ProdukHukum Pendidikan

Global groundwater
problems and
adaptation for
changing climate (1)
Research Institute for
Humanity and Nature

Makoto Taniguchi

You will have the following assignments during the last 
discussion on November 19 (Fri).
(1) Why is groundwater important as water resources 
and a part of water cycle ? (300 words)
(2) What kind of techniques and methods will be 
needed for monitoring and modeling of groundwater ? 
(300 words)
(3) How to make integrated water management 
including groundwater ? (300 words) 

st
21


c is the “Century of
Water”20th century: century of oil 
21st century : century of water
• Population increase, global warming, contamination 
Æ degradation of water environment, water “wars”
• From exhausting resources to re‐cycling  resources 

More than 1/3 of world
population rely on
groundwater

Reasons why does groundwater 
system change 
(1) Change in input to GW system
Change in GW recharge rate
* change in precipitation  (nature)
* change in land cover/use (human)
(2) Change in output from GW system
Change in GW discharge rate

* change in sea level (nature)
* change in GW pumping (human)

Change of Rainfall (1900‐2000)
More Rainfall

Less Rainfall

Global Warming

Annual mean temperature change, 2071 to 2100
relative to 1990: Global Average in 2085 = +3.1oC

Change of precipitation due to 
global warming

Annual mean precipitation change: 2071 to 2100 Relative to 1990

Sea Level


Changes in Runoff Extremes
(2070s, A2 Scenario, WaterGAP Model, Hadley Climate Predictions)



More dry extremes
More wet extremes →
no change
No change
in extremes

Change in Annual Water
Availability
(2020s, A2 Scenario, WaterGAP
Model, Hadley Climate
Predictions)


Lower runoff


Higher runoff



Climate change

Change in Annual Water
Withdrawals
(2020s, A2 Scenario,
WaterGAP Model)

Socio-economic change


Lower withdrawals

Higher withdrawals →

Withdrawal to
Availability

Ratio: Water
Stress
(2020s, A2 Scenario,
WaterGAP Model, Hadley
Climate Predictions)

Water Scarce Areas
with Increasing Water
Stress
(up to 2020s)
because of:
• increasing water use

(socio-economic changes)
and/or
• decreasing water
availability (climate
change)
Increasing water
stress


Water Stress Changes
to 2025
Effect of Climate change

20 %

Effects of population
change

80 %
Both effects of Climate
and population changes
100 %

UNH

Modified from Vörösmarty et al. 2000

Decrease in groundwater storage (stock)


Groundwater Regions, Political boundaries,
river basins & non recharged aquifers (ISRAM,
2006)

Decrease by : 200 billion ton/y (Foster, 2000)
1/6 of global river discharge)
⇒1.2mm/y (global)

Decrease in groundwater due to 
agriculture  high plain aquifer, USA

Registered wells
Total No. : 128,720 (0.3 wells/km2)

Decrease in water table

45m<
30-45m
15-30m


Decrease in groundwater storage
(Northern China Plain)

10

Bohai
Sea

-20

20

Bohai
Sea

-40

30
20


0

(Mao et al. 1998)

1959

1992
Decrease in GL
40m/40y

Uses of deep groundwater
In arid area is not sustainable

Groundwater recharge rate (flow) 
High plain aquifer
< 50mm/y

mm/y


Northern China plain
< 50mm/y

Japan
400mm/y

Doll et al., 2003

flow < consumption ⇒ decrease in stock
It is not sustainable to use deep groundwater which
cannot be recharged easily in arid & semi-arid areas

Virtual Water

How much water do we
need to grow feed ?

How much feed do we
need to grow a cow ?


How much water do we
need to grow a cow ?

Virtual Water into Japan

others

Share of each “virtual
water” into Japan
pork
wheat
beef

corn
soy beans

Total imported “Virtual water” to
Japan: 104 billion t/year

>

Total consumption of domestic
water in Japan : 89 billion t/year

Virtual water from less water countries to
more water countries
Do you think this is a sustainable way ?
Question 3

Bottle water
Question 2

• Why do people prefer 
bottle water to tap 
water ?
* more tasty ?
* more safe ?
* more
fashionable ?
* more
i t?

