PERANCANGAN SISTEM PAKAR MENDIAGNOSA KANDUNGAN FORMALIN DAN BORACS PADA MAKANAN DENGAN MENGGUNAKAN METODE BAYES
I. PENDAHULUAN
1.1 Latar Belakang Masalah
Sistem Pakar Menurut Sri Hartati dan Sari Iswanti (2008:3),
2. Ahli `
1. Keahlian Keahlian merupakan suatu penguasaan pengetahuan dibidang tertentu yang didapatkan dari pelatihan, membaca atau pengalaman.
(Jika..maka).Konsep dasar dari suatu sistem pakar mengandung beberapa unsur/elemen, yaitu: (Muhammad Arhami, 2005) .
IF..Then
, Pengetahuan dari suatu sistem pakar mungkin dapat direpresentasikan dalam sejumlah cara. Salah satu metode yang paling umum untuk merepresentasikan pengetahuan adalah dalam bentuk tipe aturan (rule)
Teknik dan Aplikasnya, 2006)
Menurut Sri Kusumadewi (Artificial Intelligence
Sistem Pakar adalah sistem berbasis komputer yang menggunakan pengetahuan, fakta, dan teknik penalaran dalam memecahkan masalah, yang biasanya hanya dapat diselesaikan oleh seorang pakar dalam bidang tertentu.Sistem pakar adalah salah satu cabang dari Artificial Intelligence yang membuat penggunaan secara luas Knowledge yang khususuntuk penyelesaian masalah tingkat manusia yang pakar (Muhammad Arhami : 2005:1). Dengan sistem pakar ini, orang awam pun dapat menyelesaikan masalahnya atau hanya sekedar mencari suatu informasi berkualitas yang sebenarnya hanya dapat diperoleh dengan bantuan para ahli dibidangnya.
Perancangan sistem pakar mendiagnosa kandungan formalin dan boracs pada makanan dengan
PERANCANGAN SISTEM PAKAR MENDIAGNOSA KANDUNGAN
FORMALIN DAN BORACS PADA MAKANAN DENGAN
MENGGUNAKAN METODE BAYES
Jufli Trivendi Sipayung
yang telah diikuti oleh HM Jogiyanto dalam bukunya yang berjudul Analisis dan desain system informasi menyebutkan bahwa: “Desain sistem penggambaran, perencanaan dan pembuatan atau pengaturan dari beberapa elemen yang terpisah dari suatu kesatuan yang utuh dan berfungsi (Jogiyanto, 2005).
Gary Grudnitski
Defenisi perancangan menurut john Burch dan
A. Perancangan
II. TEORITIS
Namun tanpa disadari beberapa jenis makanan cepat saji yang sering dikonsumsi juga mengandung beberapa jenis bahan-bahan berbahaya yang menjadi pemicu timbulnya penyakit-penyakit kronis,seperti: serangan jantung, resistensi insulin, diabetes, dan beberapa penyakit berbahaya lainnya.Kemudian ada juga beberapa makanan cepat saji yang telah mencantumkan spot peringatan, nomor pendaftaran, maupun penandaan “halal”,tetapi setelah diteliti masih mengandung bahan-bahan berbahaya seperti: formalin, boraks,dan bahan-bahan berbahaya lainnya.Oleh karena itu penulis mencoba mengadakan penelitian dengan tujuan mengkaji lebih dalam bahan- bahan apa saja yang dapat dikatakan berbahaya dalam makanan, bagaimana kinerja BBPOM dalam menentukan bahan-bahan berbahaya tersebut, dan bagaimana cara BBPOM menindak lanjuti apabila telah ditemukan beberapa makanan yang mengandung bahan-bahan berbahaya dan langkah apa saja yang diambil untuk meminimalkan pemakaian bahan-bahan berbahaya tersebut demi menjaga kesehatan konsumen.
