Staff Site Universitas Negeri Yogyakarta

ELECTROCHEMISTRY

Electrochemical Cell

anoda
oksidasi

katoda
reduksi

spontaneous of redox

Menarik anion

Menarik kation

19.2

ELECTROCHEMISTRY CELL
DisoLute of electric potential betwen two
anoda an cathoda call as:

• voltage ce;l
• electromotif force (emf)
• potential cell

Cell Diagram
Zn (s) + Cu2+ (aq)

Cu (s) + Zn2+ (aq)

[Cu2+] = 1 M & [Zn2+] = 1 M
anoda

cathoda

Zn (s) | Zn2+ (1 M) || Cu2+ (1 M) | Cu (s)

Tanda || utk memisahkan setengah sel
Tanda | utk memisahkan reaktan/fasa tiap setengah sel

19.2


Related of electricity betwen two half reaction
Tube contain of inert salt solutiom (KNO3)

Two type of Cell
electrochemical cell - need DC source = electron pumpt (example: battery)


electron is forced to move in the one purpose, independet on spontanity



Electrical energy is used for nonspontan reaction can occur



electron is moved to electron, so reduction reaction can occur.

Two type of Cell
Volta CELL OR GalvaniC Cell – pasive electric

(not need Dc source )


electron can move becouse spontaneous reaction



Using chemistry to gain energy



electron was take from cathoda by reduction, cause moving electron to all direction



Can be used as dc source to electrolytic cell.

How we know that reaction is spontan?

potential electric?

How the consentration effect the process?
electromotif (emf) is cell electricpotenstial
E (emf)  units = volts (V)

emf is dispute of potential betwen anoda dan cathoda

Standard Potential of Electroda

Zn (s) | Zn2+ (1 M) || H+ (1 M) | H2 (1 atm) | Pt (s)
anoda (oxidation):
katoda (reduksi):

Zn (s)
2e- + 2H+ (1 M)
Zn (s) + 2H+ (1 M)

Zn2+ (1 M) + 2eH2 (1 atm)
Zn2+ + H2 (1 atm)

19.3


Standard Potential of Electroda
Potensial reduction standard (E0) is voltage that relate with reduction standard at
electroda if consentration all of solute matter 1 M and all of gas at 1 atm.

reduction reaction
2e- + 2H+ (1 M)

H2 (1 atm)

E0 = 0 V

Use ase as reference to measure potential other
matter
hydrogen standard Electroda

19.3

Potensial Elektroda Standar
E0 = 0,76 V

sel

emf standar (E0 )
E0 = Ekatoda 0 sel

reduction

sel

Eanoda 0

oxidaton

Zn (s) | Zn2+ (1 M) || H+ (1 M) | H2 (1 atm) | Pt (s)
E0

=

sel


0

0

EH /H+

- EZn /Zn
2

0

0.76 V = 0 - EZn
EZn0 /Zn2+

2+

E° > 0 reaksi spontan

2+
/Zn


= -0,76 V

Zn2+ (1 M) + 2e-

Zn

E0 = -0,76 V

19.3

Standard Potential Electroda
E0 = 0,34 V
sel

E0 = Ekatoda 0 - Eanoda

0

sel


0

Esel0= ECu

0,34 = ECu

2+ –

/Cu

EH

0
/H

+

0 - 2+
0

/Cu

ECu0 /Cu 2+ = 0,34 V

Pt (s) | H2 (1 atm) | H+ (1 M) || Cu2+ (1 M) | Cu (s)
anoda (oxidation):
cathoda (reduction):
H2 (1 atm) + Cu2+ (1 M)

2H+ (1 M) + 2e-

H2 (1 atm)
2e- + Cu2+ (1 M)

Cu (s)

Cu (s) + 2H+ (1 M)

19.3




E0 is for writen reaction



A half reaction is reversible reaction



Sign E0 change if direction of reaction
was reverse(E° red = -E°oks)



Change coefisien stoichiometric of halfsel reaction not change value E0

19.3

Strongest Oxidizing Agent



makin positif E0 makin besar
kecendrungan suatu zat mengalami
reduksi

Zerro Refference point

Strongest Reducing Agent

E0 = 0,76 V

E0 = 0,34 V

sel

sel

Combine ...!!!

