Kajian Koefisien Rembesan Pada Saluran Irigasi Tersier Di Desa Kuala Simeme Kecamatan Namorambe Kabupaten Deli Serdang

  Lampiran 1. Flow Chart Penelitian

  Mulai Menentukan lokasi pengukuran Menghitung luas penampang saluran

  Parameter :

  1. Bulk Density

  2. Particle Density

  3. Tekstur Mengukur nilai parameter

  Tanah

  4. Struktur Tanah

  5. Bahan Organik

  6. Evapotransp Melakukan pengolahan data irasi 8.

  7. Perkolasi rembesan Selesai

  Lampiran 5. Perhitungan kerapatan massa, kerapatan partikel dan porositas BTKO Volume Volume Bulk Particle Porositas

  Saluran (gr) total partikel Density Density

  3

  3

  3

  3

  (cm ) (cm ) (g/cm ) (g/cm ) Tepi kanan saluran 1 252,61 192,33 105 1,32 2,19 39,72 Tepi kiri saluran 1 228,72 192,33 100 1,19 2,12 43,86 Dalam saluran 1 212,67 192,33 100 1,11 1,69 34,31 Tepi kanan saluran 2 260,02 192,33 115 1,13 2,17 37,78 Tepi kiri saluran 2 217,23 192,33 100 1,35 2,28 50,43 Dalam saluran 2 228,10 192,33 100 1,19 2,16 44,90 BTKO = Berat tanah kering oven (massa tanah kering) Volume total = volume sing sample

  1

2 Volume Total = t

  4

  1

  2

  = (3,14)(7 cm) (5 cm)

  4

  1

  3

  = (769,3 cm )

  4

  3

  = 192,33 cm Saluran 1 Kerapatan Massa (Bulk Density) Tepi Kanan Saluran Ms = 252,61 g

  Ms = ρ b Vt

  3 252,61 g/cm

  =

  3 192,33 g/cm

  3

  1,32 g/cm

  =

  Tepi Kiri Saluran Ms = 228,72 g

  Ms = ρ b Vt

  3 228,72g/cm

  =

  3 192,33 g/cm

  3 = 1,19 g/cm

  Dalam Saluran Ms = 212,22 g

  Ms = ρ b Vt

  3 212,22 g/cm

  =

  3 192,33 g/cm

  3

  1,11 g/cm

  =

  Kerapatan Partikel Tepi Kanan Saluran Berat Tanah = 228,72 g Volume Tanah = 250 ml Volume air = 200 ml Volume air tanah = 340 ml

  berat tanah = ρ s (volume tanah

  −volume pori )

  Volume Ruang Pori = (volume air + volume tanah) – volume air tanah Volume Ruang Pori = (200 ml+ 250ml) – 340 ml

  = 110 ml ρ

  −volume pori )

  3 Dalam Saluran

  = 2,12 g/cm

  3 200 ml −100 ml

  = 212,67 g/cm

  berat tanah (volume tanah −volume pori )

  =

  s

  = 100 ml ρ

  Volume Ruang Pori = (volume air + volume tanah) – volume air tanah Volume Ruang Pori = (200 ml + 200 ml) – 300 ml

  = berat tanah (volume tanah

  s

  ρ s

  Berat Tanah = 212,67 g Volume Tanah = 200 ml Volume air = 200 ml Volume air tanah = 300 ml

  3 Tepi Kiri Saluran

  2,19 g/cm

  =

  3 200 ml −110 ml

  = 228,72 g/cm

  berat tanah (volume tanah −volume pori )

  =

  Berat Tanah = 252,61 g Volume Tanah = 350 ml

  Volume air = 200 ml Volume air tanah = 350 ml

  berat tanah = ρ s (volume tanah

  −volume pori )

  Volume Ruang Pori = (volume air + volume tanah) – volume air tanah Volume Ruang Pori = (200 ml + 350 ml) – 350 ml

  = 200 ml

  berat tanah

  = ρ

  s (volume tanah −volume pori )

