How can we explore local Indonesian bioethanol sources

  How can we explore local Indonesian bioethanol sources? Basic idea

  • Any such things contain polysaccharide can be converted to bioethanol (CH CH OH) using enzymes…!!!

  3

  2

  • Where now we can get that polysaccharide from…???

  Banana

  Banana plant can grow all of the year in tropical season. Classification

  • Kingdom : Plantae • Divisi : Spermatophyta • Sub. Divisi : Angiospermae • Kelas : Monocotylae • Bangsa : Musales • Suku : Musaceae • Marga : Musa • Jenis : Musa paradisiacal

  Banana Pepaya Jeruk Components Total (%)

  Glucose 6,84% Fructose 5,12% Sucrose 1,05%

  Wijana,  1998

  Components Total (%) Glucose 6,84% Fructose 5,12% sucrose 1,05% Wijana,  1998 orange

  Citrus sp

NOT EFFICIENT

  Degrading bacteria working optimum at pH  5,5‐8.

  Zymomonas mobilis able to change glucose, fructose, sucrose to be ethanol

  Able to live at pH 3,5-7,5 Zymomonas mobilis Sampah Rumah Tangga

  Ditimbun…??? Municipal waste

  (common in Indonesia) Apa akan dibakar….?? Pembakaran…?

  Burning Wastes ¾ Mass burn incineration

  ¾Mass burn incineration

Advantages Disadvantages

  ¾ Air ¾Air

  Reduced trash High cost volume pollution Air pollution pollution

  Less need for (especially landfills toxic dioxins) Low water Produces a

  ¾ Waste to ¾Waste to pollution highly toxic ash Encourages energy energy waste production

  Concept for the use of biomass ethanol ethanol , , chemicals chemicals fermentation

  Biomass pyrolysis fuels fuels , , chemicals chemicals chemicals

gasification synthesis chemicals

transport transport fuels fuels

  (A) Typical fermentation products made by a K12 E. coli fermenting glucose. Products are in moles produced per 100 mol fermented glucose (Dien et al. 2003; Gottschalk 1986) with 91% of the carbon accounted for as fermentation products.

  Metabolism of ethanol (B) Transforming E. coli with pet operon diverts almost all glucose to ethanol. This strain (KO11) also carries a mutation that blocks succinate production.

  Lin Y, Tanaka S., Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol., 2005, 69 (6): 627-42.

  Dien BS, Cotta MA, Jeffries TW., Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol., 2003, 63(3): 258-66.

  Metabolism of xylose to ethanol

  Biomass Pyrolysis Products Conditions yield, % liquid Char Gas Carbonisation low temperature ,long

  30

  35

  35 residence time Gasification high temperature ,long

  5

  10

  85 residence time Fast pyrolysis moderate temperature,

  75

  12

  13 short residence time http://www.pyne.co.uk

  Fast Pyrolysis Liquid Bio-oil consists of many oxygenated organic chemicals and is water miscible.

  ¾ dark brown liquid ¾ combustible ¾ not miscible with hydrocarbons ¾ heating value ~ 17 MJ/kg ¾ density ~ 1.2 kg/l ¾ pH ~ 2.5 ¾ pungent odour ¾ viscosity increases with time

  Fast Pyrolysis Liquid Bio-oil consists of many oxygenated organic chemicals and is water miscible.

  ¾ dark brown liquid ¾ combustible ¾ not miscible with hydrocarbons ¾ heating value ~ 17 MJ/kg ¾ density ~ 1.2 kg/l ¾ pH ~ 2.5 ¾ pungent odour ¾ viscosity increases with time

  gas BIOMASS coke oil aqueous phase Fractionation of Oils Oil

  Water solubles

Water insolubles

  Extractives, HMWL LMW K. Sipila, E. Kuoppala, L. Fagernas, A. Oasmaa, Characterization of biomass-based flash pyrolysis oils, Biomass Bioenergy, 1998, 14, 103–113”. Oreganum stalk, wheat straw and corncob.

  Oregano is an aromatic and medical plant.

