Pengaruh Proses Pembasahan Terhadap Parameter Kuat Geser c’, ϕ’ DAN ϕb Tanah Lanau Berpasir Tak Jenuh.

PENGARUH PROSES PEMBASAHAN TERHADAP
PARAMETER KUAT GESER c’, ϕ’ DAN ϕb TANAH
LANAU BERPASIR TAK JENUH
Mentari Surya Pratiwi
NRP : 0921017
Pembimbing : Ir. Asriwiyanti Desiani, M.T.

ABSTRAK
Pada dasarnya, kondisi tanah di alam tidaklah selalu dalam keadaan jenuh.
Siklus pembasahan dan pengeringan yang terjadi berulang–ulang mempengaruhi
sifat–sifat fisik tanah dan karakteristik mekanik tanah antara lain perubahan kadar
air dalam tanah, perubahan kuat geser, dan perubahan matric suction.
Untuk mengetahui perubahan karakteristik tanah dan sifat mekaniknya
dilakukan penelitian tanah akibat pengaruh proses pembasahan atau penambahan
kadar air dari kondisi initial (wi) hingga dicapai kondisi wi + 10% wi, wi + 12% wi,
wi + 15% wi dan sampai kondisi jenuh, yang diwakilkan oleh tanah yang diambil
dari daerah Lapangan Maranatha. Tanah yang akan digunakan sebagai benda uji
diambil pada kedalaman 1 meter dari permukaan tanah, dan alat yang digunakan
adalah Direct Shear. Dari penelitian ini diharapkan dapat memberikan gambaran
kondisi tanah permukaan setelah mengalami proses pembasahan dan mengetahui
hubungan antara kondisi tanah dan kuat gesernya.

Hasil analisa pengujian tentang pengaruh proses pembasahan dan
perhitungan yang sudah dilakukan, memperlihatkan bahwa contoh tanah uji yang
diambil merupakan tanah lanau berpasir. Proses pembasahan terhadap tanah uji di
laboratorium pada kondisi initial (wi) hingga kondisi jenuh dengan lama
pemeraman 1 hari, memperlihatkan bahwa parameter fisik seperti kadar air (w)
meningkat 31.27%, angka pori (e) meningkat 4.79%, porositas (n) meningkat
1.59%, berat volume (γ) meningkat 7.24% dan derajat kejenuhan (Sr) meningkat
25.52%. Nilai matric suction (ua – uw) mengalami penurunan sebesar 60.51% dari
kondisi initial (wi) sampai kondisi wi + 15%wi. Sedangkan pada kondisi initial (wi)
hingga kondisi jenuh, diketahui bahwa parameter kuat geser tanah seperti kohesi
(c) menurun 37.41%, sudut geser dalam (ϕ’) menurun 25.98% dan sudut antara
cohesion intercept dengan matric suction (ϕb) menurun 95.89% dari kondisi initial
(wi) sampai kondisi wi + 15%wi.
Kata Kunci : Index Properties, Kadar Air, Kohesi, Sudut Geser Dalam,
Matric Suction, Tanah Tak Jenuh.

ix

THE INFLUENCE OF WETTING PROCESS AGAINST
SHEAR STRENGTH PARAMETER c’, ϕ’ AND ϕb OF

UNSATURATED SANDY SILT SOIL
Mentari Surya Pratiwi
NRP : 0921017
Supervisor

: Ir. Asriwiyanti Desiani, MT.

ABSTRACT
Basically, the soil conditions in nature are not always in a state of
saturation. Cycles of wetting and drying that occurs repeatedly affect soil physical
properties and characteristics of soil mechanics among others, changes in soil
moisture content, shear strength, and changes in matric suction.
To determine the changes in soil characteristics and mechanical
properties of soil research carried out under the influence of the wetting process
or adding moisture from initial (wi) condition to achieve wi + 10% wi’s condition,
wi + 12% wi, wi + 15% wi and up to saturated, which is represented by the land
taken from the field of Maranatha. The soil to be used as a test specimen taken at
a depth of 1 meter from the ground, and the tools used are Direct Shear. Of the
research is expected to provide an overview of surface soil condition after
experiencing wetting processes and determine the relationship between soil

conditions and shear strength.
From the analysis of the influence of the wetting tests and calculations
have been done, it is known that the test soil samples taken are sandy elastic silt
soil. The wetting process of the soil in the laboratory tests from the initial
conditions (wi) to saturated conditions with ripening periode 1 day, it is known
that physical parameters such as water content (w) increased 31.27%, void ratio
(e) increased 4.79%, porosity (n) increases 1.59%, unit weight of soil (γ) 7.24%
and the degree of saturation (Sr) increased 25.52%. For matric suction (ua – uw)
value decreased by 60.51% from the initial condition (wi) until the condition wi +
15% wi. While in the initial conditions (wi) to saturated conditions, it is known
that soil shear strength parameters such as cohesion (c) decreased 37.41%, the
friction angle (ϕ’) decreased 25.98% and the angle between the cohesion
intercept with matric suction (ϕb) decreased 95.89% from the initial condition (wi)
to condition wi + 15% wi.
Keywords
: Index Properties, Water Content, Cohesion, Friction Angle,
Matric Suction, Unsaturated Soils.

x


DAFTAR ISI
HALAMAN JUDUL ............................................................................................... i
LEMBAR PENGESAHAN ................................................................................... ii
PERNYATAAN ORISINALITAS LAPORAN TUGAS AKHIR ....................... iii
PERNYATAAN PUBLIKASI LAPORAN PENELITIAN .................................. iv
SURAT KETERANGAN TUGAS AKHIR .......................................................... v
SURAT KETERANGAN SELESAI TUGAS AKHIR ........................................ vi
KATA PENGANTAR ......................................................................................... vii
ABSTRAK ............................................................................................................ ix
ABSTRACT ............................................................................................................. x
DAFTAR ISI ......................................................................................................... xi
DAFTAR GAMBAR .......................................................................................... xiii
DAFTAR TABEL ................................................................................................ xv
DAFTAR NOTASI ............................................................................................. xvi
DAFTAR LAMPIRAN ..................................................................................... xviii
BAB I
PENDAHULUAN
1.1 Latar Belakang ................................................................................ 1
1.2 Tujuan Penelitian ............................................................................ 2
1.3 Ruang Lingkup Pembahasan .......................................................... 2

1.4 Sistematika Penulisan ..................................................................... 2
BAB II TINJAUAN PUSTAKA
2.1 Partikel Tanah ................................................................................. 4
2.1.1 Komponen-Komponen Tanah ............................................ 4
2.1.2 Klasifikasi Tanah ................................................................ 5
2.2 Tanah Tak Jenuh ............................................................................. 6
2.2.1 Konsistensi Tanah ............................................................... 9
2.2.2 Hubungan Antarfase .......................................................... 11
2.2.2.1 Porositas................................................................. 12
2.2.2.2 Angka Pori ............................................................. 12
2.2.2.3 Kerapatan Tanah .................................................... 12
2.2.2.4 Berat Jenis.............................................................. 13
2.2.2.5 Derajat Kejenuhan ................................................. 14
2.2.2.6 Kadar Air ............................................................... 14
2.2.2.7 Berat Isi .................................................................. 15
2.3 Matric Suction .............................................................................. 15
2.4 Metode Kertas Filter ..................................................................... 20
2.5 Kuat Geser Tanah Tak Jenuh ....................................................... 22
2.5.1 Persamaan Kekuatan Geser Tanah Tak Jenuh .................. 23
2.5.2 Kurva Keruntuhan Mohr-Coulomb yang Diperpanjang .... 25