  3 252,61 g/cm

  = 350 ml −200 ml

  3 = 1,69 g/cm

  Porositas Tepi kanan saluran 1

  ρ b

  Porositas = �1 − � x100%

  ρ s

  3 1,32 g/cm

  = �1 −

  3 � x100% g/cm

  2,19

  = 39,72 % Tepi kiri saluran 1

  ρ b

  Porositas = �1 − � x100%

  ρ s

  3 g/cm

  1,19

  = �1 −

  3 � x100% 2,12 g/cm

  = 43,86 % Dalam saluran 1

  ρ b

  Porositas = �1 − � x100%

  ρ s

  3 1,11 g/cm

  = �1 −

  3 � x100% 1,69 g/cm

  = 34,31 % Saluran 2 Kerapatan Massa (Bulk Density) Tepi Kanan Saluran Ms = 217,23 g

  Ms = ρ b Vt

  3 217,23g/cm

  =

  3 192,33 g/cm

  3

  1,13 g/cm

  =

  Tepi Kiri Saluran Ms = 260,02 g

  Ms = ρ b Vt

  3 260,02 g/cm

  =

  3 192,33 g/cm

  3

  1,35 g/cm

  =

  Dalam Saluran Ms = 228,10 g

  Ms = ρ b Vt

  3 228,10 g/cm

  =

  3 192,33 g/cm

  3 = 1,19 g/cm

  Kerapatan Partikel Tepi Kanan Saluran Berat Tanah = 217.23 g Volume Tanah = 250 ml Volume air = 200 ml Volume air tanah = 300 ml

  berat tanah = ρ s (volu me tanah

  −volume pori )

  Volume Ruang Pori = (volume air + volume tanah) – volume air tanah Volume Ruang Pori = (200 ml+ 250ml) – 300 ml

  = 150 ml

  berat tanah

  = ρ

  s (volume tanah −volume pori )

  3 217,23 g/cm

  = 250 ml −150 ml

  3

  2,17 g/cm

  =

  Tepi Kiri Saluran Berat Tanah = 228,10 g Volume Tanah = 250 ml

  Volume air = 200 ml Volume air tanah = 300 ml

  berat tanah = ρ s (volume tanah

  −volume pori )

  Volume Ruang Pori = (volume air + volume tanah) – volume air tanah Volume Ruang Pori = (200 ml + 250 ml) – 300 ml

  = 150 ml

  berat tanah

  = ρ

  s (volume tanah −volume pori )

  3 228,10 g/cm

  = 250 ml −150 ml

  3

  2,28 g/cm

  =

  Dalam Saluran Berat Tanah = 260,02 g Volume Tanah = 250 ml Volume air = 200 ml Volume air tanah = 320 ml

  berat tanah = ρ s (volume tanah

  −volume pori )

  Volume Ruang Pori = (volume air + volume tanah) – volume air tanah Volume Ruang Pori = (200 ml + 250 ml) – 320 ml

  = 150 ml

  berat tanah

  = ρ

  s (volume tanah −volume pori )

  = 260,02 g/cm

  3 250 ml −130 ml

3 Porositas

  Tepi kanan saluran 2 Porositas =

  3 2,28 g/cm 3 � x100%

  � x100% = 44,90 %

  3

  3 2,16 g/cm

  1,19 g/cm

  �1 −

  � x100% =

  ρ b ρ s

  �1 −

  = 50,43 % Dalam saluran 2 Porositas =

  1,13 g/cm

  �1 −

  �1 −

  = 2,16 g/cm

  ρ b ρ s

  �1 −

  = 37,78 % Tepi kiri saluran 2 Porositas =

  3 2,17 g/cm 3 � x100%

  1,35 g/cm

  �1 −

  � x100% =

  ρ b ρ s

  � x100% = Lampiran 6. Perhitungan debit Perhitungan debit pada saluran satu dan dua

  Lokasi Saluran 1 (l/det) Saluran 2 (l/det) Hulu 2,34 2,19 Hilir 2,13 1,79

  Saluran 1 Hulu a.

