Index of /intel-research/silicon SEMI Ken David 0403

Intel Corporation
Silicon Technology Review
Ken David
Director, Components Research
SEMI – Strategic Business Conference
April 2003

Agenda
y Corporate Mission
– Leadership in Technology
– Leadership in Integration

y How do we continue to succeed?
– Investments
– Research and Development
– Manufacturing Excellence

y Supplier Expectations
y Summary
2


Entering A New Era

Converged
Computing and
Communications
Microprocessors

Memory
3

Leadership by Technology

Desktop

Server

4

Leadership by Integration
Intel® PXA800F Processor

Intel®
MicroSignal
Architecture

Power Management

Intel®
OnChip
Flash
4MB/512kB

Intel® Mobile Technology

GSM/GPRS &

Intel®
XScale™
Core
Peripherals


SRAM
512kB/64kB

5

How do we continue to lead?
y Commitment through investments
y Commitment through advanced research and
development – new technologies
y Continued, successful implementation of
Moore’s Law
y Commitment through manufacturing excellence

6

Intel Capital Expenses
Capital Ex: Intel v. Competitors (00 - 03)
*Estimate

Billions($)


25
20
15
10
5
0

Intel

Competitor 1

Competitor 2

Competitor 3

Source: Intel

7


Intel R&D Investment ($M)
$4,000 $4,000 est.
$3,897 $3,800

$3,111
$2,509
$2,347
$1,808

$517

$618

$780

$970

$1,296
$1,111


1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Source: Intel Annual Report

8

Worldwide Intel R&D Presence
75+ labs and over 7,000 R&D
professionals
Copenhagen,
Denmark
Washington
USA
Oregon
USA

Glasgow,
Scotland
Illinois
USA


Swindon,
Swindon, UK

Stockholm,
Sweden
Gdansk, Poland

Shannon, Ireland
Nice, France

California
USA

New Mexico, USA

Arizona
USA

Nizhny

Novgorod,
Sarov
Russia

Braunschweig,
Braunschweig,
Ulm
Germany

Beijing
Shanghai
China

Barcelona,
Spain
Haifa, Israel
Delhi
Bangalore
Mumbai
India


Tsukuba
Tokyo
Japan

Decentralized
DecentralizedApproach
ApproachFosters
FostersInnovation
Innovation
9

Technology Focus:
Microprocessor Products
• Research Groups are de-centralized
• Multiple sites

• Central Technology Development groups
• Logic: Hillsboro, Oregon
• Memory: Santa Clara, California

• Packaging: Chandler, Arizona

• Copy Exactly! from Development into
Manufacturing
• Fastest and Highest Volume Manufacturing
Ramp

10

Technology Focus: Logic
Actual

Forecast

Process Name

P858 Px60 P1262 P1264 P1266 P1268 P1270

1st Production


1999 2001 2003

2005 2007

2009 2011

Lithography Node

180

130

90

65

45

32

22nm

Gate Length

130

70

50

30

20

15

10nm

Fab

Development
Copy Exactly!

Research

Pathfinding
11

Leadership through
Technology
y Mission – to continue to provide leading edge
technology in computing and communications
y Financial Challenges
y Technology Challenges
– Increasing chip complexity
– aggressive scaling
– new materials
– added features (integrated capabilities)
– New concerns: Power, heat
12

Moore’s Law.... in the
beginning

1965 Transistor Projection

1975 Transistor Projection

13

Moore’s Law Today
1,000,000,000
100,000,000

Itanium ® Processor

1,000,000

Pentium® 4 Processor
Pentium® III Processor
Pentium® II Processor
Pentium® Processor
486™ DX Processor

100,000

386™ Processor
286

10,000,000

10,000

410 Million

8086
8080

1,000 8008
1970

1980

1990

2000

2010

Heading toward 1 billion transistors in 2007
14

Moore’s Law Economics
(Source: Intel, VLSIR)
1993

1998

2003

200

200

300

Fab cost, $B 0.9

2

3

Fab
capacity,
kwpm

20

40

$B/kwpm

0.04

0.05

30 - 35
~77 (200mmequivalent)
0.04

Wafer size,
mm

15

Evolution of Intel Process
Node

1997
1999
2001
0.25µm 0.18 µm 130nm

2003
90nm

2005
65nm

2007
45nm

2009
32nm

2011
22nm

193/157

?

?

Litho

DUV

Æ

193nm

Æ

Æ

Metal

Al

Æ

Cu

Æ

Æ

Æ

Æ

?

ILD

SiO2

SiOF

Æ

SiOC

Æ

Æ

?

?

Gate Ox

SiO2

Æ

Æ

Æ

High-k?

?

?

?

Gate
Electrode Poly

Æ

Æ

Æ

Æ

Metal?

?

New
Materials

New
Structures

New
Processes

?