Sistempakar (expert system) adalahsistem yang berusaha mengadopsi pengetahuan manusia ke komputer, agar komputer dapat menyelesaikan masalah seperti layaknya para pakar (expert). Sistem pakar yang baik dirancang agar dapat menyelesaikan suatu permasalahan tertentu dengan meniru kerjadari para pakar atau ahli. Dengan pengembangan sistem pakar, diharapkan bahwa orang awam pun dapat menyelesaikan masalah yang cukup rumit yang sebenarnya hanya dapat diselesaikan dengan bantuan para ahli.Dalam hal makanan misalnya,penggunaan bahan tambahan pangan (BTP) yang memang jelas- jelas dilarang, seperti bahan formalin yang melampaui ambang batas yang telah ditentukan.
Kata kunci : SP, Metode Bayes, VB, Mysql
ABSTRAK
Sistem Pakar adalah sistem berbasis komputer yang menggunakan pengetahuan, fakta, dan teknik penalaran dalam
memecahkan masalah, yang biasanya hanya dapat diselesaikan oleh seorang pakar dalam bidang tertentu. Sistem pakar
adalah salah satu cabang dari Artificial Intelligence yang membuat penggunaan secara luas Knowledge yang khusus untuk
penyelesaian masalah tingkat manusia yang pakarSistem pakar Ini juga akan membantu aktivitas para pakar sebagai asisten
yang berpengalaman dan mempunyai asisten dan mempunyai pengetahuan yang dibutuhkan. Teori Bayes adalah untuk
mengakomodasi ketidakpastian pemikiran (inexact reasoning) seorang pakar yang diusulkan oleh Shortliffe dan Buchamn
pada tahun 1975. Kajian perancangan percobaan adalah pelaksanaan percobaan (eksperimen) terkendali. Dalam
percobaan semacam ini, peneliti memberikan sejumlah tindakan atau dapat juga pelabelan sesuai dengan ciri -ciri objeknya,
diistilahkan sebagai perlakuan (treatment).Mahasiswa Program Studi Teknik Informatika STMIK Budi Darma Medan Jl. Sisingamangaraja No. 338 Simpang Limun Medan
B. Seorang ahli adalah seorang yang mampu Gambar 2: Diagram Pelacakan ke Belakang menjelaskan suatu tanggapan, mempelajari hal-hal baru seputar topik permasalahan (domain), Kesimpulan 1 Kaidah A
Fakta 1 3.
Pengalihan keahlian
Kaidah D
Pengahlian keahlian dari para ahli ke komputer
Kesimpulan 2
untuk kemudian dialihkan lagi
Tujuan Kaidah B Fakta 2
keorang lain yang bukan ahli (tujuan utama sistem pakar).
Kesimpulan 3 Kaidah E 4.
Inferensi Mekanisme inferensi merupakan perangkat lunak
Kaidah C Fakta 3 Kesimpulan 4
yang melakukan penalaran dengan menggunakan pengetahuan yang ada untuk menghasilkan suatu Sumber : Kusrini, Aplikasi Sistem Pakar, 2008 kesimpulan atau hasil akhir.
2.3 Pengertian Identifikasi 5.
Aturan Identifikasi yang berarti Tanda kenal diri,
Aturan merupakan informasi tentang cara bagaimana memperoleh fakta baru dari fakta yang bukti dari penentu atau penetapan identitas seseorang sehingga Mengidentifikasi memiliki arti upaya telah diketahui.
6. menentukan atau menetapkan identitas seseorang Kemampuan menjelaskan.
(Sumber :www.identifikasi.com) . Kemampuan komputer untuk memberikan penjelasan kepada pengguna tentang sesuatu
D. Formalin dan Boraks
informasi tertentu dari pengguna dan dasar yang dapat digunakan oleh komputer untuk dapat Formalin dan boraks merupakan bahan tambahan yang sangat berbahaya bagi manusia karena menyimpulkan suatu kondisi. merupakan racun. Bila terkonsumsi dalam konsentrasi tinggi racunnya akan mempengaruhi kerja syaraf.
