contohsoal ujian sisipan iialjabar linear ii

UJIAN SISIPAN II
Mata Kuliah
Prodi
Jumlah SKS
Dosen Pengampu
E_mail

: Aljabar Linear II
: PM / PMNR
: 3 sks
: Karyati, M.Si
: [email protected]

Kerjakan Seluruh Soal berikut, tidak harus urut, tetapi setiap soal dikerjakan sampai tuntas sebelum
pindah nomor soal.

1. Diberikan suatu pemetaan T : M 2
T

a.
b.

c.
d.

a

b

c

d

a

P2 , dengan

2

b

c


2a

d x

a

b

c

d x2

Selidiki apakah T tersebut merupakan transformasi linear?
Tentukan R T dan dim R T
Tentukan ker T dan dim ker T
Tentukan matriks transformaasi linear T jika basis dari M 2
1 0 0 1 0 0 0 0
,
,

,
0 0 0 0 1 0 0 1

2

adalah

dan basis untuk P2 adalah 1 x x 2 , x x 2 , x 2

2. Diberikan suatu transformasi linear T : P 1
T surjektif, injektif atau bijektif
3. Jika diberikan Transformasi linear T : P1

R 2 dengan T a

P1 dengan T a

bx

bx


b, a . Selidiki apakah

a

a

b

2a

b x . Jika

diketahui basis untuk P1 adalah B 1 x, x dan B ' 1 x,2 x , maka tentukan matriks
transformasi AB'B' melalui matriks transformasi ABB

4. Diberikan matriks A
a.
b.
c.

d.

3
1

2
, tentukan
4

Nilai eigen dan vector eigen-nya
Basis ruang eigen-nya
Diagonalisasikan A, jika mungkin
Hitung A5 menggunakan sifat diagonalisasi matriks A

5. Buktikan bahwa: Jika T :V W adalah transformasi linear yang 1-1 (injektif) dan
v1 , v2 ,..., vn
V bebas linear, maka T v1 , T v2 ,..., T vn bebas linear.