
besar. Akan tetapi perlu diingat bahwa golongan VIIIA tidak mempunyai keelektronegatifan. Hal ini
karena sudah memiliki 8 elektron di kulit terluar. Jadi keelektronegatifan terbesar berada pada
golongan VIIA.

2.1.8 Sifat magnetic

Sifat magnet suatu atom unsure berkaitan dengan struktur elktronnya, sesuai dengan aturan aufbau,
larangan Pauli, dan aturan Hund. Electron di dalam orbital suatu atom ada yang berpasangan dan ada
yang tidak berpasangan. Beberapa atom misalnya atom-atom gas mulia semua elektronnya
berpasangan, tetapi beberapa atom yang lain tidak berpasangan. Akibat dari kedua keadaan tersebut
berakibat pula pada interaksinya terhadap medan magnet. Atom-atom yang semua elektronnya telah
berpasangan cenderung ditolak oleh medan magnet dan disebut sebagai atom diamagnetic,
sedangkan atom-atom yang mempunyai electron tidak berpasangan akan tertarik oleh medan
magnet dan disebut atom yang bersifat paramagnetic.
Adanya electron yang tidak berpasangan menimbulkan momen magnet yang diukur dalam satuan
bohr-magneton (BM). Besarnya momen magnet dapat di perkirakan dengan rumus :
µ = Ön(n+2)
dengan,

µ = momen magnet dalam bohr-magneton
n = jumlah electron tidak berpasangan

2.1.9 Sifat Kimia
Logam alkali merupakan unsur logam yang sangat reaktif dibanding logam golongan lain. Hal ini
disebabkan pada kulit terluarnya hanya terdapat satu elektron dan energi ionisasi yang lebih kecil
dibanding unsur golongan lain. Dalam satu golongan, dari atas ke bawah, kereaktifan logam alkali
makin bertambah seirng bertambahnya nomor atom.
Reaksi dengan Air : Produk yang diperoleh dari reaksi antara logam alkali dan air adalah gas hidrogen
dan logam hidroksida. Logam hidroksida yang dihasilkan merupakan suatu basa kuat. Makin kuat
sifat logamnya basa yang dihasilkan makin kuat pula, dengan demikian basa paling kuat yaitu
dihasilkan oleh sesium. Reaksi antara logam alkali dan air adalah sebaga berikut:
2M(s) + 2H2O(l) ―→ 2MOH(aq) + H2(g) (M = logam alkali)
Reaksi antara logam alkali dengan air merupakan reaksi yang eksotermis. Li bereaksi dengan tenang
dan sangat lambat, Natrium dan kalium bereaksi dengan keras dan cepat, sedangkan rubidium dan
sesium bereaksi dengan keras dan dapat menimbulkan ledakan.
Reaksi dengan Udara : Logam alkali pada udara terbuka dapat bereaksi dengan uap air dan oksigen.
Untuk menghindari hal ini, biasanya litium, natrium dan kalium disimpan dalam minyak atau minyak
tanah untuk menghindari terjadinya kontak dengan udara.
Litium merupakan satu-satunya unsur alkali yang bereaksi dengan nitrogen membentuk Li3N. Hal ini
disebabkan ukuran kedua atom yang tidak berbeda jauh dan struktur yang dihasilkanpun sangat
kompak dengan energi kisi yang besar.
Produk yang diperoleh dari reaksi antara logam alkali dengan oksigen yakni berupa oksida logam.
Berikut reaksi yang terjadi antara alkali dengan oksigen
4L + O2 ―→ 2L2O

(L = logam alkali)

Pada pembakaran logam alkali, oksida yang terbentuk bermacam-macam tergantung pada jumlah
oksigen yang tersedia. Bila jumlah oksigen berlebih, natrium membentuk peroksida, sedangkan
kalium, rubidium dan sesium selain peroksida dapat pula membentuk membentuk superoksida.
Persamaan reaksinya
Na(s) + O2(g) ―→ Na2O2(s)
L(s) + O2(g) ―→ LO2(s) (L = kalium, rubidium dan sesium)
Reaksi dengan Hidrogen : Dengan pemanasan logam alkali dapat bereaksi dengan hidrogen
membentuk senyawa hidrida. Senyawa hidrida yaitu senyawaan logam alkali yang atom hidrogen
memiliki bilangan oksidasi -1.
2L(s) + H2(g) ―→ 2LH(s) (L = logam alkali)
Reaksi dengan Halogen : Unsur-unsur halogen merupakan suaru oksidator sedangkan logam alkali
merupakan reduktor kuat. Oleh sebab itu reaksi yang terjadi antara logam alkali dengan halogen
merupakan reaksi yang kuat. Produk yang diperoleh dari reaksi ini berupa garam halida.
2L + X2 ―→ 2LX

(L = logam alkali, X = halogen)

Reaksi dengan Senyawa : Logam-logam alkali dapat bereaksi dengan amoniak bila dipanaskan dan
akan terbakar dalam aliran hidrogen klorida.
2L + 2HCl ―→ LCl + H2
2L + 2NH3 ―→ LNH2 + H2 L = logam alkali

a.