C. Inferensi
Sri Kusumadewi (2003), Inferensi merupakan Secara awam kita tidak tahu seberapa besar kadar konsentrat formalin dan boraks yang dianggap proses untuk menghasilkan informasi dari fakta yang diketahui atau diasumsikan. Inferensi adalah konklusi membahayakan.
Boraks Efek toksiknya akan terasa bila boraks
logis (logical conclusion) atau implikasi berdasarkan informasi yang tersedia dalam hal ini akan digunakan dikonsumsi secara kumulatif dan penggunaannya berulang-ulang. metode inferensi dalam pengambilan kesimpulan.
Ada dua metode inferensi yang penting dalam
E. Makanan
sistem pakar untuk menarik kesimpulan, yaitu: 1.
Makanan adalah bahan, biasanya berasal
Forward chaining
dar
Strategi dari sistem ini adalah dimulai dari inputan beberapa fakta, kemudian menurunkan Cairan yang dipakai untuk maksud ini sering beberapa fakta dari aturan-aturan yang cocok pada knowledge base dan melanjutkan prosesnya diseb tetapi kata “makanan” juga bisa dipakai.Istilah ini kadang-kadang dipakai dengan sampai jawaban sesuai Forward chaining dapat dikatakan sebagai penelusuran deduktif. kiasan, seperti "makanan untuk pemikiran".
Kecukupan makanan dapat dinilai dengan status gizi Gambar 1: Diagram Pelacakan ke Depan secara
Fakta 1 Kaidah C Kesimpulan 1 Kaidah A
2.5 Jenis-jenis Makanan Observasi Fakta 2 Kaidah D Kesimpulan 2
Adapun jenis-jenis makanan yang dibahas
Kaidah B Kaidah E Kesimpulan 3
adalah sebagai berikut ini:
Fakta 3 1.
Bakso
Kesimpulan 4 Bakso berformalin juga bisa dilacak dari
tekstur bakso yang tak wajar bakso dengan tambahan formalin memiliki ciri awet dalam waktu yang lebih Sumber : Kusrini, Aplikasi Sistem Pakar, 2008 lama, mencapai 5 hari dalam suhu kamar.Bakso boraks memiliki teksturnya berbeda dengan bakso 2.
Backward chaining
yang dibuat dari daging sapi murni. Daya tahannya Strategi penarikan keputusan yang didasarkan juga lebih lama, dan bentukknya tetap utuh walaupun dari hipotesa atau dugaan yang didapat dari sudah lebih dari 3 hari.Contoh umumnya bakso informasi yang ada.Ciri dari strategi ini adalah berwarna abu-abu ataupun coklat, bakso ini warnanya pertanyaan user. Memperoleh fakta biasanya lebih cenderung lebih bersih. Bahkan seperti dikutip diajukan dalam bentuk “YA” atau “TIDAK”, dari situs resmi Badan POM RI bakso mengandung proses ini berdampak dengan diterima atau boraks memiliki tekstur membal seperti bola di tidaknya hipotesis. lempak ke bawah.
2. Mi basah
Perancangan sistem pakar mendiagnosa kandungan formalin dan boracs pada makanan dengan
Bentuk dasar rumus Bayes sebuah aturan JIKA E MAKA H ditunjukkan oleh rumus :
BY(H,e) = BY( E,e)*BY(H,E) Dimana : BY(E,e) : Bayes evidence E yang dipengaruhi oleh
3. Ikan segar Ikan segar yang diberi formalin tekstur tubuhnya akan menjadi kaku dan sulit dipotong.
4. Ikan asin Ikan asin yang mengandung formalin akan terasa kaku dan keras, bagian luar kering tetapi bagian dalam agak basah karena daging bagian dalam masih mengandung air.
