Palm Fruit (Arenga pinnata) Shell as Biosorbent for the Removal of Cu(II), Co(II), Ni(II), and Pb(II) from Aqueous Solution. - Politeknik Negeri Padang

ISSN: 0975-8585

Research Journal of Pharmaceutical, Biological and Chemical
Sciences

Palm Fruit (Arenga pinnata) Shell as Biosorbent for the Removal of Cu(ll),
Co(ll), Ni(ll), and Pb(ll) from Aqueous Solution.
Hidayat, Meilia Innes Kurniawan, Nazris Nazaruddin, Rahmiana Zein, and Edison Munaf*
Laboratory of Analytical Environmental Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences,
Andalas University, Padang 25163, Indonesia.
ABSTRACT

Sorption behaviour of Cu(ll), Co(ll), Ni(ll) and Pb(ll) by Palm fruit (Arenga pinnata) shell fruit shell was
investigated. The experiment, were conducted in a glass column. Some variable that affect the sorption
capacity such as solution of pH, particle size, flow rate, amount of weight biomass and metal ion concentration
has been investigated. Using the optimum conditions, sorption capacity of metal ions Cu(ll), Co(ll), Ni(ll) and
Pb(ll) were 1.48,1.49, 1.16 and 1.66 mg/g, respectively. More over the sorption capacity using multi elements
by Arenga pinnata fruit shell, will decrease due to the competition between the metal ions. Regeneration of
metal in sorpted by diluted nitric acid, obtained that the maximum regeneration percentage for all metals at
initial pH of 1. An FTIR examination revealed changes between the natural and heavy metals-loaded
biomaterial. Scanning electron micrograph (SEM) also revealed changes in the surface morphology of the

biomass as a result of heavy metal adsorption. Based on these results, it can be concluded that the Arenga
pinnata is effective in removing heavy metal from aqueous solution and merits consideration for scaled-up
trials.

Keywords: Arenga pinata shell, heavy metal, biosorption, AAS, FTIR, and SEM

*Corresponding author

September-October

2014

RJPBCS

5(5)

Page No. 1329

S-il\v?$ ;W*#.l


.x U*aviuV;-;/-\; ^trj'i n:i:.;••] \/^i Wri'} \\an i\\)i'->] .{'i)r,':. (ij/;.0 *o ':;*.-.-iv«- •'(•^ noijqvv"
.'n;1s;1nr.;- .->:.j.-iti.'.;»;' •t-''j:!9-V lr: ;.i-- r>"i?; .«»t-::" '.-..i'"l --v? ••1!y,:-.'»vi j-t.-; >,-'. r-,,-t. V.;. j« .;;,i> v:'.'-v.>C--"-

i,n': H'-ji'.'! ji!'>-'..G ,(H}u'j ."inc:; saJ^iv: lo vi.'inqGn ik;*/'-,;0? .i:;v:iiiiUfio.: 'rvjffiiJqo 'A:' ^r.'-:V ^.iroiii^v-n h-wj uj:

ft> no'ifj'jsnr^i'.rfl .:-:mo.» Sej-^t; *w!.f n;;)0:..'t".;; oo'.Mr-.jqfoou s/l' •.' MtJb ss^n.^n iiiw .ikuv. iiuiit.i;Jsfvycq rjiti^iA yd
babioi^iiwe'n-' v>r,:A:! i-"'i:. ir-'it/Jr..*"! otir i':-):>'.,v':n.' t'-^nofb wOlr-^v?- ;:o;j-,f!ifS^ HIT-"! nA

£ to Bq ;-;.^ ~:i

•oQi^k srij •!,••!! bon«jbno%- *rn.yvr».*-»fi lo iius-J'» .'• 'ifi >..;? {.*A qcu';;:•;.! ^i viajini. tv^j.- >'.'•..!; i.-,^--..^. :o sou'! /;g:.j.,!.'.j.::>:.