  Cara Tampung Ulangan Waktu (t) Volume (v) Debit (Q)

  (det) (l) (l/det) I 1,99 6,43 3,232

  II 2,22 6,52 2,937

  III 1,72 6,40 3,721

Q1+Q2+Q3

  Q =

  rata-rata

  3 3,232 l/ det + 2,937 l/ det + 3,721 l/det

  =

  3

  = 3,296 l/det b. Sekat Ukur Thompson

  H = 7,8 cm

  5/2

  Q = 0,0138 H

  5/2

  = 0,0138 (7,8 cm) =2,34 l/det Hilir a.

  Cara Tampung Ulangan Waktu (t) Volume (v) Debit (Q)

  (det) (l) (l/det) I 2,41 5,87 2,436

  II 2,08 5,82 2,798

  III 2,42 5,92 2,446

Q1+Q2+Q3

  Q =

  rata-rata

  3 2,436 l/ det + 2,798 l/ det + 2,446 l/det

  =

  3

  = 2,56 l/det b. Sekat Ukur Thompson

  H = 7,5 cm

  5/2

  Q = 0,0138 H

  5/2

  = 0,0138 (7,5 cm) =2,13 l/det

  Saluran 2 Hulu a.

  Cara Tampung Ulangan Waktu (t) Volume (v) Debit (Q)

  (det) (l) (l/det) I 2,23 5,18 2,322

  II 2,67 5,62 2,104

  III 3,20 6,28 1,962

Q1+Q2+Q3

  Q =

  rata-rata

  3 2,322 l/ det + 2,104 l/ det + 1,96 l/det

  =

  3

  = 2,129 l/det b.

  Sekat Ukur Thompson H = 7,6 cm

  5/2

  Q = 0,0138 H

  5/2

  = 0,0138 (7,6 cm) = 2,19 l/det

  Hilir a.

  Cara Tampung Ulangan Waktu (t) Volume (v) Debit (Q)

  (det) (l) (l/det) I 2,75 4,90 1,810

  II 1,69 3,19 1,887

  III 2,54 4,20 1,653

Q1+Q2+Q3

  Q =

  rata-rata

  3 1,810 l/ det + 1,887 l/ det + 1,653 l/det

  =

  3

  = 1,783 l/det b. Sekat Ukur Thompson

  H = 7 cm

  5/2

  Q = 0,0138 H

  5/2

  = 0,0138 (7 cm) = 1,79 l/det Lampiran 7. Ukuran saluran tersier Saluran 1

  16,1 cm +18,5 cm +16,2 cm

  Kedalaman =

  3

  = 16,93 cm = 0,17 m

  133 cm +135 cm +132 cm

  Lebar =

  3

  = 133,34 cm = 1,334 m

  Saluran 2

  16,1 cm +16,3 cm +15,2 cm

  Kedalaman =

  3

  = 15,86 cm = 0,16 m

  124 cm +129 cm +125 cm

  Lebar =

  3

  = 126 cm = 1,26 m Lampiran 8. Kehilangan Air Perhitungan Kehilangan Air Lokasi Kehilangan air (l/det)

  Saluran 1 0,219 Saluran 2 0,408

  Kehilangan Air Saluran 1 Kehilangan Air = Qhulu – Qhilir

  = (2,344 – 2,125) l/det = 0,219 l/det = 0,219 x 10

  • 3

  m

  3

  /det Kehilangan Air Saluran 2 Kehilangan Air = Qhulu – Qhilir

  = (2,197 – 1,789) l/det = 0,408 l/det = 0,408 x 10

  • 3

  m

  3

  /det Lampiran 9. Perhitungan Evapotranspirasi Saluran 1dan saluran2 Kc Rumput = 0,85 Temperatur (t) = 26,35 C Lama Penyinaran Matahari (P) = 4,79 Kt = 0,031 lt + 0,240