Zn (s)

Zn2+ (1 M) + 2e-

2e- + Cu2+ (1 M)
Zn (s) + Cu2+ (1 M)

Cu (s) + Zn2+ (1 M)

E0 = 0,76 V + 0,34 V = 1,10 V
sel

Cu (s)

How many emf standard of electrohemistry cell with Cd electroda in the 1,0 M
Cd(NO3)2 and electroda Cr in the 1,0 M Cr(NO3)3?

Cd2+ (aq) + 2eCr3+ (aq) + 3e-

Cd (s) E0 = -0,40 V

Cd oxidator

Cd will oxidize Cr

Cr (s) E0 = -0,74 V

anoda (oxidation):

2e- + Cd2+ (1 M)

cathoda (reduction):
2Cr (s) + 3Cd2+ (1 M)

x2

Cr3+ (1 M) + 3e-

Cr (s)

Cd (s)

x3

3Cd (s) + 2Cr3+ (1 M)
E0 = Ekatoda 0– Eanoda
sel

0

E0 = -0,40 – (-0,74)
sel

E0 = 0,34 V
sel

 spontan
19.3

Spontanity of Redox reaction
sponanity DG < 0

energy = Q E = -nFEsel
Netto of charge

DG = -nFEsel
DG0

= -nFEsel

n = number of mol electron in the reaction
J

0

F = 96.500

DG0 = -RT ln K
RT
0

Esel =

V • mol

= 96.500 C/mol

= -nFE0sel

ln K

nF

(8,314 J/K•mol)(298 K)

=

n (96.500 J/V•mol)

0
Esel
=

0,0257 V
n

ln K

E0sel =

0,0592 V
n

log K

ln K

spontanity of Redoxon react

DG0 = -RT ln K

DG = -nFEsel

19.4

How many of equilibrium constant for this reacteon at 250C?
Fe2+ (aq) + 2Ag (s)
Fe (s) + 2Ag+ (aq)
E0sel =

0,0257 V
n

Oxidatio:

ln K

2Ag+ + 2e-

2Ag

n=2
2e-

reduction:
E0 = EFe2+/Fo –

EAg

Fe2+

+

0

/Ag

Fe

+

0

E0 = -0,44 – (0,80)
E0 = -1,24 V

E0
K=

exp

sel

xn

0,0257 V

-1,24 V

x2

= exp

0,0257 V

K = 1,23 x 10-42

19.4

The Efect of consentration to Emf cell
DG = DG0 + RT ln Q

DG = -nFE

DG0 = -nFE

0

-nFE = -nFE0 + RT ln Q
Nernst equation

E = E0 -

RT

Can be see at the efect
of consentration / nonstandar condition

ln Q

nF

at 298 K

E=

E0 -

0,0257 V
n

ln Q

E=

E0 -

0,0592 V
n

log Q

19.5

Is this reaction will occur spontanity at 250C if [Fe2+] = 0,60 M and [Cd2+] = 0,010 M?
Fe2+ (aq) + Cd (s)
Fe (s) + Cd2+ (aq)

Cd2+ + 2e-

Cd

oxidation:

n=2
reduction:
E0 = EFe

/Fe 2+–

0

2e- + Fe2+
ECd

/Cd

0

2Fe

2+

E0 = -0,44 – (-0,40)

E=

E0 -

E0 = -0,04 V
E=

0,0257 V
n

-0,04 V -

ln Q
0,0257 V
2

ln

0,010
0,60

E = 0,013 V

E>0

spontan

19.5

Consentration cell half the same half-reaction in each cell, bu diffrent in the
consentration.

Is this reaction will occur spontan at 250C if [Ag+] = 0,10 M and [Ag+] = 0,010 M?
Ag+ (aq) + Ag (s)
Ag (s) + Ag+ (aq)

Ag (s) | Ag+ (0.10 M) || Ag+ (0.010 M) | Ag (s)
oksidasi:

Ag+ + e-

Ag
e- + Ag+

reduksi:

Agoks + Ag+red

E0 = EAg /Ag0 –+ EAg

/Ag

0

n=1

Ag
Agred + Ag+oks

+

E0 = -0,7991 V – (-0,7991 V)
E0 = -0,000 V

E=

E=

E0 -

0,0257 V
n

-0.000 V -

E