Kereaktifan unsur

Kereaktifan logam alkali ditunjukkan oleh reaksi - reaksinya dengan beberapa unsur non logam.
Dengan gas hidrogen dapat bereaksi membentuk hidrida yang berikatan ion, dalam hal ini bilangan
oksidasi hydrogen adalah -1 dan bilangan oksidasi alkali +1. Dengan oksigen dapat membentuk
oksida, dan bahkan beberapa di antaranya dapat membentuk peroksida dan superoksida. Litium
bahkan dapat bereaksi dengan gas nitrogen pada suhu kamar membentuk litium nitrida (Li3N).
Semua senyawa logam alkali merupakan senyawa yang mudah larut dalam air, dengan raksa
membentuk amalgam yang sangat reaktif sebagai reduktor. Beberapa reaksi logam alkali dapat dilihat
pada tabel berikut.
Tabel. Beberapa Reaksi Logam Alkali
Reaksi Umum
4M(s) + O2(g) ->2M2O(s)

2M(s) + O2(g) ->M2O2(s)

Keterangan

2M(s) + X2(g) ->2MX(s)
2M(s) + S(g) ->M2S(s)
2M(s) + 2H2O(g) ->2MOH(aq) + H2(g)
2M(s) + H2(g) ->2MNH2(s) + H2(g)
6M(s) + N2(g) -> 2M3N(s)
jumlah oksigen terbatas dipanaskan di udara dengan oksigen berlebihan.
Logam K dapat membentuk superoksida (KO2).
X adalah F, Cl, Br, Ireaksi dahsyat, kecuali Li
dengan katalisator hanya Li yang dapat bereaksi
gas H2 kering (bebas air) reaksi dengan asam (H+) dahsyat

Logam alkali dapat larut dalam ammonia pekat (NH3), diperkirakan membentuk senyawa amida.
Na(s) + NH3(l) ->NaNH2(s) + ½ H2(g)
Reaksinya dengan air merupakan reaksi eksoterm dan menghasilkan gas hidrogen yang mudah
terbakar. Oleh karena itu, bila logam alkali dimasukkan ke dalam air akan terjadi nyala api di atas
permukaan air. Dalam amonia yang sangat murni akan membentuk larutan berwarna biru, dan
merupakan sumber elektron yang tersolvasi (larutan elektron). Logam - logam alkali memberikan
warna nyala yang khas, misalnya Li (merah), Na (kuning), K (ungu), Rb (merah), dan Cs (biru/ungu).
Warna khas dari logam alkali dapat digunakan untuk identifikasi awal adanya unsur alkali dalam
suatu bahan.
b.

Kelarutan Garam Alkali

Kelarutan garam alkali dalam air sangat besar sehingga sangat bermanfaat sebgai pereaksi
dalam laboratorium. Namun demikian kelarutan ini sangat bervariasi sebagaimana ditunjukkan oleh
seri natrium halide
Kelaruna suatu senyawa bergantung pada besaran-besaran entalpi yaitu energi kisi, entalpi
hidrasi kation dan anion bersama-sama dengan perubahan entropi yang bersangkutan. Tambahan
pula terdapat hubungan yang bermakna antara kelarutan garam alkali dengan jari-jari kation untuk
anion yang sama, namun hubungan ini dapat menghasilkan kurva kontinu dengan kemiringan (slope)
positif maupun negatif.
c.

Sifat Asam & Sifat Basa

Senyawa LiCl memiliki kekuatan ikatan ion lebih lemah dibanding NaCl, apalagi KCl yang ikatan
ionnya lebih kuat. Oleh karena itu dikatakan sifat ion LiCl lemah. Hal ini disebabkan letak pasangan
elektron ikatan (PEI) pada LiCl sedikit lebih menjauhi Cl dibanding pada NaCl. Untuk KCl PEInya lebih

rapat ke arah Cl. Perubahan sifat antara kovalen dan ionik seperti perubahan sifat logam dan non
logam, juga seperti halnya sifat asam basa hidroksida dalam suatu perioda. Oleh karena itu ada
senyawa yang sifat ionnya melemah dan sifat kovalennya menguat.

2.2 Golongan Alkali Tanah
Logam alkali tanah terdiri dari 6 unsur yang terdapat di golongan IIA. Yang termasuk ke dalam
golongan II A yaitu : Berilium (Be), Magnesium (Mg), Calcium (Ca), Stronsium (Sr), Barium (Ba), dan
Radium (Ra). Di sebut logam karena memiliki sifat-sifat seperti logam. Disebut alkali karena
mempunyai sifat alkalin atau basa jika direaksikan dengan air. Dan istilah tanah karena oksidasinya
sukar larut dalam air, dan banyak ditemukan dalam bebatuan di kerak bumi.
Tiap logam memiliki konfigurasi elektron sama seperti gas mulia atau golongan VIII A, setelah
di tambah 2 elektron pada lapisan kulit S paling luar. Contohnya konfigurasi elektron pada
Magnesium (Mg) yaitu : 1s22s22p63s2 atau (Ne) 3s2. Ikatan yang dimiliki kebanyakan senyawa logam
alkali tanah adalah ikatan ionik. Karena, elektron paling luarnya telah siap untuk di lepaskan, agar
mencapai kestabilan.
Unsur alkali tanah memiliki reaktifitas tinggi, sehingga tidak ditemukan dalam bentuk
monoatomik , unsur ini mudah bereaksi dengan oksigen, dan logam murni yang ada di udara,
membentuk lapisan luar pada oksigen.
2.2.1 Sifat Fisik Logam Alkali Tanah

No
Sifat-sifat
Be
Mg
Ca
Sr
Ba
1.
Nomor atom
4
12

20
38
56
2.
Konfigurasi Elektron
[He]2s2
[Ne]3s2
[Ar]4s2
[Kr]5s2
[Xe]6s2
3.
Titik Cair 0C
1278
649
839
769
725
4.
Titik Didih 0C
2970
1090
1484
1384
1640
5.
Jari-jari logam Å
1,11

1,60
1,97

2,17
6.
Jari-jari ion Å
0,31
0,65
0,99
1,13
1,35
7.
Energi ionisasi
[M(p)→M2+(g) + 2 e-],
Pertama, kJ/mol
Kedua, kJ/mol
Ketiga, kJ/mol

899
1757
14848

738

1451
7733

590
1145
4912

590
1064
4210

503
965
3430
8.
Keelektronegatifan
(Skala Pauling)
1,5
1,2
1,0
1,0
0,9
9.
Kekerasan (Skala Mohs)