  Oreganum stalks are abundant agricultural wastes

  from harvest

  Comparison: Product distributions from pyrolysis of agricultural wastes, wt%

  Feed Oreganum Corncob Straw

  stalk

  Gas

  • Aqueous phase 6 ±0.3 6 ±1.3 6 ±0.5 Oil 39 ±3.1 41 ±0.9 35 ±1.3 Char 23 ±1.9 23 ±1.5 20 ±0.4
  • Calculated from mass balance ;

  32

  30

  39

  Oil yields----------- 13-17 wt% from rapeseed 14 wt% from sugarcane bagasse, coconut shell 57 wt% (containing 43 wt% waer) from rice straw 66 wt% (containing 20 wt% water) from pine sawdust

  Characterization of pyrolytic oil The compounds detected by GC/MS, wt.%

  Corncob Oreganum Straw

AP WS AP WS AP WS

  Acids acetic

  2.93

  5.09

  4.07

  2.56

  2.24

  2.60 propanoic

  0.20

  0.44

  0.31

  0.32

  0.11

  0.29 Nonaromatic aldehydes hydroxyacetaldehyde

  1.94

  2.23

  0.82 4.63 -

  4.40 propanal, 3-hydroxy

  0.42

  0.50

  0.29

  0.20

  0.22

  0.59 Nonaromatic ketones

  2.46

  6.89

  5.54

  7.37

  1.89

  5.12 Furans

  0.13

  1.45

  0.66

  1.30

  0.03

  1.25 Pyrans nd 0.04 nd nd

  0.01

  0.05 AP:aqueous phase; WS:water soluble fractions Characterization of pyrolytic oil

  The concentration of some compounds detected by HPLC and photometer, wt.%

  Corncob Oreganum Straw

AP WS AP WS AP WS

  Acetone, v/v %

  7.3

  5.0

  2.4

  1.0

  3.3

  14.7 Formic acid, wt.%

  0.34

  1.22

  0.03

  0.15

  0.46

  1.78 Formaldehyde,wt%

  3.15 1.22 n.d n.d

  2.52

  6.21 Methanol, v/v%

  2.04

  1.70

  3.05

  1.30

  2.49

  1.29 Total phenols, wt.%

  0.18 0.66 nil

  12.54

  0.08

  13.50 AP:aqueous phase; WS:water soluble fractions

  200 nm 200 nm McCann et al. 1990 McCann et al. 1990 J. Cell Sci. J. Cell Sci.

  96 96 , , 323 323 - - 334 334 Molecular Architecture of Plant Cell Walls Molecular Architecture of Plant Cell Walls ( ( lignocellulosic lignocellulosic

biomass)

biomass)

  Mo st a b unda nt in Ind o ne sia Mo st a b unda nt in Ind o ne sia (> 70 m illio n (> 70 m illio n to nne s to nne s a nnua lly) a nnua lly)

    • – –
    • – –
    • – –
    • – –
    • – –

  Pro duc tio n o f b io m a ss Pro duc tio n o f b io m a ss thro ug ho ut the ye a r thro ug ho ut the ye a r

  Ma in c o ntrib uto r o f b io m a ss Ma in c o ntrib uto r o f b io m a ss – – pa lm o il industry pa lm o il industry

  O il Pa lm Em pty fruit O il Pa lm Em pty fruit b unc he s (O PEFB) b unc he s (O PEFB)

  Pa lm o il m ill e fflue nt (PO ME) Pa lm o il m ill e fflue nt (PO ME)

  Me so c a rp Me so c a rp fib e r fib e r

  Pa lm ke rne l she lls Pa lm ke rne l she lls

  Pa lm ke rne l c a ke (re sidue ) Pa lm ke rne l c a ke (re sidue )

  Ma inly Ma inly lig no lig no - - c e llulo sic c e llulo sic m a te ria ls m a te ria ls Palm Oil 94% Rice 1% Sugarcane 1% Wood industry 4% Bio m a ss re so urc e s: Ag ric ultura l re sidue s Bio m a ss re so urc e s: Ag ric ultura l re sidue s

  Pa lm O il Industry: Bio m a ss Pa lm O il Industry: Bio m a ss Bio m a ss pro duc tio n (2007) Bio m a ss pro duc tio n (2007)