2.6 Faktor Kepastian (Bayes)
2.6.1 Pengertian Faktor Kepastian ( Bayes )
Menurut T. Sutojo (Kecerdasan Buatan, 2011:194), teori Bayes adalah untuk mengakomodasi ketidakpastian pemikiran (inexact reasoning) seorang pakar yang diusulkan oleh Shortliffe dan Buchamn pada tahun 1975. menggunakan Bayes guna menggambarkan tingkat keyakinan pakar terhadap masalah yang sedang dihadapi.
Bayes
menujukkan ukuran kepastian terhadap suatu fakta atau aturan.Notasi Faktor Kepastian(Sri Kusumadewi, 2003) adalah sebagai berikut : CF[h,e] = MB[h,e]
Dalam kasus ini , kondisi pasien tidak dapat ditentukan dengan pasti . Bayes E yang dipengaruhi oleh partial evidence e ditunjukkan dengan nilai sebagai berikut : BY(E1,e) : 0,5 (pasien mengalami batuk 50%) BY(E2,e) : 0,8 (pasien mengalami demam 80%) BY(E3,e) : 0,3 (pasien mengalami sakit kepala 30%) BY(E4,e) : 0,7 (pasien mengalami bersin-bersin 70%) Sehingga BY(H,e) = CF(H,E1 ∩ E2 ∩ E3 ∩ E4)
BY(H,E) : CF(H,E1 ∩ E2 ∩ E3 ∩ E4) : 0,7
Jika semua evidence pada antecedent diketahui dengan pasti, maka rumusnya ditunjukkan sebagai berikut : BY(H,e) = BY(H,E) Karena BY(E,e) = 1. Contoh kasus yang melibatkan kombinasi BY : JIKA batuk DAN demam DAN sakit kepala DAN bersin-bersin MAKA influenza, CF : 0,7 dengan menganggap E1 : “batuk”, E2 :”demam”, E3 :”sakit kepala”, E4:”bersinbersin”, dan H:”influenza”, nilai Bayes pada saat evidence pasti adalah:
evidence e
BY(H,E) : Bayes hipotesis dengan asumsi evidence diketahui dengan pasti , yaitu ketika CF(E,e)=1 BY(H,e) : Bayes hipotesis yang dipengaruhi oleh
evidence
- – MD[h,e] dengan CF[h,e] : Faktor Kepastian MB[h,e] : ukuran kepercayaan terhadap hipotesis h , jika diberikan evidence e ( antara 0 dan 1 ). MD[h,e] : ukuran ketidakpercayaan terhadap evidence h,jika diberikan
Berikut ini adalah contoh ekspresi logika yang mengkombinasikan evidence E=(E1 DAN E2 DAN E3) ATAU (E4 DAN BUKAN E5) Gejala E akan dihitung sebagai : E = max[min(E1,E2,E3),min(E4 ,-E5)] Untuk nilai E1 =0,9 E2 = 0,8 E3 = 0,3 E4 = -0,5 E5 = -0,4 Hasilnya adalah : E = max[min(E1,E2,E3),min(E4,-E5 )] = max(0,3, -0,5) = 0,3
= min[0,5, 0,8, 0,3, 0,7] = 0,3
evidence e ( antara 0 dan 1 )
Pengawet pada makanan memiliki efektifitas yang berbeda-beda, ada yang efektif terhadap bakteri, khamir atau kapang, ada yang efektif terhadap aktifitas enzim.Jadi pemakaian pengawet harus disesuaikan dengan kebutuhan, karena ada pengawet yang dilarang ditambahkan pada makanan. Pengawet yang dilarang ini sangat berbahaya bagi kesehatan manusia. Formalin dan boraks adalah zat yang sering digunakan sebagai pengawet makanan, padahal penggunaannya sebagai pengawet makanan sangat membahayakan bagi kesehatan.Untuk mendiagnosa kandungan formalin dan boraks dibutuhkan suatu
3.1 Analisa Masalah
( Kusrini, Aplikasi Sistem Pakar, hal : 16, 2008) 3.