Human Population
U.S. Bureau of the Census

Rapid Increase of Water Demand

Water problems in the world
Shortage of Water Resources

25 % people of the world (1.2 billion)
cannot access the safety water

15 % people of the world (0.8 billion)
cannot get sufficient nutrition

Water problems in the world
Degradation of Water Quality

Diarrhea
5 million
Cholera
20 thousand
Typhus
3 thousand
Others
10 thousand

Dead people due to bad
water quality (1998)
50 % people of the world is not under
the sanitary condition

Water problems in the world
1850

Decrease of groundwater in HPA (USA)

present

Shrink of Aral Sea
due to water use for cotton
Yellow River (China)

Shortage of water
Y

Water problems in the world
Too much water
Disaster of flooding
Dead people by natural
disasters (1988-1997)

0.4 million

Others

Earthquake

Typhoon

Flooding
Economic loss by natural
disasters (1988-1997)

700 billion $

Others
Earthquake

Flooding
Typhoon

Residence Time of the Water
Volume
(km3)

Flow

Residence
Time
(km3/year)

1,350,000,000

418,000

3,200 y

Snow & Ice

24,000,000

2,500

9,600 y

Groundwater

10,000,000

12,000

830 y

River water

220,000

35,000

13 d

Vapor water

130,000

483,000

10 d

Sea Water

Residence Time = volume / flow

Distribution of rainfall (mm/year)

Fewer rainĺdesert

more rainĺrain forest

Fewer rainĺdesert
Annual rainfall (mm/year)

Water wars in the world

Fewer rain

Equator
Fewer rain

Water problems
More than 1/7 of total population cannot access to
the safe water =0.9 Billion,0.5 Billion in Asia)
The number will increase due to global warming and
population increase
Water imbalance
too much water (to control)
too little water (to survive)

Change of water environment due to increase in
population and climate change
Population inc.

Water demand↑

Social Sci.
Quality ↓
Climate change

fresh water, river 
water, GW ↓
Forest, agriculture, wet 
land, Biodiversity ↓ 

Flooding↑
Life, capital, health↓

Natural Sci.
Drought↑

Food supply↓

Water Env. Change due to globalization
Globalization

Humanities)

Homogenous society  
inharmonious society 
with local nature

Local water culture 
&culture diversity ↓

too much water

RIHN

Flooding:
Improper management
Urban flooding
Land subsidence
Flooding due to not only   
natural causes but also 
human impacts

China

wet
Eco‐history P Akimichi

Laos

Thailand

Myanmar

Vietnam
Decrease of biodiversity

dry

Global economy deteriorated
indigenous society

Failiur of modern resources management
Community involvement is necessary
Indonesia

RIHN

too little water

Yellow River 
Fukushima

Dry‐up 

Global W  Oki & 
Kanae

Virtual Water
(water footprint)

Y

Increase of 
ET due to 
forest 
clearing 
caused YR 
dry‐up 

Oki & Kanae (2006) Science 313

1: Water imbalance in space and time:
too much/too little water + Far‐Near/Fast‐Slow water
fast
time
rain water
Lake water
River water

tapped water
Dam water

Bottle water

space

near
ground water

far

virtual water

Far‐Slow water has an impact on water imbalance without 
slow
knowing, therefore we should pay more attention to them 
for “Futurability”.

Variation of the areas of agriculture and lake 
water

RIHN

Reconstruction
Oasis P Nakawo
River discharge (climate change)

Prediction (Global warming &
agriculture P) Watanabe)
Prediction for 2070

Agr (middle)

Irrigation

Lake water
Turkey

Agr (down)

Water deficit occurred due to agriculture
in middle and down stream
Climate change Human impacts

Adaptation/mitigation by
not only SEK but also TEK
is necessary

δ15N of herbivore (‰)

RIHN

Layered 
structure 

Lake Biwa – Yodo R
(Wada & Yachi)

Linkage between Human and Water
revealed by tracers (isotopes)
Population density (person/km2)