≈5
2,0
1,5
1,8
≈2
10.
Warna Nyala
Tidak Ada
Tidak Ada
Jingga-Merah
Merah
Hijau

Logam alkali tanah terdiri dari 6 unsur yang terdapat di golongan IIA. Yang termasuk ke dalam
golongan II A yaitu : Berilium (Be), Magnesium (Mg), Calcium (Ca), Stronsium (Sr), Barium (Ba), dan
Radium (Ra). Dalam golongan alkali tanah nomor atom nya betambah dari atas kebawah, faktor yang
mempengaruhi ukuran atom adalah jumlah kulit atom yang terisi elektron. Jelas sekali, semakin
banyak kulit atom semakin banyak ruang yang dibutuhkan atom, mengingat elektron saling tolakmenolak. Ini berarti semakin kebawah (nomor atom makin besar) ukuran atom harus semakin besar.
“Konfigurasi elektron adalah gambaran penyebaran elektron yang paling mungkin kedalam orbitalorbitan kulkit elektron.” (Ralph.H Petruci.1895:227). konfigurasi elektron adalah susunan elektronelektron pada sebuah atom, molekul, atau struktur fisik lainnya.

2.2.2 Titik cair dan titk didih
Titik cair adalah suhu yang mengubah zat padat murni menjadi cairan .Titik didih adalah suhu
minimum berubahnya fase cair suatu zat menjadi fase uap yang bertekanan 1 atm, pada suhu ini
tekanan uap cairannya sama dengan tekanan di atas permukaan. (Hadyana.2004:861-862). Titik cair
dan titik didih logam alkali tanah semakin menurun dari atas ke bawah, kecuali Mg, disebabkan oleh
peningkatan jari-jari ion dan struktur kristal yang berbeda,
Be, Mg

: heksagonal terjejal,

Ca

: heksagonal terjejal,kubus berpusat muka

Sr

: kubus berpusat muka

Ba

: kubus berpusat badan

( Hiskia Ahmad.2001:109)
Gambar.1- kubus berpusat muka

2.2.3 Jari-jari atom dan Jari – jari ion
“Jari-jari atom (atomic radius) suatu logam adalah setengah jarak antara dua inti pada atom-atom
yang berdekatan.” (raymond chang,2005:235)
“Dari atas kebawah dalam satu golongan, dapat di amati bahwa jari-jari atom bertambah dengan
bertambahnya nomor atom. Untuk logam alkali tanah elektron terluar menempati orbital ns. Karena
ukuran orbital bertambah dengan meningkatnya bilangan kuantum utama n, ukuran atom logam
bertambah dari Be ke Ra.” (raymond chang,2005:236)
Jari-jari ion adalah jari –jari kation atau anion yang diukur dalam senyawa ionik.Jika atom
membentuk anion,ukurannya (jari-jari)bertambah,oleh karena muatan inti tetap sama tetapi tolak
menolak yang dihasilkan dari elektron yang ditambahkan akan memperbesar daerah awan elektron.
kation lebih kecil dari atom netral karena pelepasan satu elekron atau lebih akan mengurangi
elektron untuk saling tolak menolak tetapi muatan inti tetap sama sehingga awan elektron mengerut.
(Raymond Chang.2005:237)

2.2.4 Energi ionisasi
“Energi ionisasi (ionization energy) adalah energi minimum yang diperlukan untuk melepaskan satu
elektron dari atom berwujud gas pada keadaan dasarnya.” (raymond chang,2005:239). Untuk
golongan tertentu, energi ionisasi menurun dengan bertambahnya nomor atom (yaitu dari atas
kebawah dalam satu golongan. Unsur-unsur dalam golongan yang sama memiliki konfigurasi elektron
terluar yang mirip. Tetapi dengan meningkatnya bilangan kuantum utama n, bertambah pula jarak
rata-rata elektron valensi dari inti. Makin jauh jarak antara elektron dan inti berarti gaya tariknya
lebih lemah, sehingga elektron menjadi lebih muda untuk dilepaskan dari atas kebawah dalam satu
golongan”.(raymond chang,2005:242)

2.2 5 Keelektronegatifan
“Keelektronegatifan adalah suatu konsep relatif, yang berarti bahwa keelektronegatifan suatu unsur
dapat diukur hanya dalam kaitannya dengan keeletronegatifan unsure-unsur yang lain.” (Raymond
Chang.2005:267)
Seorang kimiawan amerika, Linus pauling telah menyusun suatu metode untuk menghitung
keelektronegatifan relatif dari hampir semua unsur.

Atom-atom unsur dengan beda keelektronegatifan yang besar cenderung untuk membentuk ikatan
ionik(seperti ikatan pada CaO) karena atom unsur dengan keelektronegatifan lebih rendah
memberikan elektron kepada atom unsur dengan keelektronegatifan lebih tinggi. Ikatan ionik
biasanya menggabungkan satu atom dari unsure logam dan dan satu atom dari unsure nonlogam.
Atom-atom unsure dengan perbedaan keelektronegatifan yang kecil (mirip) cenderung untuk
membentuk ikatan kovalen polar karena kerapatan elektronnya sedikit bergeser kearah atom yang
lebih elektronegatif.