2.5.3 Hubungan Antara Nilai ϕb dan Nilai χ .............................. 27
2.5.3 Pengukuran dengan Metode Uji Geser Langsung (Direct
Shear) ................................................................................ 28
2.6 Proses Pembasahan ....................................................................... 30
BAB III PROSEDUR PENELITIAN
3.1 Rencana Kerja .............................................................................. 32
3.2 Persiapan Contoh Tanah Uji ......................................................... 33

xi

3.2.1 Pemilihan dan Pengambilan Contoh Tanah Uji ............... 33
3.2.2 Pembuatan Contoh Tanah Uji ........................................... 33
3.3 Prosedur Pengujian ....................................................................... 33
3.3.1 Pengujian Specific Gravity ............................................... 33
3.3.2 Pengujian Hydrometer Analysis ....................................... 37
3.3.3 Pengujian Index Properties .............................................. 39
3.3.4 Pengujian Atterberg Limit ................................................ 42
3.3.5 Pengujian Matric Suction (ua – uw) dengan Metode Kertas
Filter................................................................................... 47
3.3.6 Pengujian Direct Shear ..................................................... 51

BAB IV PENYAJIAN DAN ANALISIS DATA
4.1 Analisis Data Pengujian Pendahuluan .......................................... 56
4.1.1 Specific Gravity ................................................................ 56
4.1.2 Hydrometer Analysis ........................................................ 56
4.1.3 Index Properties ............................................................... 56
4.1.4 Atterberg Limit ................................................................. 57
4.2 Analisis Data Pengujian Akibat Proses Pembasahan ................... 58
4.2.1 Pengaruh Lama Pemeraman terhadap Kadar Air (w) dan
Derajat Kejenuhan (Sr) ...................................................... 58
4.2.2 Pengaruh Proses Pembasahan terhadap Nilai Index
Properties .......................................................................... 60
4.2.3 Pengaruh Proses Pembasahan terhadap Nilai Matric Suction
(ua – uw) ............................................................................ 64
4.2.4 Pengaruh Proses Pembasahan terhadap Nilai Kuat Geser
Tanah ................................................................................ 65
4.2.4.1 Nilai Kuat Geser Tanah Kondisi Initial (wi) ......... 66
4.2.4.2 Nilai Kuat Geser Tanah Kondisi wi + 10% wi ...... 68
4.2.4.3 Nilai Kuat Geser Tanah Kondisi wi + 12% wi ...... 70
4.2.4.4 Nilai Kuat Geser Tanah Kondisi wi + 15% wi ...... 72
4.2.4.5 Nilai Kuat Geser Tanah Kondisi Jenuh ................ 74

4.2.4.6 Hubungan Proses Pembasahan dengan Parameter
Kuat Geser Tanah ................................................. 76
BAB V SIMPULAN DAN SARAN
5.1 Simpulan ....................................................................................... 80
5.2 Saran ............................................................................................. 81
DAFTAR PUSTAKA .......................................................................................... 82
LAMPIRAN ......................................................................................................... 83

xii

DAFTAR GAMBAR
Gambar 2.1
Gambar 2.2
Gambar 2.3
Gambar 2.4
Gambar 2.5
Gambar 2.6
Gambar 2.7

Gambar 2.8

Gambar 2.9
Gambar 2.10
Gambar 2.11
Gambar 2.12
Gambar 2.13
Gambar 2.14
Gambar 2.15
Gambar 2.16
Gambar 3.1
Gambar 3.2
Gambar 3.3
Gambar 3.4
Gambar 4.1
Gambar 4.2
Gambar 4.3
Gambar 4.4
Gambar 4.5
Gambar 4.6
Gambar 4.7
Gambar 4.8

Gambar 4.9
Gambar 4.10

Pembagian studi mekanika tanah ....................................................7
Elemen-elemen tanah tak jenuh .......................................................8
Model tanah tak jenuh (a) 4 fase; (b) 3 fase ....................................8
Tahapan perubahan konsistensi tanah .............................................9
Bagan plastisitas ............................................................................11
Diagram fase tanah ........................................................................11
Variasi nilai matric suction pada tanah terbuka. a) Musim hujan; b)
musim kering dengan muka air tanah dangkal; c) musim kering
dengan muka air tanah dalam .................................................. 16-17
Hubungan air dan udara dalam tanah ............................................18
Metode kertas filter contact dan non-contact untuk mengukur
matric suction dan total suction ....................................................21
Grafik kalibrasi suction untuk dua jenis kertas filter .....................21
Persamaan keruntuhan Mohr-Coulomb yang diperpanjang untuk
tanah tidak jenuh ............................................................................25
Garis perpotongan di sepanjang garis keruntuhan antara dengan
(ua – uw) .........................................................................................26

Perbandingan cara Fredlund dan Bishop untuk memperkirakan
kekuatan geser pada tanah tak jenuh .............................................27
Uji geser langsung (direct shear) ..................................................29
Garis keruntuhan Mohr-Coulomb yang diperpanjang dari hasil uji
geser langsung (direct shear) ........................................................30
Bentuk khas kurva pengeringan dan pembasahan ..........................31
Diagram alir penelitian ..................................................................32
Ilustrasi antara berat erlenmeyer, air dan butir tanah ..................36
Diagram fase tanah ........................................................................41
Metode kertas filter contact dan non-contact untuk mengukur total
suction dan matric suction .............................................................51
Hubungan antara kadar air (w) dan derajat kejenuhan (Sr) ...........59
Perubahan kadar air (w) rencana dari kondisi initial (wi) hingga
kondisi jenuh .................................................................................61
Perubahan berat volume dari kondisi initial (wi) hingga kondisi
jenuh ..............................................................................................61
Perubahan angka pori dari kondisi initial (wi) hingga kondisi
jenuh ...............................................................................................62
Perubahan porositas dari kondisi initial (wi) hingga kondisi jenuh 63
Perubahan derajat kejenuhan dari kondisi initial (wi) hingga kondisi
jenuh ..............................................................................................63
Perubahan berat volume (γ), angka pori (e), porositas (n) dan
derajat kejenuhan (Sr) terhadap perubahan kadar air (w) ..............64
Perubahan tegangan air pori negatif (ua – uw) terhadap kenaikan
kadar air (w) akibat proses pembasahan ........................................65
Hubungan antara strain dengan shear stress pada kondisi initial
(wi) .................................................................................................66
Garis keruntuhan kuat geser tanah pada kondisi initial (wi) ..........67

xiii

Gambar 4.11 Garis keruntuhan yang diperpanjang kondisi initial (wi) ...............68
Gambar 4.12 Hubungan antara strain dengan shear stress pada kondisi wi +
10%wi ............................................................................................69
Gambar 4.13 Garis keruntuhan kuat geser tanah pada kondisi wi + 10%wi ........69
Gambar 4.14 Garis keruntuhan yang diperpanjang kondisi wi + 10%wi .............70
Gambar 4.15 Hubungan antara strain dengan shear stress pada kondisi wi +
12%wi ............................................................................................71
Gambar 4.16 Garis keruntuhan kuat geser tanah pada kondisi wi + 12%wi ........71
Gambar 4.17 Garis keruntuhan yang diperpanjang kondisi wi + 12%wi .............72
Gambar 4.18 Hubungan antara strain dengan shear stress pada kondisi wi +
15%wi ............................................................................................73
Gambar 4.19 Garis keruntuhan kuat geser tanah pada kondisi wi + 15%wi ........73
Gambar 4.20 Garis keruntuhan yang diperpanjang kondisi wi + 15%wi .............74
Gambar 4.21 Hubungan antara strain dengan shear stress pada kondisi jenuh ..75
Gambar 4.22 Garis keruntuhan kuat geser tanah pada kondisi jenuh .................75
Gambar 4.23 Perubahan kohesi (c’) dari kondisi initial hingga kondisi jenuh ...76
Gambar 4.24 Perubahan sudut geser dalam (ϕ’) dari kondisi initial (wi) hingga
kondisi jenuh .................................................................................77
Gambar 4.25 Perubahan sudut yang menghubungkan cohesion intercept dengan
matric suction (ϕb) dari kondisi initial (wi) hingga kondisi jenuh .78
Gambar 4.26 Garis keruntuhan kuat geser tanah pada seluruh kondisi ..............79

xiv

DAFTAR TABEL
Tabel 2.1 Batasan-batasan ukuran golongan tanah .................................................6
Tabel 2.2 Nilai porositas, angka pori dan kerapatan butir (Modified from Hough,
1969) ......................................................................................................13
Tabel 2.3 Alat untuk mengukur nilai suction dan komponennya .........................19
Tabel 4.1 Some typical values for different of some common soil materials .......57
Tabel 4.2 Hubungan indeks plastisitas dengan tingkat keplastisan tanah ............58
Tabel 4.3 Hasil pengujian lama pemeraman .........................................................59
Tabel 4.4 Perubahan parameter sifat fisik tanah ...................................................60

xv

DAFTAR NOTASI
A

Area

Cm

Koreksi meniskus

Ct

Koreksi temperatur

c

Kohesi total

c’