Linkages of land/ocean & human/habitat/water
ET

GW
discharge

P
Mt 
Chokai
River
discharge

High SGD
at Chokai

Kamaiso

Kisakata

Mega

Kamaiso

Kisaka
ta
Mega
Kamaiso

Fukura

Sakata N

No River

Production of Oyster (kg/y)

Forest-Ocean
linkage by not
only river 1994
but
also GW。

Fukura

Sakata→

Benefit of linkage
Sr isotope of oyster shell can tell the origin of water 
between land &
Effects of GW
ocean for society
by water cycle.
Effect of R
Sea 
water

Precipitation (mm/y)

Sr ratio: sea  million
53

Integrated study on subsurface problems
3: Subsurface
contaminations and
loads to the coast

Urba n

1: Development stages of cities
and subsurface environmental
problems

C ro ss c utting
(1)Inte g ra te d
mo de l/ inde x

Ma te ria l
Wa te r

(2)La w/ Re lig io n

Subsurface
environment

2: Degradation of subsurface
environments and change in
reliable water resources

(3)G IS/ Da ta ba se

He a t
4: Heat island effect and
subsurface thermal anomalies
54

Three subjects
Water → land subsidence
Material → contamination
Heat → thermal storage

Two indices
A: Changing Society
& Environment
B: Natural Capacity
B-1: Hydro-climate
(a) Storage
(b) Recharge
(c) Turnover time
B-2: Geology-geomorphology
(d) redox
(e) gradient/permeability
(f) thermal gradient

Contamination
Thermal
storage
Land subsidence
A-1: Driving Force
A-1: Driving Force

(a) Population
(a) Population
(b) Income
(b) Income
(c) Industrial structure
(c) Industrial structure
(d) Urbanization ratio
(d) Urbanization ratio
A-2 :Pressure
A-2 :Pressure
(k)
Energyconsumption
consumption
(e)
(e) Water
Num. of Passenger
(l)
Island Index
(f) Heat
Groundwater
pumping
Vehicles
(m)
Air temperature
(g)
Groundwater
(f) Industrial
Water Use
dependency
A-3: State
A-3: State
A-3:
(n)State
Thermal storage
(g) Concentration
(h) Groundwater level
A-4:Impact
A-4:Impact
(h) Accumulated
(i) Land subsidence
contamination
A-5: Response
A-5: Response
(j) Regulation
(i) Regulation
(j) Sewage

A

D
D
D

P

S
S

II
R
B

55

Forest
Grassland
Rice
Agriculture
Industry
Urban
Wetland
Others
Ocean

Land use/cover changes 
(0.5 km grid, 7 cities, 3 ages) A
Water→ recharge
Material → contamination
Heat → heat storage
Water (SWAT)

612

1930
1920
1910

Taipei
Seoul
Bangkok
Jakarta
Manila
Osaka
Tokyo
Unit: mm/year

1956
1960
1970

378 
(33%↓)

567
422

1960

248 
(41%↓)

302 
(51%↓)

2000

x2 - x6Ĺ

Material (N)

2000

2000

1930

B J T O M S 

B J T O M S 

Heat (HII)

1930

3%Ĺ

8%Ĺ

1960

2000

56

1930 → 1970

1970 → 2000 Land use analyses

Urban Geography G

Changes in
urban area

Tokyo

1927

Osaka

1967

2001

Osaka
Urbanization reduces groundwater recharge
rate and increase thermal storage

Seoul
GW: Grass & Wasteland
OC: Ocean
W: Water & wetland
OT: Others

F: Forest
H: House
I: Industries
P: Paddy field
A: Agriculture field

1920’s IP:P
68:88 (44%)
1960’s IP:P 158:30 (84%)
2000’s IP:P 183:17 (92%)
IP: impermeable, P: Permeable
57

Wa te r

Storage change
(2002-2008)

Bangkok

Tokyo

A

Satellite GRACE
Reanalysis
Model
Evaluations of water storage change

GRACE (gravity)⇔Reanalysis
(climate)⇔ GW model (hydrology)

Sea

Sea

Jakarta

Osaka
Sea

GRACE
Model

The area of groundwater recharge
Evaluations of groundwater
to the suburbs after
with different moved
methods
Sea
regulation of groundwater pumping
in situ, Nstatistic,
tracers,
numerical modeling)
GW pumping &recharge

NL
More than 10 times of the official
PD
NB
record of GW was pumped
in Jakarta,
BK
which was revealed by socio economic
data and GW modeling.