= 0,3 * 0,7 = 0,21
Maka nilai Bayes hipotesis adalah : BY(H,e) = BY(E,e)* BY(H,E)
= min[CF(E1,e), CF(E2,e), CF(E3,e), CF(E4,e)]
Perancangan sistem pakar mendiagnosa kandungan formalin dan boracs pada makanan dengan Penggunaan formalin pada mi basah akan menyebabkan mi tidak rusak sampai dua hari pada suhu kamar ( 25 derajat Celsius) dan bertahan lebih dari 15 hari pada suhu lemari es ( 10 derajat Celsius).
2.6.2 Kombinasi Aturan
Metode MYCIN untuk menggabungkan
evidence pada antecedent sebuah aturan yang
ditunjukkan pada tabel berikut ini :
Tabel 2 Aturan Kombinasi MYCIN Evidence, E Antecedent Ketidakpastian E 1 DAN E 2 min [ CF(H,E 1 ), CF(H,E 2 )] E 1 OR E 2 max [CF(H,E 1 ), CF(H,E 2 )] TIDAK E -CF (H,E)
(Sumber : Sri Kusumadewi (Artificial Intelligence Teknik dan Aplikasinya, 2008)
ANALISA DAN PERANCANGAN
2.6.3 Perhitungan Bayes
)
∑ p(E|H
p(A1|B1) = (p(B1│A1) ∗ p(A1))/█(p(B1│A1) ∗ p(A1) + p(B2│A2) ∗ p(A2)
n k=1
k ) ∗ p(H k
- p(B3│A3) ∗ p(A3)
- p(B4│A2) ∗ p(A2)
- @p(B5│A4) ∗ p(A4)
- p(B6│A3) ∗ p(A3)) = ((0.8) ∗ (0.3))/(0.8 ∗ 0.3 + 0.4 ∗ 0.5 + 0.6
3.2 Penerapan Metode Bayes
Perancangan sistem pakar mendiagnosa kandungan formalin dan boracs pada makanan dengan metode yaitu menggunakan bayes (kepastian). Teori bayes digunakan untuk menghitung nilai kebenaran probabilitas dari suatu evidence. Jadi bayes menerangkan hubungan antara probablilitas terjadinya hipotesis Hi denganterdapat fakta (evidence) E telah terjadi dan probabilitas terjadinya
= 0,20
i ) ∗ p(H i
) ∑ p(E|H k
) ∗ p(H
k ) n k=1
p(A2|B2) = (p(B2│A2) ∗ p(A2))/█(p(B1│A1) ∗ p(A1) + p(B2│A2) ∗ p(A2)
∗ 0.4 + 0.5 ∗ 0.5 + 0.4 ∗ 0.6
0,20 0,24 + 0.20 + 0.24 + 0.25 + 0.24 + 0.20
3. Probabilitas kekenyalan bakso seperti karet
1.37 = 0.146
0,24
karena bakso mengandung formalin : p(H i |E) = p(E|H
i ) ∗ p(H i
) ∑ p(E|H k
) ∗ p(H
k ) n k=1
p(A3|B3) = (p(B3│A3) ∗ p(A3))/█(p(B1│A1) ∗ p(A1) + p(B2│A2) ∗ p(A2)
∗ 0.4 + 0.5 ∗ 0.5 + 0.4 ∗ 0.6
1.37 = 0.175 Probabilitas bau bakso yang kurang tercium aroma dagingnya, lebih tercium aroma bahan kimia karena bakso mengandung boraks : p(H i |E) = p(E|H
∗ 0.4 + 0.5 ∗ 0.5 + 0.4 ∗ 0.6
Evidence E dengan syarat hipotesis Hi telah terjadi.
- 0.4 ∗ 0.5) = 0,24/(0,24 + 0.20 + 0.24 + 0.25 + 0.24
- 0.20) =
5. Probabilitas kekenyalan bakso seperti karet, jika bakso mengandung formalin: p(B3|A3) = 0,7
Teori ini didasarkan pada prinsip bahwa jika terdapat tambahan informasi atau evidence, maka nilai probabilitas dapat diperbaiki.