2.2.6 Kekerasan
Kekerasan logam alkali tanah berkurang dari atas ke bawah akibat kekuatan ikatan antaratom
menurun. Hal ini disebabkan jarak antaratom pada logam alkali tanah bertambah panjang.
Karena dari atas ke bawah no atom logam alkali tanah meningkat sehingga ukuran atomnya juga
meningkat sehingga akan lebih banyak tolakan dari electron non-ikatan yang mengakibatkan
turunnya energy kohesi (bersatu/berpadu)dan menaikan kelembutan.
Kohesi adalah gaya tarik menarik antar molekul yang sama jenisnya.gaya ini menyebabkan antara zat
yang satu dengan yang lain tidak dapat menempel karena molekulnya saling tolak menolak.
(http://rayhandsight.blogspot.com)
2.2.7 Warna nyala
Apabila suatu unsur menyerap energi yang cukup maka unsur tersebut mengalami radiasi. Radiasi
yang dipancarkan (warna nyala) akan beraneka ragam sesuai dengan jenis unsur tersebut. Perbedaan
warna nyala ini disebabkan oleh perbedaan panjang gelombang setiap unsur alkali tanah.(Tim kimia
dasar.2009. hal:11.)
Radiasi yang dipancarkan itu dibagi-bagi kedalam panjang gelombang komponennya, hal ini akan
menghasilkan suatu spektrum. Jika radiasi yang terbagi-bagi (terdispersikan) itu berasal dari atom
tereksitasi, maka spektrum itu disebut spektrum atom. (Keenan, dkk .1984. Hal: 115)
Warna nyala logam alkali tanah:
·

Be

:

Tidak ada

·

Mg

:

Tidak ada

·

Ca

:

Jingga-merah

·

Sr

:

Merah

·

Ba

:

Hijau (R.H Petrucci,1987:67)

2.1.8 Sifat Kimia Logam Alkali Tanah

Logam alkali tanah dapat bereaksi langsung dengan halogen dan belerang. Karena mudah
melepaskan elektron, logam golongan IIA bersifat reduktor kuat. Semua senyawa kalsium, strontium,
dan barium berikatan ionik, yang mengandung ion Ca2+, Sr2+, atau Ba2+, perilakunya antara
beryllium dengan anggota lain dalam golongan ini yang kimiawinya hampir sepenuhnya bersifat
ionik. Ion Mg2+ mempunyai kemampuan kepolaran yang tinggi, dan adanya kecenderungan
menetapkan keperilaku nonionik. Kalsium, Sr, Ba, dan Ra membentuk kelompok yang berkaitan
secara erat, dimana sifat kimia dan fisiknya berubah secara teratur dengan kenaikan ukuran. Semua
unsur alkali tanah adalah penyumbang elektron dengan berillium yang paling sedikit aktif dan barium
yang paling kuat.
a.

Aktivitas

Ciri khas yang paling mencolok dari logam alkali tanah adalah keaktifannya yang begitu besar.
Mengapa kebanyakan orang tak kenal baik rupa logam yang sangat umum seperti kalsium adalah
karena logam-logam ini begitu aktif sehingga mereka tak terdapat sebagai unsur bila bersentuhan
dengan udara dan air. Tak satupun dari unsure logam alkali tanah terdapat dialam dalam keadaan
unsurnya. Sumua unsure alkali tanah terdapat sebagai ion dipositif(positif dua).

b.

Sifat metalik

Secara kimia sifat metalik suatu unsur berkaitan dengan kecendrungannya untuk kehilangan electron.
Dalam keluarga alkali tanah ada keserupaan yang besar dalam sifat-sifat kimia. Kalsium, stronsium,
dan barium, jelas sekali serupa, tetapi magnesium dan berilium berbeda dari ketiga unsure ini karena
agak kurang aktif. Ini dapat dihubungkandenagn energy pengionan yang lebih tinggi dari kedua
unsure terakhir. Semua unsure alkali tanah adalah penyumbang electron dengan berilium yang paling
sedikit aktifdan barium yang paling aktif.

Sifat kimia unsur-unsur logam alkali tanah :

·

Magnesium

Magnesim tidak breaksi dengan oksigen dan air pada suhu kamar, tetapi dapat bereaksi dengan
asam. Pada suhu 800o C magnesium bereaksi dengan oksigen dan memancarkan cahaya putih
terang.
·

Kalsium

Kalsium adalah unsure logam alkali tanah yang reaktif, Kalsium bereaksi dengan air dan membentuk
kalsium hidroksida dan hydrogen.
·

Stronsium

Stronsium adalah unsure logam alkali tanah yang reaktif, stronsium dapat segera teroksidasi di udara
luar dan bereaksi dengan air membentuk stronsium hidroksida dan gas hydrogen .

·

Barium

Barium adalah unsure logam alkali tanah yang sangat reaktif dan bereaksi dengan dahsyat dengan air
dan mudah rusak(berkarat) dalam udara yang basah.
·
Radium adalah unsure logam alkali tanah yang reaktif . Radium terdapat dialam dalam jumlah
sedikit dan terdapat bersama-sama dengan bijih uranium. Radiasinya sangat berbahaya karena dapat
membunuh sel-sel makhluk hidup termasuk manusia.

2.2.9 Ekstraksi Logam Alkali Tanah
Ekstraksi adalah pemisahan suatu unsur dari suatu senyawa. Logam alkali tanah dapat di ekstraksi
dari senyawanya. Senyawa alkali tanah tersebar dalam jumlah banyak di air laut dan mineral (batuan)
dalam keadaan sebagai senyawa dengan bilangan oksidasi +2. Batuan dan mineral yang mengandung
unsur alkali tanah umumnya sebagai senyawa karbonat, silikat atau sulfat, sebab kelarutan senyawa
tersebut sangat kecil. Berilium terdapat sebagai mineral beril (Be3Al2(SiO3)6). Magnesium terdapat
sebagai mineral magnesit (MgCO3), dolomit (CaCO3.MgCO3) dan asbestos (CaMg3(SiO3)4. Kalsium
terdapat pada dolomit, gips (CaSO4.2H2O), dan kalsium fosfat (Ca3(PO4)2). Stonsium terdapat
sebagai mineral selestit (SrSO4) dan barium terdapat sebagai barit (BaSO4) dan BaCO3. Radium
merupakan unsur radioaktif alam pitchblende mengandung 0,37 gram Ra per ton bijih. Untuk
mengekstraksi logam alkali tanah kita dapat menggunakan dua cara, yaitu metode reduksi dan
metode elektrolisis.
a.

