ASSESSMENT OF COMPATIBILITY BETWEEN CONCRETE AND VARIOUS REPAIR MATERIALS BASED ON POROSITY MEASUREMENTS.

perpustakaan.uns.ac.id

digilib.uns.ac.id

Ì×ÌÔÛ

ßÍÍÛÍÍÓÛÒÌ ÑÚ ÝÑÓÐßÌ×Þ×Ô×ÌÇ ÞÛÌÉÛÛÒ
ÝÑÒÝÎÛÌÛ ßÒÜ ÊßÎ×ÑËÍ ÎÛÐß×Î ÓßÌÛÎ×ßÔÍ
ÞßÍÛÜ ÑÒ ÐÑÎÑÍ×ÌÇ ÓÛßÍËÎÛÓÛÒÌÍ
ÌØÛÍ×Í
Í«¾³·¬¬»¼ ¬± ¬¸» б-¬ Ù®¿¼«¿¬» ±º Ý·ª·´ Û²¹·²»»®·²¹ Ю±¹®¿³ ·²Ð¿®¬·¿´
Ú«´º·´´³»²¬ ±º ¬¸» λ¯«·®»³»²¬- º±® ¬¸» Ü»¹®»» ±º Ó¿-¬»® ±º Ю±¶»½¬
Ó¿²¿¹»³»²¬

Þ§æ
ÉßÔßÛÜÜ×Ò ÉßÒ×Í ßò ßÙßÛÔ
Íçìïíðîðìí

ÐÑÍÌ ÙÎßÜËßÌÛ
Ý×Ê×Ô ÛÒÙ×ÒÛÛÎ×ÒÙ ÐÎÑÙÎßÓÍ
ÍÛÞÛÔßÍ ÓßÎÛÌ ËÒ×ÊÛÎÍ×ÌÇô ÍËÎßÕßÎÌß

îðï5

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

ÐÎÑÒÑËÒÝÛÓÛÒÌ
The person who signs here:
NAME :

Walaeddin Wanis A. Agael

NIM :

S941302043

Certifies that the thesis entitled:


ßÍÍÛÍÍÓÛÒÌ ÑÚ ÝÑÓÐßÌ×Þ×Ô×ÌÇ ÞÛÌÉÛÛÒ
ÝÑÒÝÎÛÌÛ ßÒÜ ÊßÎ×ÑËÍ ÎÛÐß×Î ÓßÌÛÎ×ßÔÍ
ÞßÍÛÜ ÑÒ ÐÑÎÑÍ×ÌÇ ÓÛßÍËÎÛÓÛÒÌÍ
This is really his own work. Anything related to others’ work is
written inquotation, the source of which is listed on the bibliography.If
then, this pronouncement proves wrong, I am ready to accept
anyacademic punishment. Including the withdrawal of this thesis and my
academicdegree.

Surakarta, 24 June 2015
The person who makes this Pronouncement
Walaeddin Wanis A. Agael

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

commit to user


perpustakaan.uns.ac.id

digilib.uns.ac.id

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

ßÝÕÒÑÉÔÛÜÙÛÓÛÒÌ
I am grateful to the Allah for the good health and wellbeing that
werenecessary to complete this research.
I wish to express my sincere thanks to Dr. Eng. Ir. Syafi’I, MT,Principal of
the Faculty of Sebelas Maret University, for providing me with all thenecessary
facilities for the research.
I place on record, my sincere thank you to Dr. Yusip Muslih P., ST., MT.,
Ph.D.
I am also grateful to Prof.SA.Kristiawan . S.T., M.Sc .Ph.D. my supervisor

and lecturer in the Department of Civil Engineering. I am extremely thankful and
indebted to him for sharing expertise, and sincere and valuable guidance and
encouragement extended to me.
I would like to express my sincere thanks and appreciation to Ir.Winny Astuti,
M.Sc., Ph.D.
I take this opportunity to express gratitude to the entire Department facultyof
civil engineering members for their help and support. I also thank my mother for the
unceasing encouragement, support and attention. My dear father Times are hard. You
always used to help me through everything. I also thank my brothers and sister for
constant encouragement to me .I am also grateful to my wife and mydaughter who
supported me through this venture.
I also place on record, my sense of gratitude to one and all, who

directly orindirectly, have lent their hand in this venture.

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id


ßÞÍÌÎßÝÌ
Structures with poor concrete quality are susceptible to premature deterioration
which results in early requirement of repair. It is important to understand the
properties of repair materials, as this will allow the selection of a repair system that
matches, as closely as possible, the properties of the concrete to be repaired. The
repair material itself should not be cause of concrete deterioration because of poor
porosity. Therefore, this research will focus on determining the compatibility of
different repair materials with concrete based on porosity measurements.
Various RepairMaterials used are Normal mortar, UPR, BASF Nanocrete R4
and Sika repair mortar. Percent of absorption and porosity were measured according
to RILEM recommendation. Scanning Electron Microscope analysis was conducted
to study the porous and bond behavior of concrete with repair materials.
The result showed that UPR mortar 50% has lower porosity of 0.7968% than
SIKA, Mortar and BASF nanocrete R4. According to Macrostructure (Ms) and
Scanning Electron Microscope (SEM) can be seen that UPR mortar has less void and
porous on the specimen structure. Normal mortar, UPR Mortar 50%, BASF
Nanocrete R4 and SIKA Repair Mortar is used as repair material in this study and
shows that all repairs concrete result is tend to increase the porosity except UPR
mortar 50%.


commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

ßÞÍÌÎßÕ
Struktur dengan mutu beton rendah rentan terhadap kerusakan dini yang
akhirnya membutuhkan perbaikan. Hal ini penting untuk memahami sifat bahan
repair, karena ini akan memungkinkan pemilihan sistem perbaikan yang cocok,
sedekat mungkin, sifat beton yang akan diperbaiki. Perbaikan materi itu sendiri tidak
boleh penyebab kerusakan beton karena porositas yang buruk. Oleh karena itu,
penelitian ini akan fokus pada penentuan kompatibilitas bahan repair yang berbeda
dengan beton berdasarkan pengukuran porositas.
Berbagai repair material yang digunakan adalah normal mortar, UPR, BASF
Nanocrete R4 dan Sika repair mortar. Persentase dari penyerapan dan porositas
diukur menurut rekomendasi RILEM. Scanning Electron Microscope analisis
dilakukan untuk mempelajari porositas dan ikatan beton dengan repair material.
Hasil penelitian menunjukkan bahwa UPR mortar 50% memiliki porositas

dengan nilai 0,7968% lebih rendah dari SIKA, Mortar dan BASF nanocrete R4.
Menurut macrostructure (Ms) dan Scanning Electron Microscope (SEM) dapat dilihat
bahwa UPR mortar memiliki sedikit void dan pori pada struktur spesimen. Normal
mortar, UPR Mortar 50%, BASF Nanocrete R4 dan SIKA repair mortar digunakan
sebagai bahan perbaikan dalam penelitian ini dan menunjukkan bahwa semua
material perbaikan beton cenderung meningkatkan porositas kecuali UPR mortar
50%.

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

ÝÑÒÌÛÒÌ

commit to user

perpustakaan.uns.ac.id


digilib.uns.ac.id

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

Ô×ÍÌ ÑÚ ÌßÞÔÛÍ
Table 2.1 Resume from previous research
Table 3.1 Parameters and Variables........................................................................................ 17
Table 3.2 Asphalt concrete gradation ..................................................................................... 19
Table 3.3 Concrete mix design at 30 MPa .............................................................................. 21
Table 3.4 Mixing ratio of Repair material (Normal Mortar) ................................................. 23
Table 3.5 Mixing ratio of Repair material (BASF Nanocrete) ............................................... 24
Table 3.6 Mixing ratio of Repair material (Sika Repair Mortar) ............................................ 24
Table 3.7 Mixing ratio of repair material (UPR-Mortar 50%)................................................ 24
Table 4.1 Fine aggregate test result..........................................................................................28
Table 4.2 Gradation of Fine Aggregate .................................................................................. 28
Table 4.3 Coarse Aggregate Test Result................................................................................. 29

Table 4.4 Gradation of Coarse Aggregate .............................................................................. 30
Table 4.5 Compressive strength test result ............................................................................. 32
Table 4.6 Porosity test result................................................................................................... 33
Table 4.7 Porosity test of various UPR dimensions................................................................ 35
Table 4.8 Comparison of test results of normal concrete and UPR Mortar 50%.................... 37
Table 4.9 Porosity test of various mortar dimensions............................................................. 38
Table 4.10 Comparison of test results of normal concrete and mortar. .................................. 39
Table 4.11 Porosity test of various BASF nanocrete dimensions ........................................... 41
Table 4.12 Comparison of test results of normal concrete and BASF Nanocrete R4............. 42
Table 4.13 Porosity test result of various SIKA dimensions .................................................. 44
Table 4.14 Comparison of test results of normal concrete and SIKA repair mortar............... 45

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

Ô×ÍÌ ÑÚ Ú×ÙËÎÛÍ
Figure 3.1 Gradation limit of AC............................................................................................ 20

Figure 3.2 The compressive strength test’s tool...................................................................... 26
Figure 3.3Flow chart of research ............................................................................................ 27
Figure 4.1 Fine aggregate gradations ...................................................................................... 29
Figure 4.2 Coarse Aggregate Gradation ................................................................................. 31
Figure 4.3 Compressive strength test result ............................................................................ 32
Figure 4.4 Porosity test of different materials......................................................................... 34
Figure 4.5 Porosity rate of different specimen size................................................................. 36
Figure 4.6 Porosity test result of UPR Mortar 50% ................................................................ 37
Figure 4.7 Porosity rate of different specimen size................................................................. 39
Figure 4.8 Porosity test result of Mortar ................................................................................. 40
Figure 4.9 Porosity rate of different specimen size................................................................. 42
Fig ure4.10 Porosity test result of BASF Nanocrete R4 ......................................................... 43
Figure 4.11 Porosity rate of different specimen size............................................................... 45
Figure 4.12 Porosity test result of Sika repair mortar ............................................................. 46
Figure 4.13 Macrostructure test of UPR mortar ..................................................................... 47
Figure 4.14 SEM compatibility condition between normal concrete with UPR-Mortar 50%.47
Figure 4.15 Macrostructure test of mortar .............................................................................. 48
Figure 4.16 SEM compatibility condition between normal concrete with normal mortar...... 49
Figure 4.17 Macrostructure test BASF ................................................................................... 50
Figure 4.18 SEM compatibility condition between normal concrete with BASF ................. 50

Figure 4.19 Macrostructure test SIKA .................................................................................... 51
Figure 4.20 SEM compatibility condition between normal concrete with Sika Repair Mortar.
................................................................................................................................................ 52

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

Ô×ÍÌ ÑÚ ÍÇÓÞÑÔ
A

= sample weight in water, W water (grams)

A’

= Section area (cm2)

B

= sample weight Events SSD, W saturation (grams)

C

= oven dry sample weight, W Dry (grams)

°C

= Temperature (celcius degree)

f’c

= Compressive strength (MPa)

h

= degree of hydration

P

= Load (kN)

vc

= Voids of concrete

W

= weight (gr)

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

ßÐÐÛÒÜ×È
Appendix A

Concrete mix design and material test

Appendix B

Porosity Test

Appendix C

Experimental Figures

commit to user