Slide CIV 209 AnalisisStruktur CIV 209 P4

Integrity, Professionalism, & Entrepreneurship
Mata Kuliah
Kode
SKS

: Analisis Struktur
: CIV – 209
: 4 SKS

Deformasi Elastis
Struktur Balok dan Portal
(Moment Area Method)
Pertemuan - 4

Integrity, Professionalism, & Entrepreneurship
• Kemampuan Akhir yang Diharapkan
• Mahasiswa dapat menganalisis deformasi struktur balok dengan
metode Luas Momen

• Sub Pokok Bahasan :
• Metode Luas Momen


Integrity, Professionalism, & Entrepreneurship

Moment Area Theorem
• Metode ini dikenal juga dengan metode
Mohr dan cukup unggul penggunaanya
untuk mengetahui putaran sudut dan
perpindahan vertikal pada titik tertentu
suatu struktur akibat rangkaian
pembebanan.
• Perhatikan struktur balok seperti
terlihat pada gambar 4.1.
Akibat
pembebanan yang terjadi, maka akan
terbentuk kurva diagram momen

Integrity, Professionalism, & Entrepreneurship
Teori I :

The change in slope between any two points on the

elastic curve equals the area of the M/EI diagram
between these two points.
B/ A 

 EI dx
B

A

M

B/A dalam radian

Integrity, Professionalism, & Entrepreneurship
Teori II : The vertical deviation of the tangent at a point (A)
on the elastic curve with respect to the tangent extended
from another point (B) e uals the o e t of the a ea
under the M/EI diagram between the two points (A and B).
This moment is computed about point A (the point on the
elastic curve), where the deviation is to be determined.

t A/ B  x

 EI dx
B

A

M

Integrity, Professionalism, & Entrepreneurship

• Note that in general tA/B is not equal to tB/A
• The moment of area under the M/EI diagram
between A and B is computed about point A
to determine tA/B, and it is computed about
point B to determine tB/A

Integrity, Professionalism, & Entrepreneurship
SHAPE


AREA

CENTROID

Integrity, Professionalism, & Entrepreneurship

Example 1
• Determine the slope at points B and C
• Take E = 200 GPa, I = 250(106) mm4.

Integrity, Professionalism, & Entrepreneurship

4,5 m

4,5 m

- 45/EI

- 90/EI


 45

303,75
 1  45

 4 ,5    
 4 ,5   
kN.m 2
EI
 EI
 2  EI


B  B/ A  

1  90 
405
kN.m 2
 9  
2  EI

EI


C  C / A   

Integrity, Professionalism, & Entrepreneurship

Example 2
• Determine the deflection at points B and C
• Take E = 200 GPa

Integrity, Professionalism, & Entrepreneurship
By inspection, the moment diagram for the beam is a rectangle.
Here we will construct the M/EI diagram relative to IBC, realizing that IAB
= 2IBC

 250

2000
B  tB / A  

 4 2  
N.m 3
EI BC
 EI BC


 250

 500

7250
N.m 3
 C  tC / A  
 4 5  
 3 1,5 
EI BC
 EI BC

 EI BC



Integrity, Professionalism, & Entrepreneurship

Example 3
Determine the slope at C. Take E = 200 GPa, I = 6(106)
mm4.

135
 30  1  60 30  135

kN .m 2 
 0,112 rad
  3

EI
2
EI
EI
EI
200


6
 



 C   D / C  3

Integrity, Professionalism, & Entrepreneurship

Example 4
• Determine the deflection at point C
• Take E = 200 GPa, I = 250(106) mm4.

Integrity, Professionalism, & Entrepreneurship
 C  t C / A  2t B / A

t C / A   8  8 
  
   8  8  8 

  2  EI 
 4   3  EI   3

1

3

 192   1

2.048
 1   1  192 
t B / A   8  8 
  
EI
 3   2  EI 
C  

11.264
EI


 1

 192 

11.264
EI

7.168
7.168
 2048 

 0 ,143 m
 2 

200

250
EI
EI



Integrity, Professionalism, & Entrepreneurship

Soal Latihan (Chapter VIII)








8.10
8.11
8.12
8.13
8.14
8.15








8.16
8.17
8.18
8.19
8.20
8.21






8.22
8.23
8.24
8.25