Kohesi efektif

D

Diameter

e

Angka pori

Gs

Berat spesifik butir tanah

GT

Berat jenis air

h

Suction

Ic

Consistency Index

If

Flow Index

It

Toughness Index

LI

Liquidity Index

LL

Batas cair

M

Massa total

Ms

Massa tanah

n

Porositas

PI

Indeks plastisitas

PL

Batas plastis

R

Pembacaan hidrometer

R h’

Pembacaan hidrometer sebenarnya

r

Jari-jari dari sebuah bola ideal pada bagian bawah saluran
udara

SL

Batas susut

Sr

Derajat kejenuhan

T

Suhu

Ts

Tarikan permukaan membran

t

Waktu

ua

Tekanan udara pori

uw

Tekanan air pori

xvi

(ua – uw)

Matric suction

V

Volume total

Vs

Volume butiran padat

Vv

Volume pori

Vw

Volume air dalam pori

W

Berat total

Ws

Berat padat

Ww

Berat air

w

Kadar air

wi

Kadar air initial

wn

Kadar air alami

X

Koreksi dispersent

Zr

Effective depth

γ

Berat volume tanah

γ’

Berat volume tanah efektif

γd

Berat volume tanah kering

γw

Berat volume air
Viskositas aquades (poise)

w

Kadar air volumetrik

ρ

Kerapatan tanah

ρd

Kerapatan tanah pada kondisi kering

ρs

Kerapatan tanah basah

ρw

Kerapatan air pada pori
Tegangan normal total



Tegangan normal efektif

n

Tegangan normal
Tegangan geser

f

Tegangan geser saat runtuh

ϕ

Sudut geser dalam total

ϕ’

Sudut geser dalam efektif

ϕb

Sudut yang menghubungkan cohesion intercept dengan
nilai air pori negatif (suction)

χ

Parameter yang berhubungan dengan derajat kejenuhan
tanah

xvii

DAFTAR LAMPIRAN
Lampiran 1
Lampiran 2
Lampiran 3
Lampiran 4
Lampiran 5
Lampiran 6
Lampiran 7

Pengujian Specific Gravity ...............................................................83
Pengujian Hydrometer Analysis .......................................................87
Pengujian Index Properties untuk analisis lama pemeraman ..........94
Pengujian Index Properties ..............................................................97
Pengujian Atterberg Limits ............................................................103
Pengujian Soil Suction menggunakan Metode Kertas Filter ..........106
Pengujian Direct Shear ..................................................................109

xviii

LAMPIRAN
Lampiran 1 Pengujian Specific Gravity

Tabel L1.1 Data kalibrasi erlenmeyer
Determination No.

1

2

3

4

5

Wt. Bottle + Water

; W2

( gr )

756.10

758.80

760.70

762.00

763.20

Temperatur

;T

( °C )

60

55

50

45

40

Grafik Kalibrasi Erlenmeyer
765
Weight Bottle + Water ; W2 ( gram )

764
763
762
761

760
759
758
757

y = -0.348x + 777.56
R² = 0.9688

756
755
35

40

45

50

55

60

65

Temperature ; T ( °C )

Gambar L1.1 Grafik kalibrasi erlenmeyer

Tabel L1.2 Data pengujian specific gravity
Determination No.
Wt. Bottle + Water + Soil

( gr )

1
797.70

2
800.20

3
801.70

4
802.80

5
805.00

; W1

Temperatur

;T

( °C )

60

55

50

45

40

Wt. Bottle + Water

; W2

( gr )

756.10

758.80

760.70

762.00

763.20

Spec. Grav. of Water at T °C

; GT

0.9832

0.9857

0.9881

0.9902

0.9922

Spec. Grav.of Soil at T °C

; GS

2.72

2.71

2.67

2.65

2.77

83

Universitas Kristen Maranatha

Berat cawan

(W3)

= 214.70 gr

Berat cawan + tanah kering (W4)

= 279.80 gr

Berat tanah kering

= 65.10 gr

(W5)

2.72  2.71  2.67  2.65  2.77
 2.71
5

Average Value of Gs =

Tabel L1.3 Specific gravity of water
°C

0

1

2

3

4

5

6

7

8

9

0
10
20
30
40
50
60
70
80
90

0.9999
0.9997
0.9982
0.9957
0.9922
0.9881
0.9832
0.9778
0.9718
0.9653

0.9999
0.9996
0.9980
0.9954
0.9919
0.9876
0.9827
0.9772
0.9712
0.9647

1.0000
0.9995
0.9978
0.9951
0.9915
0.9872
0.9822
0.9767
0.9606
0.9640

1.0000
0.9994
0.9976
0.9947
0.9911
0.9867
0.9817
0.9761
0.9699
0.9633

1.0000
0.9993
0.9973
0.9944
0.9907
0.9862
0.9811
0.9755
0.9693
0.9626

1.0000
0.9991
0.9971
0.9941
0.9902
0.9857
0.9806
0.9749
0.9686
0.9619

1.0000
0.9990
0.9968
0.9937
0.9898
0.9852
0.9800
0.9743
0.9680
0.9612

0.9999
0.9988
0.9965
0.9934
0.9894
0.9848
0.9795
0.9737
0.9673
0.9605

0.9999
0.9986
0.9963
0.9930
0.9890
0.9842
0.9789
0.9731
0.9667
0.9598

0.9999
0.9984
0.9960
0.9926
0.9885
0.9838
0.9784
0.9724
0.9660
0.9591

Tabel L1.4 Gs value of some soil
Type of Soil
Quartz sand
Silt
Clay
Chalk
Loses
Peat
Sumber: Das, M. Braja, 1985

84

Gs
2.64 – 2.66
2.67 – 2.73
2.7 – 2.9
2.6 – 2.75
2.65 – 2.73
1.3 – 1.9

Universitas Kristen Maranatha

Foto-foto alat dan proses pengujian

Gambar L1.2 Erlenmeyer

Gambar L1.3 Timbangan

Gambar L1.4 Pinggan pengaduk

Gambar L1.5 Oven

85

Universitas Kristen Maranatha

Gambar L1.6 Thermometer

Gambar L1.7 Pengujian
Specific Gravity

86

Universitas Kristen Maranatha

Lampiran 2 Pengujian Hydrometer Analysis

Data
Type of hydrometer used

= 151H-3

Correction menicus

= 0.025

Weight of soil

= 44.5 gr

γc

= 1 gr/cm3

Specific gravity of soil

( Gs ) = 2.71

Volume

= 1000 ml

Specific gravity of water

( Gt )

Koreksi dispersen

=2

= 0.9976

Tabel L2.1 Data pengujian analisis hidrometer
Elapsed time ;
t
(detik)
120
240
480
900
1800
3600
7200
14400
28800