  = 0,031 l(26,35

  C) + 0,240 = 1,06

  K = Kt x Kc K = 1,06 x 0,85

  = 0,901 U =

  KP (45,7+813) 100

  =

  0,901 x 4,79 (45,7(26,35) + 813) 100 =

  87, 057 mm/bln = 2,90 mm/hari Lampiran 10. Perhitungan Perkolasi Saluran 1 Ulangan Perkolasi(mm/hari)

  I 5,66

  II 7

  III 6 Rata-rata 6,22

  Ulangan 1

  • h

  1 (Perkolasi di titik 0 m)

  P

  1 = 20,5 cm

  h

  2 = 20 cm h h

  1

  2 −

  P

  1 = mm/hari t t

  1

  2 − (20,5 cm −20 cm )

  P

  1 = 1 hari

  P

  1 = 0,5 cm/hari

  = 5 mm/hari

  • h

  2 (Perkolasi di titik 15 m)

  P

  1 = 21 cm

  h = 20,3 cm

  2 h h

  1

  2 −

  P = mm/hari

  2 t t

  1

  2 − (21 cm −20,3 cm )

  P

  2 = 1 hari

  P

  2 = 0,7 cm/hari

  = 7 mm/hari

  • 3 (Perkolasi di titik 30 m)

  P h

  1 = 21 cm

  h

  2 = 20,5 cm h h

  1

  2 −

  P

  3 = mm/hari t t

  1

  2 − (21 cm −20,5 cm )

  P

  3 = 1 hari

  P = 0,5 cm/hari

  3

  = 5 mm/hari

  

(P1+P2+P3)

  Perkolasi Rata-rata Ulangan 1 =

  

3

(5+7+5) mm /hari =

  3 = 5,66 mm/hari

  Ulangan II (Perkolasi di titik 0 m) -

1 P

  h

  1 = 20 cm

  h

  2 = 19,3 cm h h

  1

  2 −

  P

  1 = mm/hari t t

  1

  2 − (20 cm −19,3 cm )

  P =

  1 1 hari

  P

  1 = 0,7 cm/hari

  = 7 mm/hari P

  • 2 (Perkolasi di titik 15 m)

  h

  1 = 20,2 cm

  h = 19,6 cm

  2 h h

  1

  2 −

  P = mm/hari

  2 t t

  1

  2 − (20,2 cm −19,6 cm )

  P

  2 = 1 hari P

  2 = 0,6 cm/hari

  = 6 mm/hari

  • h = 20,4 cm

  3 (Perkolasi di titik 30 m)

  P

  1

  h

  2 = 19,6 cm h h

  1

  2 −

  P

  3 = mm/hari t t

  1

  2 − (20,4 cm −19,6 cm )

  P

  3 = 1 hari

  P = 0,8 cm/hari

  3

  = 8 mm/hari

  

(P1+P2+P3)

  Perkolasi Rata-rata Ulangan II =

  

3

(7+6+8) mm /hari =

  3 = 7 mm/hari

  Ulangan III (Perkolasi di titik 0 m)

  • 1

  P

  h

  1 = 19,3 cm

  h

  2 = 18,5 cm h h

  1

  2 −

  P

  1 = mm/hari t t

  1

  2 − (19,3 cm −18,5 cm )

  P =

  1 1 hari

  P

  1 = 0,8cm/hari

  = 8 mm/hari P

  • 2 (Perkolasi di titik 15 m)
h

  1 = 19,5 cm

  h = 19 cm

  2 h h

  1

  2 −

  P = mm/hari

  2 t t

  1

  2 − (19,5 cm −19,cm )

  P

  2 = 1 hari

  P = 0,5 cm/hari

  2

  = 5 mm/hari P

  • 3 (Perkolasi di titik 30 m)

  h = 19,8 cm

  1

  h

  2 = 19,2 cm h h

  1

  2 −

  P

  3 = mm/hari t t

  1

  2 − (19,8 cm −19,2 cm )