Ekstraksi Berillium (Be)

Berillium dibuat dengan mengelektrolisis BeCl cair yang ditambahkan NaCl sebagai penghantar arus
listrik karena berikatan kovalen.
Sumber berilium diperoleh dari batu permata beril Be3Al2Si6O18. yang mempunyai berbagai warna
tergantung pada jumlah kelumit pengotornya. Warna biru-hijau muda beril disebut akuamarin, hijau
tua beril disebut emeral. Warna hijau disebabkan oleh adanya 2 % ion Cr(III) dalam struktur
kristalnya. Tentu saja emeral tidak digunakan untuk produksi logam berilium, dan sebagai gantinya
yaitu kristal-kristal tak sempurna dari beril tak berwarna atau beril coklat. Berilium murni dapat
diperoleh dengan mengubah bijih beril menjadi oksidanya, BeO, kemudian diubah menjadi
flouridanya. Pemanasan fluorida dengan magnesium dalam tungku pada ~100oC diperoleh berilium:
BeF2(s) + Mg(l) ----->Be(s) + MgF2(s)

b.

Ekstraksi Magnesium (Mg)

Magnesium dihasilkan dengan beberapa cara. Sumber yang terpenting adalah batuan dalam dan air
laut, yang mengandung 0,13% Magnesium.
1)

Metode Reduksi

Untuk mendapatkan magnesium kita dapat mengekstraksinya dari dolomit [MgCa(CO3)2] karena
dolomite merupakan salah satu sumber yang dapat menghasilkan magnesium. Dolomite dipanaskan
sehingga terbentuk MgO.CaO. lalu MgO.CaO. dipanaskan dengan FeSi sehingga menhasilkan Mg.
2[ MgO.CaO] + FeSi à 2Mg + Ca2SiO4 + Fe
2)

Metode Elektrolisis

Dari logam-logam alkali tanah, magnesium yang paling banyak diproduksi. Proses pengolahan
magnesium dari air laut disebut proses Dow. “Dalam proses Dow, magnesium di endapkan dari air
laut dalam bentuk hidroksida”. ( Ralph.H Petrucci dan Suminar. 1989: 103).
Proses pengolahan magnesium dari air laut secara proses Dow, mengikuti langkah-langkah sebagai
berikut:
Ø Magnesium diendapkan sebagai Mg(OH)2 dengan menambahkan Ca(OH)2 ke dalam air laut.
Ø Kemudian Mg(OH)2 diubah menjadi MgCl2 dengan menambahkan HCl
Ø Selanjutnya MgCl2 dikristalakan sebagai MgCl2.6H2O
Ø Untuk mendapatkan logam magnesium, harus dilakukan elektrolisis terhadap leburan
MgCl2.6H2O. Hal ini tidak mudah dilakukan langsung karena pada pemanasan MgCl2.6H2O akan
terbentuk MgO. Hal ini dapat diatasi dengan menambahkan MgCl2 yang mengalami dehidrasi
sebagian ke dalam campuran leburan natrium dan kalsium klorida. Magnesium klorida akan meleleh
dan kehilangan air tetapi tidak mengalami hidrolisis. Campuran leburan itu kemudian dielektrolisis
dan magnesium akan terbentuk di katoda.

c.

Ekstraksi Kalsium (Ca)

1)

Metode Elektrolisis

Batu kapur (CaCO3) adalah sumber utama untuk mendapatkan kalsium (Ca). Untuk mendapatkan
kalsium, kita dapat mereaksikan CaCO3 dengan HCl agar terbentuk senyawa CaCl2. Reaksi yang
terjadi :
CaCO3 + 2HCl à CaCl2 + H2O + CO2
Setelah mendapatkan CaCl2, kita dapat mengelektrolisisnya agar mendapatkan kalsium (Ca). Reaksi
yang terjadi :
Katoda ; Ca2+ + 2e- à Ca
Anoda ; 2Cl- à Cl2 + 2e2)

Metode Reduksi

Logam kalsium (Ca) juga dapat dihasilkan dengan mereduksi CaO oleh Al atau dengan mereduksi
CaCl2 oleh Na. Reduksi CaO oleh Al

6CaO + 2Al à 3 Ca + Ca3Al2O6
Reduksi CaCl2 oleh Na
CaCl2 + 2 Na à Ca + 2NaCl

d.

Ekstraksi Strontium (Sr)

Strontium ditemukan pada bijih strontianit (SrCO3) dan selestit (SrO4). Strontium dapat dibuat
dengan mereduksi oksidanya dengan logam pengoksida.
1)

Metode Elektrolisis

Untuk mendapatkan Strontium (Sr), Kita bisa mendapatkannya dengan elektrolisis lelehan SrCl2 .
Lelehan SrCl2 bisa didapatkan dari senyawa selesit [SrSO4]. Karena Senyawa selesit merupakan
sumber utama Strontium (Sr). Reaksi yang terjadi ;
katode ; Sr2+ +2e- à Sr
anoda ; 2Cl- à Cl2 + 2e-

e.

Ekstraksi Barium (Ba)

1)

Metode Elektrolisis

Barit (BaSO4) adalah sumber utama untuk memperoleh Barium (Ba). Setelah diproses menjadi BaCl2
barium bisa diperoleh dari elektrolisis lelehan BaCl2. Reaksi yang terjadi :
katode

; Ba2+ +2e- à Ba

anoda ; 2Cl- à Cl2 + 2e2)

Metode Reduksi

3) Selain dengan elektrolisis, barium bisa kita peroleh dengan mereduksi BaO oleh Al. Reaksi yang
terjadi :
6BaO + 2Al à 3Ba + Ba3Al2O6.
4)
2.2.10 Reaksi-reaksi Logam Alkali Tanah
Logam alkali tanah merupakan zat pereduksi yang sangat kuat sama juga dangan logam alkali,karena
begitu mudah kehilangan elektron. Logam ini mudah bergabung dengan unsur non logam
membentuk senyawa ion seperti halida,hidrida,oksida,dan sulfida.