•.'./•.';i;i.''i;^y.S!.*'•; .:*^.»jj ; T••,';' cJl.";;•• ::;•?; etJ-i;j^ }', o\-vr-;» i;-:i:---] '.!!:'.; ;..•.••,•.•.: ,>>.»: f.-.y ,_;> -.> i;.;.- tv;«.i-»!< ;r;;, r-'i-A i.:.b en->•-.:.
'., ~••::5'."i' «L* I'i-•."•.{.'i.'::Jr';;-:

^:.tq r-i'*-y;t.">Oj.:.V(.,'>':'. ••;i"v;.,ii;,.'>: 'V>3:' ;>;';"! j;:'- • : ;.1 •;/-.Ti-! •'.'•', '.'-•-•T ••./•. ui^.'V-v v..iv .v.

:::^!^

;;o:/A:, 'JKfs-y' i;? oi! »^..- iv. .'*ji_ i.::»v.: CL|A,'.i.'-:i.:.!.c.'it;{:ji r.r*.•?••.•.•.;


i.«,:••:.^.-.

'r-:.:.-;\v ;n:q c^ji'.:. '..utr-'Ji- i^ik- •:

v?7_\v. vK-i^/i^-'Vtvf-.V"'

ISSN: 0975-8585

The pH of the solutions was adjusted to the required value (range from 2-8) by adding buffer solution
at indicated solution of pH. After equilibrium, the final concentration were measured by atomic absorption
spectrophotometry method.
Fourier transform infrared spectroscopy analysis
For the FTIR studies, 5% (w/w) of powdered and dried of Arenga pinnata were presessed to form KBR
disc. The FTIR spectra of sample before and after loaded with Pb(ll) were recorded in the range of 4000-400 cm"
spectral range.A total of 128 scans were averaged for each sample with a resolution of 2 cm .
Scanning electron microscopy analyis
The study of morphology of biosorbent Arenga pinnata shell was ued by masuring SEM images of
sample before and after loaded with Pb(ll) were recorded with two different magnifications, i.e. 100 and 5000
times.


Desorption sudies

Metal ions that have been absorbed by biosorbent at optimum conditions eluted to use 20 ml of nitric
acid with pH 1, 2, 3, and 4. Results measured elution with SSA.
Data evaluation

To determine the capacity of metal ion uptake by the arenga pinata shell, calculated using the Langmuir
isotherm equation with a value of:
m

Where : Q. = capacity of absorption (mg metal ion/g biomaterials) ; Ci = initial concentration of metal ion
(mg/L); Cf = final concentration (mg/L), V = volume of metal ion/solution ; m = mass biosorbent/biomaterial (g)
Percent regeneration of the acid solution be calculated by the formula :

... _.
.
C filtrat after regeneration ..Ai.,
% Regeneration =


xl00%
C sorption
RESULTS AND DISCUSSION

FTIR measurements

FTIR characterization was carried out to analysis the major functional group such as carboxyl, amide,
hydroxyl groups which exists in Arenga pinnata. The sorption process depend on various factors such as the
number of functional groups, process interactions, chemical structures, and affinity (the ability to receive metal
ions) between the Arenga pinata shell and of metal ions. The results are shown in Figure 1 a before sorption
and 1 b after. Identification of functional groups involved in the absorption of pure Arenga pinnata powder
commpared with that have interacted with the metal ions. From the results it can be concluded that sorption
of Pb (II), Cu (II), Co (II) and Ni (II) shifted transmittance values. Wavenumber shift from 3434 cm" (before

interaction with Cu (II), Pb (II), Ni (II) and Co (II)), 3429 cm"1 after interact with Cu (II), 3435 cm'for Pb (II), 3433
cm'1 interaction with Ni (II) and 3431cm"1 with Co (II). The results almost similar when rice straw [18] has been
used as sorption material. From the data it can be concluded that the results was assigned to the strehing of OH groups due to inter- and inta- molecular hydrogen bonding of polymeric compounds, such as alcohol,
occasionally phenols, and carboxylic acid.The data also prove the existence of lignin and cellulose compounds
that play a role in the uptake of metal ions.