  P

  3 = 1 hari

  P = 0,5 cm/hari

  3

  = 5 mm/hari

  

(P1+P2+P3)

  Perkolasi Rata-rata Ulangan III =

  

3

(8+5+5) mm /hari =

  3

  6 mm/hari

  = (5,66+7+6 ) mm /hari

  Nilai rata-rata Perkolasi Saluran 1 =

  3

  = 6,22 mm/hari Saluran 2 Ulangan Perkolasi(mm/hari)

  I 13,67

  II 11

  III 8,66 Rata-rata 11,11

  Ulangan 1 P

  • 1 (Perkolasi di titik 0 m)

  h

  1 = 22,5 cm

  h

  2 = 21,4 cm h h

  1

  2 −

  P

  1 = mm/hari t t

  1

  2 − (22,5 cm −21,4 cm )

  P

  1 = 1 hari

  P = 1,1 cm/hari

  1

  = 11 mm/hari P

  • 2 (Perkolasi di titik 15 m)

  h

  1 = 22 cm

  h

  2 = 20,5 cm h h

  1

  2 −

  P

  2 = mm/hari t t

  1

  2 − (22 cm −20,5 cm )

  P

  2 = 1 hari

  P

  2 = 1,5 cm/hari

  = 15mm/hari (Perkolasi di titik 30 m) -

3 P

  h

  1 = 22 cm

  h

  2 = 20,5 cm h h

  1

  2 −

  P

  3 = mm/hari t t

  1

  2 − (22 cm −20,5 cm )

  P

  3 = 1 hari

  P = 1,5 cm/hari

  3

  = 15 mm/hari

  

(P1+P2+P3)

  Perkolasi Rata-rata Ulangan 1 =

  

3

(11+15+15) mm /hari =

  3 = 13,67 mm/hari

  Ulangan II (Perkolasi di titik 0 m) -

1 P

  h

  1 = 21 cm

  h

  2 = 20,5 cm h h

  1

  2 −

  P

  1 = mm/hari t t

  1

  2 − (21 cm −20,5 cm )

  P =

  1 1 hari

  P

  1 = 0,7 cm/hari

  = 7 mm/hari P

  • 2 (Perkolasi di titik 15 m)

  h

  1 = 20,5 cm

  h = 19 cm

  2 h h

  1

  2 −

  P = mm/hari

  2 t t

  1

  2 − (20,5 cm −19 cm )

  P

  2 = 1 hari P

  2 = 1,5 cm/hari

  = 15 mm/hari

  • h = 20,5 cm

  3 (Perkolasi di titik 30 m)

  P

  1

  h

  2 = 19,3 cm h h

  1

  2 −

  P

  3 = mm/hari t t

  1

  2 − (20,5 cm −19,3 cm )

  P

  3 = 1 hari

  P = 1,2 cm/hari

  3

  = 12 mm/hari

  

(P1+P2+P3)

  Perkolasi Rata-rata Ulangan II =

  

3

(7+15+12) mm /hari =

  3 = 11 mm/hari

  Ulangan III (Perkolasi di titik 0 m)

  • 1

  P

  h

  1 = 20,5 cm

  h

  2 = 19,3 cm h h

  1

  2 −

  P

  1 = mm/hari t t

  1

  2 − (20,5 cm −19,3 cm )

  P =

  1 1 hari

  P

  1 = 1 cm/hari

  = 10 mm/hari P

  • 2 (Perkolasi di titik 15 m)
h

  1 = 19 cm

  h = 18,1 cm

  2 h h

  1

  2 −

  P = mm/hari

  2 t t

  1

  2 − (19 cm −18,1 cm )

  P

  2 = 1 hari

  P = 0,9 cm/hari

  2

  = 9 mm/hari P

  • 3 (Perkolasi di titik 30 m)

  h = 19,2 cm

  1

  h

  2 = 18,5 cm h h

  1

  2 −

  P

  3 = mm/hari t t

  1

  2 − (19,2 cm −18,5 cm )