Rh'
23.0
22.0
21.5
20.0
18.0
17.0
15.5
14.5
13.5

Rw
3.0
3.0
2.0
2.0
2.0
2.0
2.0
1.0
1.0

87

T
(°C)
23.0
23.0
23.0
22.5
22.5
22.0
22.0
21.5
21.5

Rh
23.025
22.025
21.525
20.025
18.025
17.025
15.525
14.525
13.525

Ct
(°C)
0.70
0.70
0.70
0.55
0.55
0.40
0.40
0.30
0.30

N

Zr

(%)
88.054
84.493
79.151
73.275
66.152
62.056
56.714
49.235
45.674

(cm)
10.800
11.000
11.500
11.800
12.400
12.500
13.000
13.500
13.750

Coor. R
24.725
23.725
22.225
20.575
18.575
17.425
15.925
13.825
12.825

Universitas Kristen Maranatha

k
0.01297
0.01297
0.01297
0.01305
0.01305
0.01312
0.01312
0.01320
0.01320

D
(mm)
0.0389
0.0278
0.0201
0.0149
0.0108
0.0077
0.0056
0.0040
0.0029

20
18

Kurva A untuk elapsed
time < 2 menit

16
14

Kurva B untuk elapsed
time > 2 menit

12

Zr

10
8

6
4
2
0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

R

Gambar L2.1 Grafik hubungan antara R vs Zr

88

Universitas Kristen Maranatha

100
90

N (%)

80

70
60
50
40
0.1000

0.0100

0.0010

D ( diameter ) (mm)

Gambar L2.2 Grafik hubungan antara diameter ( D ) dan N

Tabel L2.2 Harga-harga faktor koreksi suhu
Suhu (°C)
Ct
Suhu (°C)
Ct
15
-1.10
24
+1.00
17
-0.90
25
+1.30
18
-0.70
26
+1.66
19
-0.50
27
+2.00
20
0.00
28
+2.50
21
+0.20
29
+3.50
22
+0.40
30
+3.80
23
+0,70
Sumber: G. Djatmiko Soedarmo dkk, 1977:79

89

Universitas Kristen Maranatha

Tabel L2.3 Koreksi K
Temperature
(°C)
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Specific Gravity of Soil Particles
2.55
2.60
2.65
2.70
2.75

2.45

2.50

2.80

2.85

0.01510

0.01505

0.01481

0.01457

0.01435

0.01414

0.01511

0.01486

0.01462

0.01439

0.01427

0.01396

0.01394

0.01374

0.01356

0.01376

0.01356

0.01338

0.01492

0.01467

0.01443

0.01421

0.01399

0.01474

0.01449

0.01425

0.01403

0.01382

0.01378

0.01359

0.01339

0.01321

0.01361

0.01342

0.01323

0.01305

0.01456

0.01431

0.01408

0.01386

0.01365

0.01344

0.01325

0.01307

0.01289

0.01438

0.01414

0.01391

0.01421

0.01397

0.01374

0.01369

0.01348

0.01328

0.01309

0.01291

0.01273

0.01353

0.01332

0.01312

0.01294

0.01276

0.01258

0.01404

0.01381

0.01388

0.01365

0.01358

0.01337

0.01317

0.01297

0.01279

0.01261

0.01243

0.01342

0.01321

0.01301

0.01282

0.01264

0.01246

0.01229

0.01372
0.01357

0.01349

0.01327

0.01306

0.01286

0.01267

0.01249

0.01232

0.01215

0.01334

0.01312

0.01291

0.01272

0.01253

0.01235

0.01218

0.01201

0.01342

0.01319

0.01297

0.01277

0.01258

0.01239

0.01221

0.01204

0.01188

0.01327

0.01304

0.01283

0.01264

0.01244

0.01225

0.01208

0.01191

0.01175

0.01312

0.01290

0.01269

0.01249

0.01230

0.01212

0.01195

0.01178

0.01162

0.01298

0.01276

0.01256

0.01236

0.01217

0.01199

0.01182

0.01165

0.01149

90

Universitas Kristen Maranatha

Gambar L2.3 Flow chart for classifiying fine-grained soil (50% or more passes no. 200 sieve)

91

Universitas Kristen Maranatha

Foto-foto alat dan proses pengujian

Gambar L2.4 Hidrometer

Gambar L2.6 Mixer

Gambar L2.5 Gelas pengukur
volume 1000 cc

Gambar L2.7 Sodium Hexametafosfat

92

Universitas Kristen Maranatha

Gambar L2.8 Tapis no. 200

Gambar L2.10 Pembacaan
hidrometer dan temperatur pada
kondisi suspensi dispersi total

Gambar L2.9 Stopwatch

Gambar L2.11 Pembacaan hidrometer
dan temperatur pada suspensi
dan bak ukur

93

Universitas Kristen Maranatha

Lampiran 3 Pengujian Index Properties untuk analisis lama pemeraman

Tabel L3.1 Data pengujian index properties kondisi wi + 20%wi
Lama Pemeraman
Ring No.
Diameter of Ring
Height of Ring
Area of Ring

1 Hari

2 Hari
A
6.35
2.55
31.67
80.76

3 Hari

;d
;t
;A

Volume of Ring

;V

( cm )
( cm )
( cm² )
( cm³ )

Wt. of Ring

; W1

( gr )

82.00

82.00

82.00

Wt. of Dish + Ring + Wet Soil

; W2

( gr )

277.40

279.70

281.80

Wt. of Dish

; W3

( gr )

63.00

64.30

66.00

Wt. of Dish + Ring + Dry Soil

; W4

( gr )

229.00

230.60

232.00

Wt. of Ring + Dry Soil

; W5

( gr )

166.00

166.30

166.00

Wt. of Wet Soil

;W

( gr )

132.40

133.40

133.80

Wt. of Water

; WW

( gr )

48.40

49.10

49.80

Wt. of Dry Soil

; WS

( gr )

84.00

84.30

84.00

Specific Gravity of Soil at T °C

; GS

2.71

2.71

2.71

Water Content
Volume of Soil
Unit Wt. of Soil
Void Ratio
Porositas

;w
;V

;e
;n

(%)
( cm³ )
( gr/cm³ )

57.62
80.76
1.64
1.61
0.62

58.24
80.76
1.65
1.60
0.61

59.29
80.76
1.66
1.61
0.62

Degree of Saturation

; Sr

(%)

97.27

98.89

100.08

94

Universitas Kristen Maranatha

Tabel L3.2 Data pengujian index properties kondisi wi + 40%wi
Lama Pemeraman
Ring No.
Diameter of Ring
Height of Ring
Area of Ring

1 Hari

2 Hari
A
6.50
2.56
33.18
84.85

3 Hari

;d
;t
;A

Volume of Ring

;V

( cm )
( cm )
( cm² )
( cm³ )

Wt. of Ring

; W1

( gr )

98.00

98.00

98.00

Wt. of Dish + Ring + Wet Soil

; W2

( gr )

301.90

306.50

310.30

Wt. of Dish

; W3

( gr )

63.00

64.30

66.00

Wt. of Dish + Ring + Dry Soil

; W4

( gr )

247.70

250.10

252.40

Wt. of Ring + Dry Soil

; W5

( gr )

184.70

185.80

186.40

Wt. of Wet Soil

;W

( gr )

140.90

144.20

146.30

Wt. of Water

; WW

( gr )

54.20

56.40

57.90

Wt. of Dry Soil

; WS

( gr )

86.70

87.80

88.40

Specific Gravity of Soil at T °C

; GS

2.71

2.71

2.71

Water Content
Volume of Soil
Unit Wt. of Soil
Void Ratio
Porositas

;w
;V

;e
;n

(%)
( cm³ )
( gr/cm³ )

62.51
84.85
1.66
1.65
0.62

64.24
84.85
1.70
1.62
0.62

65.50
84.85
1.72
1.60
0.62

Degree of Saturation

; Sr

(%)

102.54

107.53

110.86

95

Universitas Kristen Maranatha

Tabel L3.3 Data pengujian index properties kondisi wi + 60%wi
Lama Pemeraman
Ring No.
Diameter of Ring
Height of Ring
Area of Ring