September-October

2014

RJPBCS

5(5)

Page No. 1331

ISSN: 0975-8585

FE - SEM measurements

Roof structure of the fruit skin surface before absorption (A and B 5000X magnification 100X
magnification) and after absorption of metal ions Pb (C and D 5000X magnification 100X magnification) viewed
using FE - SEM tool turns surface structure forms arenga pinata shell have difference. Time before contacted

with metal ions, arenga pinata shell does not flake fibers which can be seen in Figure B (red circles), while after
contacted with metal ions Pb appears there lining the surface of the arenga pinata shell (image D in red circle).

In the current 100X magnification before contacted with metal ions visible arenga pinata shell evenly split
(image A red circle) after contacted with different fruit rind flake arenga pinata shell linked to each other and
overlap (Figure C red circle). This prove functional groups contained in the arenga pinata shell has been
interacting with metal ions where the metal ions Pb adsorbed on the surface of the roof of the fruit skin. Isaac
(2011) explains that the skin of the fruit composition arenga pinata shell compounds containing lignin and
cellulose. Functional groups present in lignin 3nd cellulose is the one who interacts bind metal ions.

Effect of pH on Metal Ion Absorption
From Figure 1 note that the optimum pH for metal ion Cu (II), Pb (II), Co (II) and Ni (II) is in the range of
pH 3-6 , the absorption capacity of each 0.418 mg/g at pH 4 ; 0.537 mg/g at pH 6 ; 0.608 mg/g at pH 4 and
0.426 mg/g at pH 3 . Almost the same results for the effect of pH was also reported by other researchers (Jafari
et al, 2012; Yalcin et al, 2012; Prakash et al, 2011; Gazem et al, 2012) where the influence of pH for cationic
metal ions in the range 3-6. This is also in accordance with the opinion Ramelow and Harris that the zero point
charge or isoelectric point at pH 3 functional group wherein the pH less than 3 active group has a positive
charge. While the pH is greater than 3 active group has a negative charge. This causes the electrostatic
attraction between the positively charged cations with active groups on the negatively charged cell walls.
Effect of pH
0.7

23456789


E f f e c t o f s o l u t i o n o f pH
Figure 1: Effect of pH on the absorption capacity of metal ions by arenga pinata shell, on the condition of particle size <

150, concentration 50 mg/ L, weight1 g, volume 20 mL metal ionand flow rate of 2 mL / min . Note:: Cu+2(0), Pb+2(A),
Ni+2(D), Co+2(V)

Ifassociated with competition occurring between the metal cations with H+ for adsorbed on the active
side of the arenga pinata shell. Arenga pinnata containing heteropoly saccharide complexes that can provide
amino, carboxyl, and sulfate. At low pH, the protonated functional groups and limiting metal ion uptake due to
competition with H. Along with the increase in pH, functional groups such as amino, phosphate, and carboxyl
group will open and carry a negative charge so that the adsorbed metal ions will ( Prakas et al, 2012). While at
high pH above 6 came into being metal hydroxide solution or hydroxide anions that complex metal ions formed
biosorption limiting the occurrence of the metal ( Onwuka et al, 2011).
Effect of Particle Size on Metal Ion absorption
Maximum absorption for metal ions Co (II), Ni (II) and Cu (II) contained in the particle size < 150 pm,

whereas for maximum absorption of Pb metal ions contained in the particle size of 151-180 pm. based on the
data thus obtained the optimum particle size that is used here is < 150 pm. This is consistent with the theory


September - October

2014

RJPBCS

5(5)