    • – Em pty fruit b unc h (EFB) Em pty fruit b unc h (EFB) 15 m illio n 15 m illio n to nne s to nne s –
    • – –

  Pa lm ke rne l she ll 8 m illio n - 8 m illio n - Pa lm ke rne l she ll to nne s to nne s

  • – –

  Me so c a rp – fib e r 5 m illio n to nne s Me so c a rp fib e r 5 m illio n – to nne s

  • – –

  Ab unda nt a nd c o nc e ntra te d in the m ills

  • Ab unda nt a nd c o nc e ntra te d in the m ills
  • (b usine ss a s usua l)

  (b usine ss a s usua l) Ne w Busine ss a nd Pro duc ts fro m Pa lm Bio m a ss Ne w Busine ss a nd Pro duc ts fro m Pa lm Bio m a ss Sta nda rdise d b io m a ss a va ila b le Bio pla stic (PLA) “ ze ro e m issio n” ze ro e m issio n o r Bio e tha no l “b usine ss a s usua l” O il Pa lm Em pty Fruit Bunc h Pa lm O il Mill Efflue nt 16 m illio n t/ yr 50 m illio n t/ yr

  • - - wa ste to we a lth wa ste we a lth - to - C o m po st
  • Pre - tre a tm e nt a nd <

    • + water recycling + water recycling
    • Sug a rs Sa c c ha rific a tio n Bio - a c ids Fe rm e nta tio n in b io re a c to rs

      Bio g a s, C H (+ Bio hydro g e n)

      4 Bio pla stic (PHA) Bio m a ss Ene rg y

      36

      36

      Adding Va lue to Pa lm Bio m a ss Adding Va lue to Pa lm Bio m a ss Pa ra dig m shift to wa rds b io m a ss Pa ra dig m shift to wa rds b io m a ss

      No t wa ste No t wa ste

    • – –
    • Re ne wa b le Re ne wa b le
    • Susta ina b le

      Susta ina b le – –

    • - - Und e r Und e r utilise d utilise d re so urc e re so urc e
      • – –

      Unc e rta intie s o f b io m a ss

    • Unc e rta intie s o f b io m a ss
    • Te c hno lo g ic a l pro ve n Te c hno lo g ic a l pro ve n? ?
      • Ec o no m ic a lly fe a sib le Ec o no m ic a lly fe a sib le ? ?
      • – –

      Q ua lity a nd q ua ntity ? Q ua lity a nd q ua ntity ?

    • – –

      Ava ila b ility &amp; distrib utio n ? Ava ila b ility &amp; distrib utio n ? – –

      Ï va lue c ha in va lue c ha in Ï fine c he m ic a ls fine c he m ic a ls fo o d fo o d fib e r fib e r fe e d fe e d fue l fue l

      37

      37 Lignin and Cellulose Molecules

      Average molecular composition, soft maple lignin: CH O •

      1.2

      0.27

    • – Cellulose composition: CH O

      1.7

      0.83 Up to 30% of the mass of wood, and 40% of the energy content •

    • Wood processing plants produce 50 million tons of lignin waste annually

      Holladay et al. “Top Value-Added Chemicals from Biomass: Volume II- Results of Screening Potential Candidates from Biorefinery Lignin.” Pacific Northwest National

      38 Laboratory. October 2007. Converting Biomass Using Biorefinery Concept R. R. Agrawal Agrawal and N. Singh, and N. Singh, AIChE AIChE Journal Journal , 2009, 55, 1898 , 2009, 55, 1898

      Biological Conversion of Cellulose to Biological Conversion of Cellulose to Biofuel Biofuel McCann et al. McCann et al. Thermal Conversion of Lignin to Jet Fuel

      41 Huber, GW. “Catalysis for Production of JP-8 Range Molecules from Lignocellulosic Biomass.” 12 March 2009.

      Thermochemical Transformation of Lignocellulosic Biomass ¾

      Traditional paths entail high temperatures and suffer from carbon ¾

      CPOX forms no carbon Biomass Pyrolysis High T

      Oil Char Tar

      

    Fuel

    Cat. upgrade

      Syngas Char

      Gasification Methanol Synfuel CPOX Syngas Very high T Catalytic Conversion of Cellulose to Chemicals Hydrogenation H 2 OH