Reaksi secara umum
Keterangan
2M(s) + O2(g) à 2MO(s)
Reaksi selain Be dan Mg tak perlu Pemanasan
M(s) + O2(g) à MO2 (s)
Ba mudah, Sr dengan tekanan tinggi, Be, Mg, dan Ca, tidak terjadi
M(s) + X2(g) à MX2 (s)
X: F, Cl, Br, dan I
M(s) + S(s) à MS (s)

M(s) + 2H2O (l) à M(OH)2 (aq) + H2 (g)
Be tidak dapat, Mg perlu pemanasan
3M(s) + N2 (g) à M3N2 (s)
Reaksi berlangsung pada suhu tinggi, Be tidak dapat berlangsung
M(s) + 2H+(aq) à M2+(aq) + H2 (g)
Reaksi cepat berlangsung
M(s) + H2 (g) à MH2 (s)
Perlu pemanasan, Be dan Mg tidak dapat berlangsung

a.

Reaksi Logam Alkali Tanah dengan Air

“Reaksi air dengan logam aktif akan membentuk ion hidroksida”. (Keenan.1984:361).“Unsur-unsur
golongan IIA mempunyai energi ionisasi yang lebih tinggi dari pada golongan IA, oleh karena itu
golongan IIA lebih sukar dioksidasi”. (James E.Brady.1999:432). Oleh karena itu golongan IIA akan
bereaksi dengan air tetapi reaksinya tidak seperti golongan IA yang lebih reaktif.
Berilium tidak bereaksi dengan air, sedangkan logam Magnesium bereaksi sangat lambat dan hanya
dapat bereaksi dengan air panas. Logam Kalsium, Stronsium, Barium, dan Radium bereaksi sangat
cepat dan dapat bereaksi dengan air dingin. Contoh reaksi logam alkali tanah dan air berlangsung
sebagai berikut,
Ca(s) + 2H2O(l) → Ca(OH)2(aq) + H2(g)

b.

Reaksi dengan Udara atau Oksigen

“Keelektronegatifan oksigen yang tinggi yakni 3,5, menunjukkan kecendrungan yang besar dari
oksigen untuk membentuk senyawa Oksida dengan ikatan ion maupun ikatan kovalen polar. Begitu
juga apabila Oksigen bereaksi dengan logam alkali tanah akan menghasilkan senyawa oksida”.
(Keenan.1984:337)
Contoh: 2Ca + O2 → 2CaO
Adanya pemanasan yang kuat menyebabkan logam alkali tanah terbakar di udara membentuk oksida
dan nitrida. Semua unsur alkali tanah kecuali berilium dan magnesium,berkorosi terus-menerus
dalam udara sampai mereka seluruhnya telah diubah menjadi oksida,hidroksida atau karbonat.
M + O2 à MO2
Berilium dan magnesium mudah bereaksi dengan oksigen,tetapi selaput oksida yang kuat
terbentuk,cenderung melindungi logam yang terletak di sebelah bawahnya dari serangan lebih lanjut
pada suhu kamar.Bila dipanaskan ,kedua logam ini pun akan terbakar dengan dahsyat.
Dengan pemanasan, Berilium dan Magnesium dapat bereaksi dengan oksigen. Oksida Berilium dan
Magnesium yang terbentuk akan menjadi lapisan pelindung pada permukaan logam.Barium dapat
membentuk senyawa peroksida (BaO2)
2Mg(s) + O2 (g) → 2MgO(s)
Ba(s) + O2(g) (berlebihan) → BaO2(s)
Pembakaran Magnesium di udara dengan Oksigen terbatas pada suhu tinggi akan dapat
menghasilkan Magnesium Nitrida (Mg3N2)
4Mg(s) + ½ O2(g) + N2 (g) → MgO(s) + Mg3N2(s)
Bila Mg3N2 direaksikan dengan air maka akan didapatkan gas NH3
Mg3N2(s) + 6H2O(l) → 3Mg(OH)2(s) + 2NH3(g)

c.

Reaksi Logam Alkali Tanah Dengan Halogen

Semua logam akali tanah bereaksi dengan halogen membentuk garam halida.
M(s) + X2(g) → MX2(s)
Lelehan halida dari berilium mempunyai daya hantar listrik yang buruk. Hal itu menunjukkan bahwa
halida berilium bersifat kovalen. (Michael Purba,2006:88)
Semua logam Alkali Tanah bereaksi dengan halogen dengan cepat membentuk garam Halida, kecuali
Berilium. Oleh karena daya polarisasi ion Be2+ terhadap pasangan elektron Halogen kecuali F-, maka
BeCl2 berikatan kovalen. Sedangkan alkali tanah yang lain berikatan ion. Contoh,
Ca(s) + Cl2(g) → CaCl2(s)

d.

Reaksi Logam Alkali Tanah Dengan Nitrogen

Logam alkali tanah yang terbakar di udara akan membentuk senyawa oksida dan senyawa Nitrida
dengan demikian Nitrogen yang ada di udara bereaksi juga dengan Alkali Tanah. Contoh:
3Mg(s) + N2(g) → Mg3N2(s)
(www.scribd.com)

e.

