Nano open house Ken David SS

I n t e l N a n ot e ch n ology Vir t u a l Ope n H ou se

Silicon Nanotechnology
at Intel
Ken David
Direct or of Com ponent s Research
Technology and Manufact uring Group
I nt el Corporat ion
Oct ober 22, 2004

1

Moore’s Law Continues…
10,000,000,000
1.7B transistors (90nm Montecito)

1,000,000,000

Itanium® 2 Processor
Itanium® Processor
Pentium® III Processor

Pentium® Processor
386™ Processor

4004

Pentium® 4
Processor

486™ DX Processor

1,000,000
100,000
10,000

8080
8008

1970

10,000,000


Pentium® II Processor

286

8086

100,000,000

1,000

1980

1990

2000

2010

Source: Intel


Increase
in
microprocessor complexity owing to improvement in
In
t e l N a n ot e ch
nology
Vir t ua l Ope n H ouse
transistors, interconnect and packaging

2

Transistor Scaling

0.10

1000
0.5µm
0.35µm
Technology

0.25µm
Node
0.18µm
Transistor
0.13µm
Physical Gate
90nm
65nm
Length 130nm
45nm
70nm
30nm
Nanotechnology 50nm

100

Nanometer

Micrometer


1.00

30nm
20nm

0.01
1990

15nm

1995

2000

2005

10
2010

Scaling to improve device speed/frequency of

I n t e l N a n ot e ch nology
operation and to pack more transistors in a
Vir t ua l Ope n H ouse
microprocessor.

3

Nanotechnology Research at Intel
N a n osca le m a t e r ia ls, pr oce sse s a n d
t e ch n ologie s w ill con t in u e t h e
im pr ove m e n t of ou r pr odu ct s:
„

Tr a n sist or r e se a r ch – for im pr ove d
de vice pe r for m a n ce a n d sca lin g.

„

I n t e r con n e ct r e se a r ch – for im pr ove d
w ir e con du ct ivit y a n d sca lin g.


„

M a n u fa ct u r in g r e se a r ch – for
im pr ove d u se fu ln e ss of n a n om a t e r ia ls

I n t e l N a n ot e ch nology
Vir t ua l Ope n H ouse

4

Transistor Nanotechnology
Research at Intel
„

„
„
„

N ove l de vice a r ch it e ct u r e s, e .g. Tr i ga t e

Ca r bon N a n ot u be s
Si a n d N on - Si N a n ow ir e s
I I I - V M a t e r ia ls, e .g. I nSb

GOALS:
„ Con t in u e im pr ovin g de vice
spe e d/ clock fr e qu e n cy
„ M a in t a in / r e du ce pow e r con su m pt ion
„ Fu r t h e r dim e n sion a l sca lin g
I n t e l N a n ot e ch nology
Vir t ua l Ope n H ouse

5

New Device Architecture
Tri-gate
Lg
Si

(Planar)


TSi
T

Planar fully depleted SOI
Isolation

TSi

Lg
WSi
Double-gate (e.g. FINFET)

(Non-Planar)
I n t e l N a n ot e ch nology
Vir t ua l Ope n H ouse

Lg

WSi

TSi
Most
Manufacturable

Tri-gate

(Non-Planar)
6

Nano-Device Structure Evolution
Conventional Planar Transistor

Tri-gate Transistor

SiO2

SiO2

Gate


Fully-Surround Gate
Transistor
Gate

Improved
Electrostatics

Best Electrostatics
and Scalability

I n t e l N a n ot e ch nology
Vir t ua l Ope n H ouse

Improving electrostatics optimizes
power consumption and performance

7

Tri-Gate Architecture:
Template for the future
Si nanowires
(defined by lithography)

S G D

S

G D

Multiple
wires

Gate

Total Drive Current =
Sou r ce : I n t e l
Id per nanotube/nanowire x no. of
tubes/wires
Silicon body, nanowires, nanotubes, etc.

Source
Gate
Electrode

Gate
Drain
I n t e l N a n ot e ch nology
Vir t ua l Ope n H ouse

Sou r ce : I n t e l

8

Carbon Nanotube Transistor
Drain
Carbon
Nanotube
-

D = 1.4 nm

Gate
L g = 75 nm

Source
I n t e l N a n ot e ch nology
Vir t ua l Ope n H ouse

Chemically synthesized
semiconducting
nanotubes with
diameter=2nm
form the transistor
channel.

Sou r ce : I n t e l
9

Carbon Nanotube Research
Transistor Made at Intel
DRAIN CURRENT [A]

1.E-05

Carbon nanotube
P-ch Transistor

1.E-06
1.E-07
1.E-08

VDS
-1.5 V
-1.0 V
-0.5 V

1.E-09
1.E-10
1.E-11
1.E-12
-3

-2

-1

0

1

2

GATE VOLTAGE [V]
I n t e l N a n ot e ch nology
Vir t ua l Ope n H ouse

Nanotubes show transistor action similar to Si CMOS
10
with excellent switching performance!

Relative performance benefit of
Carbon Nanotube transistors
Transistor
Speed

Potentially 3X faster
transistor at same size and
power consumption
with use of CNT

75nm Lg CNT

75nm Lg PMOS

(standard transistor)

CNT shows promise, but much device
engineering optimization still to come !
I n t e l N a n ot e ch nology
Vir t ua l Ope n H ouse

11

Semiconductor Nanowires
Chemically synthesized
silicon nanowires with
diameters