    OH OH

    Sorbitol

    OH OH

    OH OH HO HO Hydrolysis O OH OH + O O O H 2 O OH HO CH OH OH OH O OH Hydrogenolysis OH CO , etc. H 2 2 Ethylene glycol OH OH H 2

    polyols

    other

    OH Light alkanes 2 Cellulose isomerization OH HO n Glucose OH Fructose O HO O OH OH Hydrogenation CH Dehydration 2 OH

    -H O H

    2 OH O Hydrogenation OH OH Mannitol 2 OH OH O C-C cleavage+oxdation (unidentified) H

    Organic acids

    HMF + DHM-THF Conversion of cellulose to ethylene glycol on Ni-WC &amp; Ni-W

      C:

      2 Na et al. Angew. Chem. Int. Ed. (2008); Catalysis Today (2009) Commodity chemicals from ethanol

    CH CH OH

      3

      2 CH =CH

      2

    2 CH CHO CH CO H

      3

      3

      2 Ethyl benzene Acetic acid Acetamide Ethyl bromide Acetic anhydride Acetanilide Ethyl chloride

    Aldol products Acetyl chloride

    Ethylene chlorohydrin

    Butyl acetate Acetic anhydride

    Ethylene diamine Butyl alcohol Dimethyl acetamide Ethylene dibromide Butyraldehyde Cellulose acetates Ethylene dichloride Chloral Esters Ethylene glycol Ethyleneimine Ethyleneimine Pyridines Ethylene oxide

      Diethyl ketone Diethylene glycol Glycol ethers, esters MEA, DEA, TEA Vinyl acetate Polymers, copolymers

      Microbial Fuel Cell 1.

      用微生物當作觸媒的微生物燃料電池系統 2. 用微生物產物當作燃料的微生物燃料電池系統

      用微生物當作觸媒的 微生物燃料電池系統 Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol., 2005, 23(6):291-8.

      用微生物產物當作燃料的 微生物燃料電池系統 1 用光合細菌直接生產的氫氣來產生能量。 E. Nakada, S. Nishikat, Y. Asada, J.Miyake Photosynthetic bacterial hydrogen production combined with a fuel cell.

      International Journal of Hydrogen Energy .

      1999, 24: 1053-1057.

      用微生物產物當作燃料的 微生物燃料電池系統 2 Microbial Fuel Cell: High Yield Hydrogen Source And Wastewater Cleaner http://www.sciencedaily.com/releases/2005/04/050422165917.htm

Dokumen yang terkait

Analisis Investasi Melalui Penetapan Portofolio Saham Optimal Pada Saham LQ-45 Bursa Efek Indonesia (The Analysis of Invesment by Determination Optimal Portofolio of LQ-45 at Indonesian Stock Exchange)

0 45 7

(Factors That Affect Interests of Indonesian Workers Abroad To Work)

0 13 3

Gambaran Sanitasi Pada Kereta Api Ekonomi, Bisnis dan Eksekutif (Studi pada PT.Kereta Api Indonesia Daerah Operasi IX Jember) Description Of Sanitation In Economic, Business and Executive Railway (Studies in IX Jember Regional Operations The Indonesian Ra

1 13 7

Effect of Method Numbered Head Together (NHT) to the Student Results on Subjects of Fiqh at Al-Zahra Indonesian Junior Pamulang.

0 25 177

The shift and equivalence in the english translation from Indonesian noun phrases in the poem pantun terang bulan di Midwest by Taufik Ismail

0 17 0

Through an effective communication, we improve the satisfaction of library visitors

0 25 7

Performance Accountability of civil society organizations ( Case Study at Indonesian Young Enterpreneur Association of Kota Bandar Lampung Representative office)

0 31 131

7. The development of English as lingua franca in Indonesia and the extinction of local languages - The development of English as lingua franca in Indonesia and the extinction of local languages

0 0 10

The Influence of Company Size, Profitability, Liquidity, Leverage and Tax Avoidance Disclosure Against the Islamic Social Reporting on Companies Listed On The Indonesian Stock Index of Sharia

0 0 9

Indonesian Journal of Sociology and Education Policy

0 0 7