Reaksi Dengan Asam Dan Basa

Semua logam alkali tanah bereaksi dengan asam kuat membentuk garam dan gas hidrogen. Reaksi
makin hebat dari Be ke Ba.
M(s) + 2HCl(aq) → MCl2(aq) + H2(g)
Be juga bereaksi dengan basa kuat, membentuk Be(OH)42- dan gas H2.
Be(s) + 2 NaOH + H2O → Na2Be(OH)4(aq) + H2(g)
(Michael Purba,2006:88)
Semua logam alkali tanah bereksi dengan asam kuat (seperti HCl) membentuk garam dan gas
hidrogen. Reaksi makin hebat dari Be ke Ba
Ca(s) + 2HCl(aq) à CaCl2(aq) + H2(g)
Be juga bereaksi dengan basa kuat, membentuk Be(OH)42- dan gas H2.
Be(s) + 2NaOH(aq) + 2H2O(l) à Na2Be(OH)4(aq) + H2(g)

2.2.11 Aplikasi Logam Alkali Tanah
Diantara unsur – unsur alkali tanah, kalsium, stronsium, dan barium membentuk senyawa yang
sangat serupa satu dengan yang lainnya.Magnesium,dan lebih khusus lagi berilium,membentuk
senyawa yang berbeda dari senyawa ketiga unsur lainnya itu.
Senyawa berilium cenderung terhidrolisis dalam air,sebagian karena pembentukan hidroksida,
Be(OH)2 yang tak larut. Rapatan muatan yang tinggi dari ion Be2+ yang kecil itu, memungkinkan
bereaksi dengan air.
Ion dari unsur alkali tanah, tidak berwarna dan cukup tak reaktif. Banyak garam- garamnya yang
sederhana seperti MgSO4, CaCl2, Ba(NO3)2, dan BeSO4 dapat larut. Namun, sulfat, karbonat, dan
fosfat dari kalsium, stronsium,dan barium ,hanya sedikit larut.

a.

Oksida

Oksida-oksida IIA yang umum,mempunyai rumus seperti MO. Baik kapur (CaO) maupun
Magnesia (MgO), dibuat dengan menguraikan pada suhu tinggi, batu-batuan karbonat yang terdapat
dalam alam di dalam tanur kapur. Magnesium dipakai untuk batu tahan api, dan sebagai isolator
untuk pipa-pipa uap. Kapur digunakan untuk membuat lepa(mortar),dan adukan plester,serta untuk
menetralkan tanah yang asam, ia juga merupakan sumber ion hidroksida yang paling murah bagi
industri, Ca(OH)2, yang terbentuk oleh reaksi kapur dengan air.
Kalsium oksida digunakan untuk mendehidrasi (menghilangkan air) cairan seperti etil alkohol
dan untuk mengeringkan gas. Ia semakin bertambah penting dalam menghilangkan SO2 dari gas
cerobong instalasi pembangkit tenaga. Kalsium oksida juga digunakan untuk mengatur pH limbah
asam dari pabrik kertas dan instalasi pengolahan air limbah, dan untuk menghilangkan ion fosfat
dari air limbah.
Oksida dari golongan IIA merupakan zat padat putih dengan titik leleh yang sangat tinggi.
Oksida ini cenderung bereaksi perlahan–lahan dengan air dan karbon dioksida dalam udara, masing –
masing membentuk hidroksida dan karbonat.
BaO + H2O

Ba(OH)2

MgO + H2O

Mg(OH)2

CaO

+ CO2

CaCO3

SrO

+

CO2

SrCO3

Reaksi antara suatu oksida dengan air adalah sebuah proses eksotermik yang disebut slaking
(mencampurkan dengan air). Dalam hal panas, barium oksida pada pencampuran dengan air yang
begitu besar,walau hanya sedikit air yang digunakan,maka bisa jadi kelihatan merah pijar.Bila kapur
mati (Ca(OH)2) digunakan dalam lepa (mortar) untuk menyusun batubara,proses pengerasannya
melibatkan pengeringan dan kristalisasi,diikuti dengan perubahan perlahan-lahan dari kapur mati
menjadi kalsium karbonat oleh kerja karbon dioksida dari atmosfer.Barium peroksida terbentuk bila
barium oksida dipanaskan dalam udara. .(Ralph H Petrucci.1987:109 dan Charles W. keenan
dkk.1979:156-159).

b.

Hidroksida

Magnesium hidroksida adalah susu (bubur) magnesia yang kita kenal baik,yaitu suspensi pekat
(penetralan asam) yang sejak lama digunakan sebagai obat dalam rumah tangga. .(Ralph H
Petrucci.1987:109 dan Charles W. keenan dkk.1979:156-159).
c.

Halida

Beberapa halida logam alkali tanah terdapat begitu melimpah dalam alam,sehingga digunakan
sebagai bahan mentah untuk membuat senyawa lain dari logam dan halogen.Magnesium klorida
diproduksi dari sumur-sumur garam dan dari air laut sebagai satu tahap dalam produksi magnesium.

Kalsium klorida,yang juga ditemukan dalam alam ,diproduksi secara sintetik sebagai suatu produk
samping yang relatif tak berharga dari proses Solvay untuk membuat natrium karbonat. Digunakan
sebagai zat pengering, kalsium klorida juga ditaruh diatas jalan yang berdebu, karena
kecendrungannya untuk berdelikesensi,yaitu menarik uap air dari udara dan membentuk tetes-tetes
halus larutan,juga digunakan untuk bahan anti api dan semen.(Ralph H Petrucci.1987:109 dan
Charles W. keenan dkk.1979:156-159).

d.