1 Hari

2 Hari
A
6.35
2.55
31.67
80.76

3 Hari

;d
;t
;A

Volume of Ring

;V

( cm )
( cm )
( cm² )
( cm³ )

Wt. of Ring

; W1

( gr )

82.00

82.00

82.00

Wt. of Dish + Ring + Wet Soil

; W2

( gr )

290.60

294.80

300.30

Wt. of Dish

; W3

( gr )

63.00

64.30

66.00

Wt. of Dish + Ring + Dry Soil

; W4

( gr )

229.80

231.10

233.70

Wt. of Ring + Dry Soil

; W5

( gr )

166.80

166.80

167.70

Wt. of Wet Soil

;W

( gr )

145.60

148.50

152.30

Wt. of Water

; WW

( gr )

60.80

63.70

66.60

Wt. of Dry Soil

; WS

( gr )

84.80

84.80

85.70

Specific Gravity of Soil at T °C

; GS

2.71

2.71

2.71

Water Content
Volume of Soil
Unit Wt. of Soil
Void Ratio
Porositas

;w
;V

;e
;n

(%)
( cm³ )
( gr/cm³ )

71.70
80.76
1.80
1.58
0.61

75.12
80.76
1.84
1.58
0.61

77.71
80.76
1.89
1.55
0.61

Degree of Saturation

; Sr

(%)

122.92

128.78

135.55

96

Universitas Kristen Maranatha

Lampiran 4 Pengujian Index Properties

Tabel L4.1 Data pengujian index properties kondisi initial ( wi )
Determination No.
Ring No.

1
A

2
B

Wt. of Ring

; W1

( gr )

82.00

98.00

Diameter of Ring

;d

( cm )

6.35

6.50

Height of Ring

;t

( cm )

2.55

2.56

Area of Ring

;A

( cm² )

31.67

33.18

Volume of Ring

;V

( cm³ )

80.76

84.85

Wt. of Dish + Ring + Wet Soil

; W2

( gr )

266.40

286.70

Wt. of Dish

; W3

( gr )

58.00

63.80

Wt. of Dish + Ring + Dry Soil

; W4

( gr )

225.10

244.60

Wt. of Ring + Dry Soil

; W5

( gr )

167.10

180.80

Wt. of Wet Soil

;W

( gr )

126.40

124.90

Wt. of Water

; WW

( gr )

41.30

42.10

Wt. of Dry Soil

; WS

( gr )

85.10

82.80

Specific Gravity of Soil at T °C

; GS

2.71

2.71

Water Content
Volume of Soil
Unit Wt. of Soil
Void Ratio
Porositas

;w
;V

;e
;n

(%)
( cm³ )
( gr/cm³ )

48.53
80.76
1.57
1.57
0.61

50.85
84.85
1.47
1.78
0.64

Degree of Saturation

; Sr

(%)

83.68

77.54

Average Value



(1  w)

γd

=

γ'

= γ – γw



w

= 49.69 %

γ

= 1.52 gr/cm3

e

= 1.67

n

= 0.63

Sr

= 80.61 %

1.52
 1.015 gr/cm3
(1  0.4969)

= 1.52 – 1.00
= 0.52 gr/cm3 = 0.52 t/m3

97

Universitas Kristen Maranatha

Tabel L4.2 Data pengujian index properties kondisi wi + 10%wi
Determination No.
Ring No.
Diameter of Ring
Height of Ring
Area of Ring

;V

( cm )
( cm )
( cm² )
( cm³ )

1
A
6.35
2.55
31.67
80.76

2
B
6.50
2.56
33.18
84.85

;d
;t
;A

Volume of Ring
Wt. of Ring

; W1

( gr )

82.00

98.00

Wt. of Dish + Ring + Wet Soil

; W2

( gr )

271.50

289.50

Wt. of Dish

; W3

( gr )

64.30

63.00

Wt. of Dish + Ring + Dry Soil

; W4

( gr )

226.30

244.90

Wt. of Ring + Dry Soil

; W5

( gr )

162.00

181.90

Wt. of Wet Soil

;W

( gr )

125.20

128.50

Wt. of Water

; WW

( gr )

45.20

44.60

Wt. of Dry Soil

; WS

( gr )

80.00

83.90

Specific Gravity of Soil at T °C

; GS

2.71

2.71

Water Content
Volume of Soil
Unit Wt. of Soil
Void Ratio
Porositas

;w
;V

;e
;n

(%)
( cm³ )
( gr/cm³ )

56.50
80.76
1.55
1.74
0.63

53.16
84.85
1.51
1.74
0.64

Degree of Saturation

; Sr

(%)

88.22

82.76

Average Value



(1  w)

γd

=

γ'

= γ – γw



w

= 54.83 %

γ

= 1.53 gr/cm3

e

= 1.74

n

= 0.63

Sr

= 85.49 %

1.53
 0.988 gr/cm3
(1  0.5483)

= 1.53 – 1.00
= 0.53 gr/cm3 = 0.53 t/m3

98

Universitas Kristen Maranatha

Tabel L4.3 Data pengujian index properties kondisi wi + 12%wi
Determination No.
Ring No.
Diameter of Ring
Height of Ring
Area of Ring

;V

( cm )
( cm )
( cm² )
( cm³ )

1
A
6.35
2.55
31.67
80.76

2
B
6.50
2.56
33.18
84.85

;d
;t
;A

Volume of Ring
Wt. of Ring

; W1

( gr )

82.00

98.00

Wt. of Dish + Ring + Wet Soil

; W2

( gr )

272.80

291.90

Wt. of Dish

; W3

( gr )

64.30

63.00

Wt. of Dish + Ring + Dry Soil

; W4

( gr )

227.40

245.10

Wt. of Ring + Dry Soil

; W5

( gr )

163.10

182.10

Wt. of Wet Soil

;W

( gr )

126.50

130.90

Wt. of Water

; WW

( gr )

45.40

46.80

Wt. of Dry Soil

; WS

( gr )

81.10

84.10

Specific Gravity of Soil at T °C

; GS

2.71

2.71

Water Content
Volume of Soil
Unit Wt. of Soil
Void Ratio
Porositas

;w
;V

;e
;n

(%)
( cm³ )
( gr/cm³ )

55.98
80.76
1.57
1.70
0.63

55.65
84.85
1.54
1.73
0.63

Degree of Saturation

; Sr

(%)

89.32

86.96

Average Value



(1  w)

γd

=

γ'

= γ – γw



w

= 55.81 %

γ

= 1.55 gr/cm3

e

= 1.72

n

= 0.63

Sr

= 88.14 %

1.55
 0.995 gr/cm3
(1  0.5581)

= 1.55 – 1.00
= 0.55 gr/cm3 = 0.55 t/m3

99

Universitas Kristen Maranatha

Tabel L4.4 Data pengujian index properties kondisi wi + 15%wi
Determination No.
Ring No.
Diameter of Ring
Height of Ring
Area of Ring

;V

( cm )
( cm )
( cm² )
( cm³ )

1
A
6.35
2.55
31.67
80.76

2
B
6.50
2.56
33.18
84.85

;d
;t
;A

Volume of Ring
Wt. of Ring

; W1

( gr )

82.00

98.00

Wt. of Dish + Ring + Wet Soil

; W2

( gr )

274.30

294.30

Wt. of Dish

; W3

( gr )

64.30

63.00

Wt. of Dish + Ring + Dry Soil

; W4

( gr )

228.40

245.30

Wt. of Ring + Dry Soil

; W5

( gr )

164.10

182.30

Wt. of Wet Soil

;W

( gr )

128.00

133.30

Wt. of Water

; WW

( gr )

45.90

49.00

Wt. of Dry Soil

; WS

( gr )

82.10

84.30

Specific Gravity of Soil at T °C

; GS

2.71

2.71

Water Content
Volume of Soil
Unit Wt. of Soil
Void Ratio
Porositas

;w
;V

;e
;n

(%)
( cm³ )
( gr/cm³ )