Penerapan metode bayes dapat dilihat pada contoh yang akan mencari persentase kemungkinan bakso yang menggandung formalin dan boraks. Untuk menentukan nilai probabilitas gejala dan bobot padaBayes dapat dilakukan dengan langkah-langkah berikut ini.
1. Probabilitas warna bakso yang agak terang menyerupai karet dan agak kekuningan, jika mengandung formalin dan boraks : p(B1|A1) = 0,8
2. Probabilitas bakso berformalin dan berboraks tanpa memandang gejala apapun : p(A1) = 0,3
3. Probabilitas bau bakso yang kurang tercium aroma dagingnya, lebih tercium aroma bahan kimia, jika bakso mengandung boraks : p(B2|A2) = 0,4
- p(B3│A3) ∗ p(A3)
- p(B4│A2) ∗ p(A2)
- @p(B5│A4) ∗ p(A4)
- p(B6│A3) ∗ p(A3)) = ((0.4) ∗ (0.5))/(0.8 ∗ 0.3 + 0.4 ∗ 0.5 + 0.6
4. Probabilitas bakso berboraks tanpa memandang gejala apapun : p(A2) = 0,5
- 0.4 ∗ 0.5) =
8. Probabilitas rasa bakso mengandung sedikit rasa pahit, jika bakso hanya mengandung sedikit formalin dan boraks : p(B5|A4) = 0,4
6. Probabilitas bakso berformalin tanpa memandang gejala apapun : p(A3) = 0,5
7. Probabilitas bakso memantul seperti bola karet, jika bakso mengandung boraks: p(B4|A2) = 0,6
9. Probabilitas bakso hanya sedikit mengandung formlin dan boraks tanpa memandang gejala apapun : p(A4) = 0,6
10. Probabilitas tidak terlihat adanya serat-serat bakso, jika bakso mengandung formalin: p(B6|A3) = 0,4
- p(B3│A3) ∗ p(A3)
- p(B4│A2) ∗ p(A2)
- @p(B5│A4) ∗ p(A4)
- p(B6│A3) ∗ p(A3)) = ((0.6) ∗ (0.4))/(0.8 ∗ 0.3 + 0.4 ∗ 0.5 + 0.6
3.2.1 Perhitungan Metode Bayes
Perhitungan metode bayes dalam mendiagnosa bakso berformalin dan berboraks maka dilakukan langkah-langkah seperti berikut ini: 1.
Probabilitas warna bakso yang agak terang menyerupai karet dan agak kekuningan karena mengandung formalin dan boraks : p(H i |E) = p(E|H i ) ∗ p(H i )
- 0.4 ∗ 0.5)
- p(B3│A3) ∗ p(A3)
- p(B4│A2) ∗ p(A2)
- @p(B5│A4) ∗ p(A4)
- p(B6│A3) ∗ p(A3)) = ((0.5) ∗ (0.5))/(0.8 ∗ 0.3 + 0.4 ∗ 0.5 + 0.6
- p(B3│A3) ∗ p(A3)
- p(B4│A2) ∗ p(A2)
- @p(B5│A4) ∗ p(A4)
- p(B6│A3) ∗ p(A3)) = ((0.4) ∗ (0.5))/(0.8 ∗ 0.3 + 0.4 ∗ 0.5 + 0.6
- 0.4 ∗ 0.5) =
1.37 = 0.146
- 0.4 ∗ 0.5) =
1.37 = 0.175 6. Probabilitas tidak terlihat adanya serat-serat bakso, jika bakso mengandung formalin : p(H i |E) = p(E|H i ) ∗ p(H i )
∑ p(E|H k ) ∗ p(H k )
n k=1
p(A3|B6) = (p(B6│A3) ∗ p(A3))/█(p(B1│A1) ∗ p(A1) + p(B2│A2) ∗ p(A2)
∗ 0.4 + 0.5 ∗ 0.5 + 0.4 ∗ 0.6
0,20 0,24 + 0.20 + 0.24 + 0.25 + 0.24 + 0.20
= 0,20
∑ =
Setelah seluruh nilai diketahui, maka jumlah seluruh nilai bayes dari makanan bakso seperti berikut ini:
0,24 0,24 + 0.20 + 0.24 + 0.25 + 0.24 + 0.20
=1
1 + 2 + 3 + 4
- 5 + 6 = (0,8 * 0.175) + ( 0,4 * 0.146) + (0,6 * 0.175) + (0.5 * 0.182) + (0.4 * 0.175) + (0.4 * 0.146) = 0,14 + 0.0584 + 0,105 + 0,091+ 0,07 + 0,0584 = 0,5228 * 100% = 52,28%
Nilai dari hasil probabilitas menunjukkan bahwa bakso yang mengandung formalin dan boraks dapat dilihat dari hasil diagnosa yang didapatkan. Dengan ketentuan semakin besar kandungan dari formalin dan boraks maka semakin besar pula nilai bakso yang mangandung formalin dan boraks menggunakan metode bayes.