Karbonat

Karbonat adalah salah satu senyawa IIA alamiah yang paling melimpah.Kalsium karbonat
diendapkan pada dasar samudra sebagai kulit tiram yang rendah,sebagai bunga karang yang seperti
renda,dan dalam bentuk-bentuk lain.Metamorfose (perubahan bentuk) geologi,lalu menghasilkan
lapisa-lapisan besar batu kapur atau batu pualam,atau bahkan kristal kalsit yang indah,tak
berwarna,dan bening.Meskipun rupanya berbeda-beda,semua bentuk ini pada hakekatnya adalah
CaCO3.karbonat juga digunakan untuk cat, tinta tulis, senyawa-senyawa anti api dan penggosok.
(Ralph H Petrucci.1987:109 dan Charles W. keenan dkk.1979:156-159).

e.

sulfat

Digunakan untuk pupuk, pelengkap makanan hewan, berbagai penggunaan dalam industry tekstil.
(Ralph H Petrucci.1987:109)
Secara spesifik aplikasi dari masing-masing unsur ialah sebagai berikut :
Berilium (Be)
1. Berilium digunakan untuk memadukan logam agar lebih kuat, akan tetapi bermasa lebih ringan.
Biasanya paduan ini digunakan pada kemudi pesawat Zet.
2. Berilium digunakan pada kaca dari sinar X, karna Berilium dapat 17 kali lebih baik dalam
menyebarkan sinar X.( N.N Greenwood dan Earnshaw,A. 1984:120)
3. Berilium digunakan untuk mengontrol reaksi fisi pada reaktor nuklir(Ralph
109)

H.petrucci.1987:108-

4. Campuran berilium dan tembaga banyak dipakai pada alat listrik, maka Berilium sangat penting
sebagai komponen televisi.
Magnesium (Mg)
1. Magnesium digunakan untuk memberi warna putih terang pada kembang api dan pada lampu
Blitz.
2. Senyawa MgO dapat digunakan untuk melapisi tungku, karena senyawa MgO memiliki titik leleh
yang tinggi.

3. Senyawa Mg(OH)2 digunakan dalam pasta gigi untuk mengurangi asam yang terdapat di mulut dan
mencagah terjadinnya kerusakan gigi, sekaligus sebagai pencegah maag
4. Mirip dengan Berilium yang membuat campuran logam semakin kuat dan ringan sehingga biasa
digunakan pada alat alat rumah tangga.
5. Magnesium juga digunakan sebagai bahan pereduksi dalam proses pengolahan logam
tertentu(Ralph H. Petrucci1987:109)
Kalsium (Ca)
1. Kalsium digunakan pada obat obatan, bubuk pengembang kue dan plastik.
2. Senyawa CaSO4 digunakan untuk membuat Gips yang berfungsi untuk membalut tulang yang
patah.
3. Senyawa CaCO3 biasa digunakan untuk bahan bangunan seperti komponen semen dan cat
tembok.Selain itu digunakan untuk membuat kapur tulis dan gelas,kelembutan dan kualitas
penyerapan tinta yang baik pada kertas.(ralph H Petrucci1987:109)
4. Kalsium Oksida (CaO) dapat mengikat air pada Etanol karena bersifat dehidrator,dapat juga
mengeringkan gas dan mengikat Karbondioksida pada cerobong asap.
5. Ca(OH)2 digunakan sebagai pengatur pH air limbah dan juga sebagai sumber basa yang harganya
relatif murah
6. Kalsium Karbida (CaC2) disebut juga batu karbit merupakan bahan untuk pembuatan gas asetilena
(C2H2) yang digunakan untuk pengelasan.
7. Sebagai bahan pereduksi dalam pembuatan logam lain yang kurang umum, seperti Sc, W, Th, U,
Pu, dan sebagian besar lantanoid, dari oksida atau flouridanya.
8. Digunakan dalam pembuatan baterai, pembuatan alloy, dan dalam proses deoksidasi, dan
pelepasan gas dari logam.(Ralph H. Petrucci.1987:109)
Stronsium (Sr)
1. Stronsium dalam senyawa Sr(NO3)2 memberikan warna merah apabila digunakan untuk bahan
kembang api.
2. Stronsium sebagai senyawa karbonat biasa digunakan dalam pembuatan kaca televisi berwarna
dan komputer.
3. Untuk pengoperasian mercusuar yang mengubah energi panas menjadi listrik dalam baterai nuklir
RTG (Radiisotop Thermoelectric Generator).
Barium (Ba)
1. BaSO4 digunakan untuk memeriksa saluran pencernaan karena mampu menyerap sinar X
meskipun beracun.

2. BaSO4 digunakan sebagai pewarna pada plastic karena memiliki kerapatan yang tinggi dan warna
terang.
3. Ba(NO3)2 digunakan untuk memberikan warna hijau pada kembang api.

BAB III
PENUTUP
3.1 Kesimpulan
Dari beberapa penjelasan yang telah dibahas dalam BAB II, dapat ditarik kesimpulan bahwa
Dalam sistim periodik logam alkali terdapat pada kolom pertama paling kiri sering juga disebut
dengan ”Golongan IA”, terdiri dari: lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium
(Cs) dan francium (Fr). Disebut logam alkali karena oksidanya dapat bereaksi dengan air
menghasilkan larutan yang bersifat basa (alkaline). Logam Alkali juga memiliki sifat-sifat fisika dan
kimia, seperti logam alkali berbentuk padatan kristalin, merupakan penghantar panas dan listrik yang
baik, merupakan reduktor paling kuat, mudah bereaksi dengan air, sehingga logam harus disimpan
dalam minyak tanah, dan lain-lain.
Unsur-unsur golongan IIA terdiri dari enam unsur, yaitu berilium (Be), magnesium (Mg),
kalsium (Ca), stronsium (Sr), barium (Ba), dan radium (Ra). Semua unsur golongan IIA merupakan
unsur logam alkali tanah. Sifat-sifat fisik ,seperti titikk cair, rapatan, dan kekerasan , logam alkali
tanah lebih besar jika dibandingkan dengan logam alkali, dalam suatu periode. Logam alkali tanah
dapat bereaksi langsung dengan halogen dan belerang. Karena mudah melepaskan elektron, logam
golongan IIA bersifat reduktor kuat. Semua unsur alkali tanah adalah penyumbang elektron dengan
be