Page No. 1332

•&*•

&E»-aw:» -m?,va

>>V"".«1:>'!.'?j!?'*?'H *V?3^

b-r,v^:;v •lii:!:.-.*.-i;";',''i-;«i(;i XOOS .•iOi.;.-^>iin5s-:ri XOf:i/c •.'_• bns ')} c>i ;.r:ci L/sr. •.; i.C;i;:?:jf::.i--o:. s-'so'toi' •;•:-.'liT .y.:t:;M«v:'Mv} ~vso i;3f!.v syji-iq ^h^jk zar.o) v!U'j:^~^ ioshus i 0 ^f^b !!=!».«; :".!«;•-tq ejvvj h {•;;• 'o ):;i-'"kiri obi sriirji! rjiv."«.{r;c 'i'.wl&d nr/lJ5.V-~;ir.;."?;f} XO-JX iftSVil.1.' *i"!.' ;il
:vv; V-jibo rbss OJ b£>ioi; ibil>>. /wt:-".;:; CNn^"1,-'; i'.'?>b i^-v*:-• j;t;b 3*»«.vt-d?. £:.?;•:;:{ i.-)/i9*u; *>;i; f- os:ii6'.*»;o.j zquo"!: jr.^ob-imu; -.is'O'.q ,b>lT .(ol.viij t::n II 9'».:gF:/ f\v»---;VD
'•=:::': .AAz :i:/b ••'•'!: ':c 1 :.'/\ vfb bj s.c!••:? sMj no Ji:.;J.w-b.' bb :.>-:t lu'ism z-A' eisbv.? ^nci !si£nn d'iv.' ^.'••;;.'j:,'--.,::iI


i?(ii r>!tu;.i! *ninif;/"K>.i iL>;»;j!.: .iji* taiit i»r.i;bq,i >o y*baC;t:? W\'hna?s.la o&< , • ';•'".'; ;C«'i.- >l!:i.;i: hi'O vJcimnaH i, ^1:0* :-;jt's.':"ii^ ii\''>'hv:?e:n ?: >f-:^ Cji'm? .

?''

^

3

.o
a

5*

;•: vtsi-?. «•!::!5iOC; i» no:iibfio.'«9^i?' i;ri^:;6^ vioM'.*r.:-.i :"ii"ii ii^'-fi/n Qr-ij'.-i'x-.i ' i> i>j iiCiiiO't.; tiJi^Or'il'iiU'i DOjisr.G.'C/'.Ci ->i-.' .!!'.? Vv'.Vi Jr. .;; i-3ii:j.i 1JM0 ^Y'vOC/'ifi,; ,^i:ti • •£•

!•7•'ir;':!;•• ''»fc!:"i .osr;';!.'-; :•« n^'.'?: ^fj'^'ij l»',n'ii;:?r::j< ,Hq r:: ri^j-:i";
(.L.-I0.1 .is is «;>luwnO »Ik.I:';-.'/i scj tV^rs^'Mlf^x? fir'} ^;:i^fT}ii rtc?lJq?0^ t'!i) i:.~> brr.:. ;i!) =V1 (;!) '.••'?• / !-.-; Iritarii v.^ noi"q"i02dt /nurfiixs'^
3;ii no bG?fid .tnq 0.«.ip. -.;!:?jn-::-^

--'


-J

•is

1

Of

.1 c .-,
1

{

,.'..._•...«

&

-i*

£

£

i-

»"}

*;'r

,;\g"» w tr>f!oiu;'Jiv^3K0J art?, 2/rislii?r.o3 H».i iitiitut'j^u i« .ii5ti.T.;.?;;;. •-, ;t-;,*;; royv?s ijj'jjjjgqio J33HJ .«; a-sij^;4

irnu Da/>i I ftKb(:-"}"";/>,|D)t'»M»(.'.)*,'d45t{-!l}";0 : i-.'/tf .«:!ri!\J/n ^ -• •;• ^)cn';;;i^-t; n..;: JaJnin .In' OS r-n'nuiou ,?: i M$»:;,vV
"?o roi;U'CC/::*;_ terrsternotei srii c* sub sl (>iit.c-??rr.o;'j vr- ?;>r;K':: '-C': Ivirrn 7vS?f' :?o t'r.rlne.'i??:---'