4. IMPLEMENTASI
a. Form Login Form login dapat dilihat sebagai berikut:
Gambar 4. Form Menu Login Gambar di atas merupakan form login dimana jika pengguna hanya sebagai user .pengguna bisa langsung ke menu utama. Sedangka jika pengguna sebagai administrator pengguna harus memasukan username, password sehingga bisa masuk ke program dan melakukan pengolahan data.
= 0,24
p(A4|B5) = (p(B5│A4) ∗ p(A4))/█(p(B1│A1) ∗ p(A1) + p(B2│A2) ∗ p(A2)
∗ 0.4 + 0.5 ∗ 0.5 + 0.4 ∗ 0.6
∑ p(E|H k ) ∗ p(H k )
Perancangan sistem pakar mendiagnosa kandungan formalin dan boracs pada makanan dengan =
0,24 0,24 + 0.20 + 0.24 + 0.25 + 0.24 + 0.20
= 0,24
1.37 = 0.175 4. Probabilitas bakso memantul seperti bola karet karena bakso mengandung boraks: p(H
i
|E) = p(E|H i ) ∗ p(H
i )
n k=1
p(A2|B4) = (p(B4│A2) ∗ p(A2))/█(p(B1│A1) ∗ p(A1) + p(B2│A2) ∗ p(A2)
∗ 0.4 + 0.5 ∗ 0.5 + 0.4 ∗ 0.6
0,25 0,24 + 0.20 + 0.24 + 0.25 + 0.24 + 0.20
= 0,25
1.37 = 0.182 5. Probabilitas rasa bakso mengandung sedikit rasa pahit karena bakso hanya mengandung sedikit formalin dan boraks : p(H i |E) = p(E|H i ) ∗ p(H i )
∑ p(E|H k ) ∗ p(H k )
n k=1
- p(B3│A3) ∗ p(A3)
- p(B4│A2) ∗ p(A2)
- @p(B5│A4) ∗ p(A4)
- p(B6│A3) ∗ p(A3)) = ((0.4) ∗ (0.6))/(0.8 ∗ 0.3 + 0.4 ∗ 0.5 + 0.6
- 0.4 ∗ 0.5) =
b. Form Menu Utama Halaman ini di gunakan sebagai tempat untuk menampung semua pilihan-pihan yang terdapat di dalam sistem yang di rancang seperti terlihat di bawah ini.
Gambar 7 Form Input Data Gejala
e. Form Diagnosa Form
diagnosa merupakan tampilan yang Gambar 5. Form menu Utama digunakan untuk menampilkan berupa pertanyaan- pertanyaan yang merupakan hasil diagnosa, form
Gambar diatas merupakan menu utama yang diagnosa dapat dilihat pada gambar berikut ini: terdiri dari menu pakar (Input data makanan, Input data gejala) menu Konsultasi untuk konsultasi berisi tentang form diagnosa dan Keluar c.