55.91
80.76
1.59
1.67
0.62

58.13
84.85
1.57
1.73
0.63

Degree of Saturation

; Sr

(%)

90.96

91.18

Average Value



(1  w)

γd

=

γ'

= γ – γw



w

= 57.02 %

γ

= 1.58 gr/cm3

e

= 1.70

n

= 0.63

Sr

= 91.07 %

1.58
 1.006 gr/cm3
(1  0.5702)

= 1.58 – 1.00
= 0.58 gr/cm3 = 0.58 t/m3

100

Universitas Kristen Maranatha

Tabel L4.5 Data pengujian index properties kondisi jenuh
Determination No.
Ring No.
Diameter of Ring
Height of Ring
Area of Ring

;d
;t
;A

Volume of Ring

;V

( cm )
( cm )
( cm² )
( cm³ )

Wt. of Ring

; W1

( gr )

Wt. of Dish + Ring + Wet Soil

; W2

( gr )

Wt. of Dish

; W3

( gr )

Wt. of Dish + Ring + Dry Soil

; W4

( gr )

Wt. of Ring + Dry Soil

; W5

( gr )

Wt. of Wet Soil

;W

( gr )

Wt. of Water

; WW

( gr )

Wt. of Dry Soil

; WS

( gr )

Specific Gravity of Soil at T °C

; GS

Water Content
Volume of Soil
Unit Wt. of Soil
Void Ratio
Porositas

;w
;V

;e
;n

(%)
( cm³ )
( gr/cm³ )

Degree of Saturation

; Sr

(%)

Value



(1  w)

γd

=

γ'

= γ – γw



w

= 65.32 %

γ

= 1.63 gr/cm3

e

= 1.75

n

= 0.64

Sr

= 101.18 %

1
B
6.50
2.56
33.18
84.85

98.00
299.30
63.00
244.70
181.70
138.30
54.60
83.70
2.71
65.23
84.85
1.63
1.75
0.64
101.18

1.63
 0.986 gr/cm3
(1  0.6532)

= 1.63 – 1.00
= 0.63 gr/cm3 = 0.63 t/m3

101

Universitas Kristen Maranatha

Foto-foto alat dan proses pengujian

Gambar L4.1 Silinder ring
pencetak tanah

Gambar L4.2 Extruder

Gambar L4.3 Jangka sorong

Gambar L4.4 Desikator

Gambar L4.5 Gergaji kawat

Gambar L4.6 Contoh tanah
setelah dicetak pada ring

102

Universitas Kristen Maranatha

Lampiran 5 Pengujian Atterberg Limits

Tabel L5.1 Data pengujian kadar air alami
Container No.

C-11

Wt. of Container

; W1

( gr )

21.50

Wt. Cont + Wet Soil

; W2

( gr )

31.50

Wt. Cont + Dry Soil

; W3

( gr )

28.20

Wt. of Water

; WW

( gr )

3.30

Wt. of Dry Soil

; WS

( gr )

6.70

WATER CONTENT

;w

(%)

49.25

Tabel L5.2 Data pengujian batas cair (liquid limit)
Container No.

T-2

T-5

T-6

T-8

T-9

Wt. of Container

; W1

( gr )

10.00

9.20

10.00

10.00

10.00

Wt. Cont + Wet Soil

; W2

( gr )

20.00

19.20

20.00

20.00

20.00

Wt. Cont + Dry Soil

; W3

( gr )

15.90

15.20

16.20

16.30

16.60

Wt. of Water

; WW

( gr )

4.10

4.00

3.80

3.70

3.40

Wt. of Dry Soil

; WS

( gr )

5.90

6.00

6.20

6.30

6.60

WATER CONTENT

;w
;N

(%)

69.49
15

66.67
18

61.29
25

58.73
30

51.52
35

NUMBER OF BLOWS

FLOW CHART CURVE (KURVA ALIR)
75

Water Content ; w (%)

70

65

W25 = 60,28%

60

W30 = 56,73%
y = -19.47ln(x) + 122.95

W35 = 53,73%

55

50
10

25

30

35

100

Number of Blow ; N

Gambar L5.1 Grafik hubungan antara jumlah pukulan vs kadar air

103

Universitas Kristen Maranatha

Tabel L5.3 Data pengujian batas plastis (plastic limit)
Container No.

D-21

D-22

Wt. of Container

; W1

( gr )

14.50

14.70

Wt. Cont + Wet Soil

; W2

( gr )

24.50

24.70

Wt. Cont + Dry Soil

; W3

( gr )

21.60

22.00

Wt. of Water

; WW

( gr )

2.90

2.70

Wt. of Dry Soil

; WS

( gr )

7.10

7.30

WATER CONTENT

;w

(%)

40.85

36.99

80
70
CH atau OH

PLASTICITY INDEX ; PI (%)

60

-50

50
40
30
CL atau OL

20
10

atau OL
SL = ML
27,09%

0

-40

-30

-20

-10-10 0

MH atau OH

10

20

30

40

50

60

70

80

90

100

-20

-30
-40
-50

LIQUID LIMIT ; LL (%)

Gambar L5.2 Bagan plastisitas

Keterangan

:

CH

= Lempung Anorganik dengan Plastisitas Tinggi

MH

= Lanau Elastis atau Tanah Pasiran/Lanauan

OH

= Lempung Organik dengan Plastisitas Sedang sampai Tinggi

CL

= Lempung Anorganik dengan Plastisitas Rendah sampai Sedang;
Lempung Berkerikil; Lempung Berpasir; Lempung Lanauan

ML

= Lanau Anorganik dan Pasir Sangat Halus; Pasir Halus Berlanau atau
Berlempung dengan Plastisitas Rendah

OL

= Lanau Anorganik dan Lanau-Lempung Organik dengan Plastisitas
Rendah

104

Universitas Kristen Maranatha

Tabel L5.4 Harga PI, LI, If, It dan Ic
LL
PL
SL
PI
Wn
LI
If

SUMMARY
;(%)
;(%)
;(%)
;(%)
;(%)

61.54
38.92
27.09
22.62
49.25
0.46
44.83

It

0.50

Ic

0.54

Foto-foto alat dan proses pengujian

Gambar L5.3 Alat Cassagrande

Gambar L5.4 Groving tool

Gambar L5.5 Container

Gambar L5.6 Scrapper

105

Universitas Kristen Maranatha

Lampiran 6 Soil Suction Measurement Using Filter Paper Method

Tabel L6.1 Data pengujian matric suction
Condition
Moisture Tin No.
Cold Tare Mass (g)
Mass of Wet Filter Paper + Cold Tare Mass (g)
Mass of Dry Filter Paper + Cold Tare Mass (g)
Hot Tare Mass (g)
Mass of Dry Filter Paper (g)
Mass of Water in Filter Paper (g)
Filter Paper Water Content (%)
Suction (kPa)
Suction (Kg/cm²)

106

Tc
M1
M2
Th
Mf
Mw
w
h
h

Initial (wi)
1
20.1856
20.6502
20.4675
20.1856
0.2819
0.1827
64.8102
34.4399
0.3512

wi+10%wi
2
19.3542
19.6919
19.5492
19.3542
0.195
0.1427
73.1795
26.5507
0.2707

Universitas Kristen Maranatha

wi+12%wi
3
18.4929
18.8328
18.6732
18.4929
0.1803
0.1596
88.5191
16.4813
0.1681

wi+15%wi
4
19.0308
19.5824
19.3141
19.0308
0.2833
0.2683
94.7053
13.5981
0.1387

Gambar L6.1 Grafik hubungan kadar air vs nilai suction pada jenis kertas
filter tertentu