:>»*•".rtjcib «ui c< ningiJ .{S.tO£ ,. ?r= is gnsd:.) im'tgii uni; v^gmj";:; ?r.j •:.: •^onicc? siGsbrniou.'jK^ jj-jlivwi:: ricmrru.c
r>?if; ionvjrlq .b'ni- .ViiY'stoo'JB:; ,c^nM^ ^obyfi-viU. ,:'.lof*o:>Wi ninvil ^fl; ru tr;';i.:rj'iv.: ;-fuiC!v« !«>ro';}:>rui:i .b^bss^jj
.'!E'd.:\?

ii;is«ro Jo non«v'o-;Ur. mun'tixsm >z !e j^v. fioiTiSYfrv hko i^unuMni. •v>i '.:.d3 ,.-\a-vi-:~ ti liyibwyt iU'j>i>Tjni o..i n;->j? d r.vO J\;;jr> 00.' ;o rtui^./no:.'!»if? "iii"!:? JEci? b^r;i^ii?;:o
.•'iiinai-i:'^'-.:

•3
••"'•}.
Vt

B.

?~~*«.

4is.. f"•5

ctrs

—A

-';••. . «•

3

i'.\. ?-

1
—t

11

t•d •.£»

- : Vo

ii?
«.*

•x?
..O

-"!

"--s

~2^.
JV?

t«..O

O

T*

... -^

'":*%.,-) 3
OS: J~

oor

03

03

iiiP»

Ofr.

s».. i"t
-.

o

,im muiviUqoso? f.'i .ilojlae:;cfjic» c-jn^ifi s*b ui yiiasqss naiicjiotd;; »inls nc- fj^i.V'n?tv:o'Wi ,•?

Dokumen yang terkait

Studi Infra Merah Dari Kompleks Fe(II), Co(II), Ni(II), Cu(II), Zn(II) dengan Anion karboksilat.

6 39 59

Effectivity of Humic Substance Extracted from Palm Oil Compost as Liquid Fertilizer and Heavy Metal Bioremediation

0 6 12

ADSORPSI ION Ni(II), Cu(II), Zn(II), Cd(II), dan Pb(II) DALAM LARUTAN OLEH ALGA Tetraselmis sp DENGAN PELAPISAN SILIKA-MAGNETIT (ADSORPTION OF Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) IONS IN SOLUTION By Tetraselmis sp ALGAE WITH A COATING SILICA-MAGNET

4 40 43

ADSORPSI ION Ni(II), Cu(II), Zn(II), Cd(II), DAN Pb(II) DALAM LARUTAN OLEH ALGA Chaetoceros sp DENGAN PELAPISAN SILIKA-MAGNETIT (THE ADSORPTION of Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) IONS in AQUEOUS SOLUTION by ALGAE Chaetoceros sp with SILICA-MAGN

1 12 40

Steam and Microwave Pretreatments in the Preparation of Bioethanol from Sugar Palm Kernel

0 0 8

Effectiveness of the Red Dragon Fruit (Hylocereus polyrhizus) Peel Extract as the Colorant, Antioxidant, and Antimicrobial on Beef Sausage

0 1 8

Characteristics of Sie Reuboh Supplemented with Different Combinations of Palm Vinegar (Arenga pinnata) and Kaffir Lime Leaves (Citrus hystrix)

0 0 8

Effect of Ni and Co as Trace Metals on Digestion Performance and Biogas Produced from The Fermentation of Palm Oil Mill Effluent

0 0 5

Effect of Ni and Co as Trace Metals on Digestion Performance and Biogas Produced from The Fermentation of Palm Oil Mill Effluent

0 0 8

Removal of Ni(II), Cu(II), and Zn(II) ions from aqueous solution using

0 0 11