Form Input Data Makanan Form ini berfungsi untuk menginputkan data
makanan yang terdapat tombol baru untuk mulai penginputan, tombol simpan untuk menyimpan data ke dalam database, tombol edit untuk mengedit data yang ada di database, tombol hapus untuk menghapus data dari database dan tombol keluar untuk keluar dari program.
Gambar 8 Form Diagnosa
f. Form Konsultasi Form konsultasi merupakan tampilan yang
digunakan untuk menampilkan hasil diagnosa yang telah dijawab. Tampilan form konsultasi dapat dilihat seperti gambar berikut:
Gambar 6. Form Input Data Makanan
d. Form Input Data Gejala
Form ini berfungsi untuk menginputkan data
gejala-gejala pada makanan yang mengandung formalin dan boraks yang terdapat tombol baru untuk mulai penginputan, tombol simpan untuk menyimpan data ke dalam database, tombol edit untuk mengedit data yang ada di database, tombol hapus untuk
Gambar 9. Form Konsultasi menghapus data dari database dan tombol keluar untuk keluar dari program.
5. KESIMPULAN DAN SARAN
5.1 Kesimpulan
Berdasarkan uraian dari bab-bab sebelumnya, maka penulis dapat memberikan kesimpulan sebagai berikut : 1. pakar merupakan sistem yang
Sistem mengapdosikan pengetahuan manusia ke Perancangan sistem pakar mendiagnosa kandungan formalin dan boracs pada makanan dengan komputer yang akan menghasilkan diagnosa menurut para pakar, hasil diagnosa berupa makanan yang mengandung formalin dan boraks.
2. Penerapan metode bayes(kepastian) dalam mendiagnosa kandungan formalin dan boraks pada makanan berdasarkan data yang dibuat, untuk menghitung nilai kebenaran probabilitas dari suatu evidence.
3. Aplikasi sistem pakar yang mengidentifikasi bahaya makanan pada formalin dan boraks akan memberikan kesimpulan apakah makanan berupa bakso, mie basah, siomay, tahu dan lontong berbahaya untuk dikonsumsi dan berapa persentase kandungannya dengan menggunakan aplikasi Microsoft Visual Basic. Net 2008.
5.2 Saran
Selain kesimpulan, penulis juga ingin memberikan saran yang mungkin dapat membantu dalam perbaikan penulisan adalah sebagai berikut : 1.
Kepada penulis selanjutnya disarankan untuk menganalisis faktor-faktor lain yang membahayakan makanan untuk dikonsumsi, agar masyarakat akan lebih tahu bahaya makanan selain bahan formalin dan boraks.
2. Penulis juga menyarankan agar dalam mendiagnosabahaya makananuntuk dapat dikembangkan lagi dengan adanya bahan-bahan berbahaya lainnya yang terkandung pada makanan.
3. Penulis berharap agar menggunakan tools yang lain dengan aplikasi seperti pengembangan menggunakan perangkat mobile agar masyarakat dapat menggunakannya di handphone mereka.
DAFTAR PUSTAKA
[1] H.M Jogiyanto, Analisis Dan Desain Sistem, Yogyakarta, Andi, 2005. [2] Sri Hartati, Memecahkan Masalah, Fakta Dan Penalaran, Bandung, 2008. [3] Muhammad Arhami, Penyelesain Masalah Tingkat Manusia, Jakarta 2005. [4]
Sri Kusumadewi, “Artificial Intelligence Teknik dan Aplikasi, Yogyakarta, 2006. [5] T. Sutojo(Kecerdasan Buatan,2011:194)
Mengakomodasi ketidakpastian pemikiran (inexact reasoning)
[6] Abdul Kadir (Konsep dan Tuntunan Praktis Basis Data, 2005) Munggunakan DataBase Sistem (DBMS), Mysql ,Yogyakarta.
[7] http://www.Makanan.Com [10 Juni 2015] Perancangan sistem pakar mendiagnosa kandungan formalin dan boracs pada makanan dengan