Land Water Change in 
Chao Phraya

GW Modeling in Bangkok

NL
PD
NB

BK

58

Groundwater flow system and the
recharge area were revealed by
tracers, and mixture of shallow and
deep GW were found

Recharge area (Bangkok)

elevation
(m)
900
230

Depth (m)

0

59

distance

B

Natural capacity indices (storage, recharge)
G
=

Larger natural capacity:
storage:Bangkok, Tokyo, Osaka
recharge:Taipei, Manila
T


year

Turnover time decreased by
90% from natural conditions
due to GW pumping

GLDAS (CLM)

Change in turnover time due to GW pumping

Y

T

T

J

τ: Turnover time (year)
S: Storage capacity(m3)
Q: Recharge (m3/year)

A60

Ma te ria l

Transport
Saltwater
Intrusion

Saltwater Intrusion (+)
SGD(-) (M m3/day)

Accumulation

Comparison of risk / vulnerability from
SGD
“accumulation” and “transport” points
of view
Risk / Vulnerability
a ccu m u la t ion

high

Reconstructions of contaminant
history from sediments and social
economy data

low
A

B

Tr a n spor t ( loa61d)

Obs. SGD in Osaka (high Rn

high SGD)

Clam

Ammonium

Nitrate 
pollution

Clam
Number

SGD
(seepage)

62

Groundwater contamination
Seoul

Taipei

Bangkok

Anthropogenic
Jakarta

+60
Bangkok
Manila
Jakarta
Taipei

Atmospheric
Deposits

Manila
+40
δ18O (‰)

Seawater intrusion
+20

Nitrate 
Fertilizer

0
Ammonium Fertilizer

Manure and Septic waste

‐20
‐20         ‐10           0         +10        +20       +30       +40
63
Hosono et al. 2007

Umezawa et al. 2008

δ15N (‰)

Nutrient discharge SW vs. GW

Moles/day

1e+7

SriRacha (Jan 04)

Hua Hin (July 04)
River flux
Seepage Flux

1e+6
47%

15%

37%
58%

44%

1e+5
71%

1%

1e+4
2%

1e+3
NH4

NO3

PO4 SiO2

Importance of SGD for nutrient
discharge to the ocean

NH4

NO3

PO4 SiO2

Jakarta

64

Rural (A)

He a t

A

Bangkok

Suburb (C)

Seoul (15)
Tokyo(39)
Osaka(37)
Bangkok(23)

Center (D/E)

Reconstructions of urbanization
history have been made by uses of
subsurface temperature

Taipei(10)

Jakarta(34)

Center
suburb

Observed GW temp.
rural

Increased surf. Temp.
Tokyo: + 2.8℃
Seoul: + 2.5 ℃
Osaka: + 2.2℃
Bangkok: + 1.8 ℃
Jakarta: + 1.2℃
Increased thermal
storage depends on
magnitude and timing
of surface warming
→index of urbanization

More than 2-3Osaka
times of the worlds average
heat was stored in subsurface at Asian
cities during the last 100 years.

Tokyo

Seoul

Bangkok

65

Integrated model with

&

A

B (7 cities)

Stage model with DPSIR framework (Development stage of the city)
Water demand transition (share of industrial water demand)
1914

1958

Water supply transition (dependency on groundwater)
1916

1947

1957

1976

Policy transition (land subsidence)
1961

1916

1975

1st stage:

2nd stage:

3rd stage:

4th stage:

5th stage:

Beginning of 
urbanization 

Increase of Industrial 
water demand

Recognition of Land 
Subsidence  

Regulation and Effective 
measures

Settlement

Tokyo
Osaka
Taipei
Bangkok
Jakarta
Manila

1915/16 1922/23

1959/60

1917/18
1915/16

1957/58
1955/56
1950/51

1974/75
1979/80
1978/79 1985/86
1979/80

1996/97

Groundwater charge system was introduced
1992/93
just after the recognition of 1975/76
land subsidence.
(short 1950/51
3rd stage means followers benefit)

66
2001/02

Historical trend of population and GRDP
Population

GRDP per capita

67

D

D

Industrial share (water)

68

P

Water consumption per capita 
and Groundwater abstraction

69

S

Pb 
Groundwater level (m)

Sewage ceverage ratio 
(%)

Thermal storage

100
90
80

Tokyo
Osaka

70

Seoul

60

Taipei

50

Bangkok

40

Jakarta

30

Manila

20
10
0

R

1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005

70

3rd stage Recognition
D

4th stage:Regulation
Population

Rapid
urbanization

D

Large GW
pumping

in Jakarta

Land
subsidence

Population

I

P

Groundwater
pumping

Huge land
subsidence
→Excessive
load to city
S

Decrease of
GW level

Land
subsidence
stopped after
regulation in

Taipei
I
P

Land
subsidence

Groundwater
pumping

GL recovered
rapidly
Î Large natural
capacity
(recharge)

Development pattern

S

Increase of
GW level

City

A: Following Tokyo 

(Tokyo), Osaka

B: Excessive Development

Jakarta

C: Followers benefit

Bangkok, (Manila)

D: Natural Capacity Benefit

Taipei, (Bangkok) 

71

Conclusions
• Integrated study on urban subsurface
environments beyond the boundaries,
surface-subsurface (climate, geodesy,
hydrology) and land-ocean (hydrology,
oceanography) revealed that:
(1) Repeated subsurface problems occurred due to increase in water
demand and urbanization, then accelerated the GW circulation
(more than 10 times). It also increased the accumulation of
material and heat in subsurface,
(2) The alternative resources are important for society, thus
groundwater/subsurface environments are key for adaptation to
the changing society and environment. Subsurface environments
can be sustainable with careful management, and
(3) Integral management of subsurface environments are necessary
based on natural capacity and use of followers benefit.
72

73

Klong

Bangkok

Bangkok Yai

Gulf of
Thailand

Elevation
(m)

74

222Rn & cond. measurements in cannel

Radon and conductivity are
indicators of groundwater
discharge

Fact
Radon of water at the from of
temple is always higher.
Groundwater with higher Rn
discharge at the from of
temples

upstream

Temple
Temple
Temple

downstream

Hypothesis
• The people who live in Bangkok
respect “Buddhism and temples”,
therefore they build the temples at
relatively stable land (such as
sandy soil with high permeability /
relatively high elevation), therefore
groundwater discharge may occur.
75

• Groundwater discharges
at the front of temples,
because the temples are
located in the sandy and a
little bit higher elevation.

Elevation and location
of temples
Interview on the
location of temples

Number of
temples:836

Elevation (m)
Higher
Elevation of land where 
temples are located is 
1.5 m higher than 
Lower
average elevation 
temple

Number of pixels
全 域 ピクセ ル 数

寺 立 地 ピクセ ル 数

Number of pixels where the 
temples are located

Former director of department
of archeology

標高

Average elevation 3.9m

Elevation of temples: 5.4 m

76

Linkage between humanity and nature

Religious respect to Buddhism may be reflected into the 
quality of water in cannel as human – nature interaction 
in Bangkok.
77

Groundwater level

Cross cutting; Religion/Law & GW
Religious events and
groundwater (Jakarta

Surface water
(public water)
Groundwater
(private water)
Time

Friday

Reconstructs of religious
activities from long-term
records of groundwater level

Regulation Failure without
alternative water resources Æ
Public vs. private water
problems

Regulation of groundwater
pumping on 1980,1991 (Bangkok)

Social & Institutional
Knowledge
(followers benefit,
linkage of society)

Traditional
Environmental
Knowledge

A: Changing society &
environment
B: Natural capacity

Scientific
Environmental
Knowledge

Long-term strategy and the nature-human knowledge