Foto-foto alat dan proses pengujian

Gambar L6.2 Kertas filter

Gambar L6.3 Tabung kaca

107

Universitas Kristen Maranatha

Gambar L6.4 Timbangan dengan

Gambar L6.5 Wadah aluminium

ketelitian 0.0001 gr

Gambar L6.6 Penyiapan benda uji
untuk metode contact

Gambar L6.7 Bahan uji yang
sedang didiamkan sampai
kondisi keseimbangan dicapai

108

Universitas Kristen Maranatha

Lampiran 7 Pengujian Direct Shear

Lampiran 7.1 Direct Shear kondisi initial
Data pengujian
Diameter

(D)

= 6.342

cm

Height

(t)

= 2.540

cm

Area

(A)

= 31.589

cm2

Volume

(V)

= 80.237

cm3

Normal stress

( σn )

= 0.1

Kg/cm2

= 0.2956

Kg/div

Ring constant

Soil specimen properties
Container no

=1

Wt. of container

( W1 ) = 66.7

gr

Wt. cont + wet soil

( W2 ) = 184

gr

Wt. cont + dry soil

( W3 ) = 145.2

gr

Wt. of water

( Ww ) = 38.8

gr

Wt. of dry soil

( Ws ) = 78.5

gr

Water content

(w)

%

Wet density

( γwet ) = 1.044

gr/cm3

Dry density

( γdry ) = 0.699

gr/cm3

Angka pori

(e)

= 1.596

Porositas

(n)

= 0.615

Derajat kejenuhan

( Sr )

= 83.931

= 49.43

109

%

Universitas Kristen Maranatha

Tabel L7.1 Data pengujian direct shear kondisi initial dengan σn = 0.1 Kg/cm2
Elapsed
Time
(minute)

Horizontal
Dial
(0,0254
mm)

2.7573

Strain rate

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

=

Strain

Vertical
Dial

(%)

(0,01 mm)

0.40
0.80
1.20
1.60
2.00
2.40
2.80
3.20
3.60
4.01
4.41
4.81
5.21
5.61
6.01
6.41
6.81
7.21
7.61
8.01
8.41
8.81
9.21
9.61

6
11
19
26
34
41
49
59
68
76
86
92
100
105
110
114
116
120
122
123
124
124
124
124

Vertical

Proving
Ring Dial

Shear
Force

Shear
Stress

(div)

(Kg)

(Kg/cm²)

14
19
21.5
27
31
32.5
34.5
35
33.5
34
38
39
38
36
34
32
31
33.5
41
40.5
35
28
25
22

4.138
5.616
6.355
7.981
9.164
9.607
10.198
10.346
9.903
10.050
11.233
11.528
11.233
10.642
10.050
9.459
9.164
9.903
12.120
11.972
10.346
8.277
7.390
6.503

0.131
0.178
0.201
0.253
0.290
0.304
0.323
0.328
0.313
0.318
0.356
0.365
0.356
0.337
0.318
0.299
0.290
0.313
0.384
0.379
0.328
0.262
0.234
0.206

Displacement

0.0024
0.0043
0.0075
0.0102
0.0134
0.0161
0.0193
0.0232
0.0268
0.0299
0.0339
0.0362
0.0394
0.0413
0.0433
0.0449
0.0457
0.0472
0.0480
0.0484
0.0488
0.0488
0.0488
0.0488

Strain
9.61

 3.486 %/min
ElapsedTim e 2.7573

110

Universitas Kristen Maranatha

Grafik Hubungan Strain vs. Shear Stress
0.5000

Shear Stress (Kg/cm2)

0.4000

0.388 Kg/cm

2

0.3000

0.2000

0.1000

0.0000
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Strain (%)
Gambar L7.1 Grafik hubungan strain vs shear stress kondisi initial dengan σn = 0.1 Kg/cm2

111

Universitas Kristen Maranatha

10.00

Data pengujian
Diameter

(D)

= 6.342

cm

Height

(t)

= 2.540

cm

Area

(A)

= 31.589

cm2

Volume

(V)

= 80.237

cm3

Normal stress

( σn )

= 0.2

Kg/cm2

= 0.2956

Kg/div

Ring constant

Soil specimen properties
Container no

=1

Wt. of container

( W1 ) = 62.7

gr

Wt. cont + wet soil

( W2 ) = 182

gr

Wt. cont + dry soil

( W3 ) = 142.65

gr

Wt. of water

( Ww ) = 39.35

gr

Wt. of dry soil

( Ws ) = 79.95

gr

Water content

(w)

%

Wet density

( γwet ) = 1.044

gr/cm3

Dry density

( γdry ) = 0.700

gr/cm3

Angka pori

(e)

= 1.596

Porositas

(n)

= 0.615

Derajat kejenuhan

( Sr )

= 83.577

= 49.22

112

%

Universitas Kristen Maranatha

Tabel L7.2 Data pengujian direct shear kondisi initial dengan σn = 0.2 Kg/cm2
Elapsed
Time
(minute)

Horizontal
Dial
(0,0254
mm)

2.9053

Strain rate

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

=

Strain

Vertical
Dial

(%)

(0,01 mm)

0.40
0.80
1.20
1.60
2.00
2.40
2.80
3.20
3.60
4.01
4.41
4.81
5.21
5.61
6.01
6.41
6.81
7.21
7.61
8.01
8.41
8.81
9.21
9.61

1
1
0.5
1
2
3.5
5
7
9.5
12
19
21
29
22
25
26
27
28
39.5
44.5
50
54.5
60
65.5

Vertical

Proving
Ring Dial

Shear
Force

Shear
Stress

(div)

(Kg)

(Kg/cm²)

13
21
26.5
27
25
26
27
28.5
29
28.5
28
29
30
30.5
34
42
44
39.5
39
38
37.5
35.5
34
32

3.843
6.208
7.833
7.981
7.390
7.686
7.981
8.425
8.572
8.425
8.277
8.572
8.868
9.016
10.050
12.415
13.006
11.676
11.528
11.233
11.085
10.494
10.050
9.459

0.122
0.197
0.248
0.253
0.234
0.243
0.253
0.267
0.271
0.267
0.262
0.271
0.281
0.285
0.318
0.393
0.412
0.370
0.365
0.356
0.351
0.332
0.318
0.299

Displacement

0.0004
0.0004
0.0002
0.0004
0.0008
0.0014
0.0020
0.0028
0.0037
0.0047
0.0075
0.0083
0.0114
0.0087
0.0098
0.0102
0.0106
0.0110
0.0156
0.0175
0.0197
0.0215
0.0236
0.0258

Strain
9.61

 3.308 %/min
ElapsedTim e 2.9053

113

Universitas Kristen Maranatha

Grafik Hubungan Strain vs. Shear Stress
0.5000

0.412 Kg/cm

2

Shear Stress (Kg/cm2)

0.4000

0.3000

0.2000

0.1000

0.0000
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Strain (%)
Gambar L7.2 Grafik hubungan strain vs shear stress kondisi initial dengan σn = 0.2 Kg/cm2

114

Universitas Kristen Maranatha

10.00

Data pengujian
Diameter

(D)

= 6.342

cm

Height

(t)

= 2.540

cm

Area

(A)

= 31.589

cm2

Volume

(V)

= 80.237

cm3

Normal stress

( σn )

= 0.3

Kg/cm2

= 0.2956

Kg/div

Ring constant

Soil specimen properties
Container no

=1

Wt. of container

( W1 ) = 63.5

gr

Wt. cont + wet soil

( W2 ) = 195

gr

Wt. cont + dry soil

( W3 ) = 150.9

gr

Wt. of water

( Ww ) = 44.1

gr

Wt. of dry soil

( Ws ) = 87.4

gr

Water content

(w)

%

Wet density

( γwet ) = 1.044

gr/cm3

Dry density

( γdry ) = 0.694

gr/cm3

Angka pori

(e)

= 1.596

Porositas

(n)

= 0.615

Derajat kejenuhan

( Sr )

= 85.682

= 50.46

115

%

Universitas Kristen Maranatha

Tabel L7.3 Data pengujian direct shear kondisi initial dengan σn = 0.3 Kg/cm2
Elapsed
Time
(minute)