Extending
Moore’s
Law!
16

Success in 90nm development
Silicide
Layer

Low K
ILD

Silicon
Gate
Electrode

Low K
etch stop

1.2 nm
SiO2 Gate
Oxide

50nm

Advanced
Cu barriers
Cu
interconnects

Strained
Silicon

17

Driving Moore’s Law Further
90nm Node
2003
65nm Node
2005
45nm Node
2007

50nm Length
(IEDM2002)

32nm Node
2009

30nm Prototype
(IEDM2000)

25 nm

20nm Prototype
(VLSI2001)

22nm Node
2011

15nm

15nm Prototype
(IEDM2001)
10nm Prototype
(ITJ 2002)

18

Working on Advanced Transistor Architecture
Î New ProcessÎ Need New Materials

Gate
Drain
Source

World record breaking NMOS
performance demonstrated today!

19

Intel Lithography Roadmap
1000

1/2 Pitch (nm)

ITRS “Nodes”
130nm Node
90nm Node

100

65nm Node
45nm Node
32nm Node

“Dual Wavelength Strategy”

10
i-line

DUV
i-line

DUV

DUV 193nm 193nm 193nm 157nm EUV EUV
DUV
193nm 157nm

EUV

1993

1995

1997

1999

2013

2001

2003

2005

2007

2009

2011

20

157nm Lithography
1999

2000

2001

157nm lithography is maturing:
z

Research tools shipping in 2003

z

Development tools scheduled for 2004

z

Single layer resists are making rapid progress
21

EUV Lithography - Full Field ETS images
(using 0.1 NA system)
100 nm Elbows 1:1

80 nm Elbows 1:1

200 mm Wafer
100 nm contacts 1:1

4x5 matrix

24 x 32.5 mm2 field
152 mm2, 4X
Reflective Mask

Printing 80 nm images at 0.1 NA is equivalent
to printing 32 nm with 0.25 NA production system

22

Leadership By Integration
Computing + Communications on One Chip
Silicon Level Integration
Functions combined on single chip

Package Level Integration
Stacked discrete chips and packages

Functions on Discrete Chips
Flash, Applications processors, Cellular chipsets
2002

2004

2006

23

Wireless Internet on a Chip
by Flash+Logic Integration
Intel® PXA800F Processor

Flash

Power Management

0.16µm2 Flash Cell

Intel®
OnChip
Flash
4MB/512kB

Intel®
MicroSignal
Architecture

GSM/GPRS &

Intel®
XScale™
Core

Logic

90nm

Peripherals

90nm Transistor Gate

SRAM
512kB/64kB

24

Continued Manufacturing
Excellence
y 0.13 µm manufacturing leadership
y Worldwide Presence
y Intel Manufacturing Philosophy
– Technology Development and Manufacturing Linked
– Copy Exact! Transfer of Processes
– Manufacturing Efficiency Æ 300mm Production
– Leading Edge Capacity

25

Intel’s High Volume Manufacturing Sites

Washington

Ireland

Systems Mfg.
Colorado

Fab 23

Oregon

Mass.

Dev D1C/D1D
Fab 15/20
Board Mfg.

China

Fab 14/24

Fab 17

Pudong A/T
Sub-con Mfg.
Israel

Fab 8/18

California

Dev D2
Sub-con Mfg.
Arizona

New Mexico

Fab12/22
A/T Dev

Fab 11/11X

Costa Rica

San Jose A/T

Taiwan

Thailand

Sub-con Mfg.
Malaysia

Penang A/T
Kulim A/T
Kulim Board/Module Mfg.
Brazil
Sub-con Mfg.
Sub-con Mfg.

Sub-con Mfg.
Philippines

Manila A/T
Cavite A/T

26

0.13µm(130nm) Leadership
Breaking Away from the competition

300mm

Wafer Starts

F11X

200mm
F17

D1C

F22
F20 D2

Q1

Q2

Q3

2001

Nearest CPU
Competitor

Q4

Q1

Q2

Q3

2002

Source: Intel

Q4

Q1

Q2

Q3

Q4

2003

27

Logic Development:
Linking 300mm Research, Development, and
Production
D1D: 300mm
65nm Development

RP1: 300mm
Research

D1C/F25:D1C:
300mm
300mm
0.13µm130nm
Production
Production
90nm Development
90nm Development
and Production

F20:300mm
200mm
RP1:
0.13µm
Production
Research
Source: Intel

28

Manufacturing Efficiency
Capital spending per die of
output capacity

$

.18um

.13um

200 mm

Source: Intel

.13um

.09um

300 mm

29

Scale: Leading Edge Capacity
90nm
0.13u
F24

WSPW

F11X
300mm

D1C
300mm

F11X
F22

D1C
Q

F20

F17
D2

Q+1

Q+2

Q+3

Q+4

Q+5

Q+6

Q+7

(Quarter in Ramp)
**Source: Intel Estimates

30

Supplier Expectations
y Manufacturing excellence
– Timely, cost-efficient support during HVM ramp
– Quality systems

y Advanced Development
– New equipment and capabilities matched with Intel’s
roadmap
– Process Development

y Research
– Collaborative efforts to foster innovation

31

Summary
Intel is committed to the future technologies
Success starts with the present
• 90nm technology innovation
• 90nm ramp in 2H’03
...and leads to the future
• continued extension of Moore’s Law
• Package level integration
• System on a chip
32

For further information on Intel's silicon technology
and Moore’s Law, please visit the Silicon Showcase
at www.intel.com/research/silicon

33