Horizontal
Dial
(0,0254
mm)

3.0343

Strain rate

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
250

=

Strain

Vertical
Dial

(%)

(0,01 mm)

0.40
0.80
1.20
1.60
2.00
2.40
2.80
3.20
3.60
4.01
4.41
4.81
5.21
5.61
6.01
6.41
6.81
7.21
7.61
8.01
8.41
8.81
9.21
9.61
10.01
10.01

5
9
15
14
14
14
12
10
8
7
6
4
4
2
2
2
2
2
2
2
1
1
1
1
1
1

Vertical

Proving
Ring Dial

Shear
Force

Shear
Stress

(div)

(Kg)

(Kg/cm²)

17
25
32
38
41
47
51
55
57
58
58
58
60
60.5
59
57
54
52.5
56
63
70
67
62
57
54
51

5.025
7.390
9.459
11.233
12.120
13.893
15.076
16.258
16.849
17.145
17.145
17.145
17.736
17.884
17.440
16.849
15.962
15.519
16.554
18.623
20.692
19.805
18.327
16.849
15.962
15.076

0.159
0.234
0.299
0.356
0.384
0.440
0.477
0.515
0.533
0.543
0.543
0.543
0.561
0.566
0.552
0.533
0.505
0.491
0.524
0.590
0.655
0.627
0.580
0.533
0.505
0.477

Displacement

0.0020
0.0035
0.0059
0.0055
0.0055
0.0055
0.0047
0.0039
0.0031
0.0028
0.0024
0.0016
0.0016
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0004
0.0004
0.0004
0.0004
0.0004
0.0004

Strain
10.01

 3.300 %/min
ElapsedTim e 3.0343

116

Universitas Kristen Maranatha

Grafik Hubungan Strain vs. Shear Stress
0.7000

Shear Stress (Kg/cm2)

0.6000

0.655 Kg/cm

2

0.5000

0.4000

0.3000

0.2000

0.1000

0.0000
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

Strain (%)
Gambar L7.3 Grafik hubungan strain vs shear stress kondisi initial dengan σn = 0.3 Kg/cm2

117

Universitas Kristen Maranatha

12.00

Lampiran 7.2 Direct Shear kondisi wi + 10%wi
Data pengujian
Diameter

(D)

= 6.342

cm

Height

(t)

= 2.540

cm

Area

(A)

= 31.589

cm2

Volume

(V)

= 80.237

cm3

Normal stress

( σn )

= 0.1

Kg/cm2

= 0.2956

Kg/div

Ring constant

Soil specimen properties
Container no

=1

Wt. of container

( W1 ) = 66

gr

Wt. cont + wet soil

( W2 ) = 178.5

gr

Wt. cont + dry soil

( W3 ) = 138.8

gr

Wt. of water

( Ww ) = 39.7

gr

Wt. of dry soil

( Ws ) = 72.8

gr

Water content

(w)

%

Wet density

( γwet ) = 1.044

gr/cm3

Dry density

( γdry ) = 0.676

gr/cm3

Angka pori

(e)

= 1.596

Porositas

(n)

= 0.615

Derajat kejenuhan

( Sr )

= 92.6025

= 54.53

118

%

Universitas Kristen Maranatha

Tabel L7.4 Data pengujian direct shear kondisi wi + 10%wi dengan σn = 0.1
Kg/cm2
Elapsed
Time
(minute)

Horizontal
Dial
(0,0254
mm)

2.823

Strain rate

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

=

Strain

Vertical
Dial

(%)

(0,01 mm)

0.40
0.80
1.20
1.60
2.00
2.40
2.80
3.20
3.60
4.01
4.41
4.81
5.21
5.61
6.01
6.41
6.81
7.21
7.61
8.01
8.41
8.81
9.21
9.61
10.01

8
11
13
16
17
19
19
18
18
17
17
15
11
10
6
4
3
1
4
10
15
20
25
30
36

Vertical

Proving
Ring Dial

Shear
Force

Shear
Stress

(div)

(Kg)

(Kg/cm²)

5
5
7
10
11
12
12
12
13
15.5
16
17.5
18
18.5
19
19.5
23
29
39
37
33
30.5
28
26.5
25

1.478
1.478
2.069
2.956
3.252
3.547
3.547
3.547
3.843
4.582
4.730
5.173
5.321
5.469
5.616
5.764
6.799
8.572
11.528
10.937
9.755
9.016
8.277
7.833
7.390

0.047
0.047
0.066
0.094
0.103
0.112
0.112
0.112
0.122
0.145
0.150
0.164
0.168
0.173
0.178
0.182
0.215
0.271
0.365
0.346
0.309
0.285
0.262
0.248
0.234

Displacement

0.0031
0.0043
0.0051
0.0063
0.0067
0.0075
0.0075
0.0071
0.0071
0.0067
0.0067
0.0059
0.0043
0.0039
0.0024
0.0016
0.0012
0.0004
0.0016
0.0039
0.0059
0.0079
0.0098
0.0118
0.0142

10.01
Strain

 3.547 %/min
ElapsedTim e 2.823

119

Universitas Kristen Maranatha

Grafik Hubungan Strain vs. Shear Stress
0.4000

0.368 Kg/cm

2

Shear Stress (Kg/cm2)

0.3000

0.2000

0.1000

0.0000
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

Strain (%)
Gambar L7.4 Grafik hubungan strain vs shear stress kondisi wi + 10%wi dengan σn = 0.1 Kg/cm2

120

Universitas Kristen Maranatha

12.00

Data pengujian
Diameter

(D)

= 6.342

cm

Height

(t)

= 2.540

cm

Area

(A)

= 31.589

cm2

Volume

(V)

= 80.237

cm3

Normal stress

( σn )

= 0.2

Kg/cm2

= 0.2956

Kg/div

Ring constant

Soil specimen properties
Container no

=1

Wt. of container

( W1 ) = 66

gr

Wt. cont + wet soil

( W2 ) = 194.6

gr

Wt. cont + dry soil

( W3 ) = 149

gr

Wt. of water

( Ww ) = 45.6

gr

Wt. of dry soil

( Ws ) = 83

gr

Water content

(w)

%

Wet density

( γwet ) = 1.044

gr/cm3

Dry density

( γdry ) = 0.674

gr/cm3

Angka pori

(e)

= 1.596

Porositas

(n)

= 0.615

Derajat kejenuhan

( Sr )

= 93.293

= 54.94

121

%

Universitas Kristen Maranatha

Tabel L7.5 Data pengujian direct shear kondisi wi + 10%wi dengan σn = 0.2
Kg/cm2
Elapsed
Time
(minute)

Horizontal
Dial
(0,0254
mm)

2.646

Strain rate

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230

=

Strain

Vertical
Dial

(%)

(0,01 mm)

0.40
0.80
1.20
1.60
2.00
2.40
2.80
3.20
3.60
4.01
4.41
4.81
5.21
5.61
6.01
6.41
6.81
7.21
7.61
8.01
8.41
8.81
9.21

5
10
18
25
29
31.5
34
36
38
39
40
39.5
39.5
39
37
35
35
34
32
31
29.5
28
25.5

Vertical

Proving
Ring Dial

Shear
Force

Shear
Stress

(div)

(Kg)

(Kg/cm²)

18.5
21
24
27.5
31.5
30
29.5
33.5
35
39
41.5
44
50
53
48
46.5
48
47.5
45.5
44
42
40.5
39.5

5.469
6.208
7.094
8.129
9.311
8.868
8.720
9.903
10.346
11.528
12.267
13.006
14.780
15.667
14.189
13.745
14.189
14.041
13.450
13.006
12.415
11.972
11.676

0.173
0.197
0.225
0.257
0.295
0.281
0.276
0.313
0.328
0.365
0.388
0.412
0.468
0.496
0.449
0.435
0.449
0.444
0.426
0.412
0.393
0.379
0.370

Displacement

0.0020
0.0039
0.0071