  P

  3 = 1 hari

  P = 0,7 cm/hari

  3

  = 7 mm/hari

  

(P1+P2+P3)

  Perkolasi Rata-rata Ulangan III =

  

3

(10+9+7) mm /hari =

  3

  8,66 mm/hari

  = (13,67+11+68) mm /hari

  Nilai rata-rata Perkolasi Saluran 2 =

  3

  = 11,11 mm/hari Lampiran 11. Perhitungan Koefisien Rembesan No Lokasi Koefisien Rembesan (mm/hari)

  1 Tepi kanan saluran 1 3.775,68

  2 Tepi kiri saluran 1 10.368,8

  3 Tepi kanan saluran 2 34.621,51

  4 Tepi kiri saluran 2 9.562,13 Saluran 1 Perkolasi = 6,22 mm/hari x Luas saluran

  6,22 mm /hari

  2

  x 37,8 m =

  86,400

  • 6

  3

  = 2,72 x 10 m /det

  • 3

  = 2,72 x 10 l/det Evapotranspirasi = 2,90 mm/hari x Luas saluran

  2,90 mm /hari

  2

  = x 37,8 m

  86,400

  • 6

  3

  = 1,27 x 10 m /det

  • 3

  = 1,27 x 10 l/det Debit Rembesan = Kehilangan air – (Perkolasi + Evapotranspirasi)

  • 3 3 -3 -3

  3

  = 0,219 x 10 m /det – (2,72 x 10 + 1,27 x 10 m /det)

  • 3

  3

  = 0,215 x 10 m /det = 0,215 l/det q

  2 = Debit rembesan per satuan panjang saluran

  3 −3 0,215 x 10 m

  =

  30 m

  • 6

  2

  = 7,2 x 10 m /det d kanan = 45 cm = 0,45 m d kiri = 124 cm

  = 1,24 m h = 38,5 cm

  1

  = 0,385 m Perhitungan koefisien rembesan

  q2 x 2d

  Tepi kanan =

  2 h1

  2 −6 7,2 x 10 m / det x 2 x 0,45m

  =

  2 (0,385 m )

  • 4

  = 4,37 x 10 m/detik = 3.775,68 mm/hari

  q2 x 2d

  Tepi kiri =

  2 h1

  −6 7,2 x 10 / det x 2 x 1,24 m

  =

  

2

(0,385 m )

  • 3

  = 1,20 x 10 m/detik = 10.368,8 mm/hari

  Saluran 2 Perkolasi = 11,11 mm/hari x Luas saluran

  11,11 mm /hari

  2

  x 40,02 m =

  86,400

  • 6

  3

  = 5,15 x 10 m /det

  • 3

  = 5,15 x 10 l/det Evapotranspirasi = 2,90 mm/hari x Luas saluran

  2,90 mm /hari

  2

  = x 40,02 m

  86,400

  • 6

  3

  = 1,34 x 10 m /det

  • 3

  = 1,34 x 10 l/det Debit Rembesan = Kehilangan air – (Perkolasi + Evapotranspirasi)

  • 3 3 -3 -3

  3

  = 0,408 x 10 m /det – (5,15 x 10 + 1,34 x 10 m /det)

  • 3

  3

  = 0,401 x 10 m /det = 0,401 l/det q

  2 = Debit rembesan per satuan panjang saluran

  3 −3 0,218 x 10 m

  =

  30 m

  • 5

  2

  = 7,26 x 10 m /det d kanan = 105 cm = 1,05m d kiri = 29 cm = 0,29 m h

  1 = 26,5 cm

  = 0,265 m Perhitungan koefisien rembesan

  q2 x 2d

  Tepi kanan =

  2 h1

  −5 1,34 x 10 / det x 2 x 1,05m

  =

  

2

(0,265 m )

  • 4

  = 4,0 x 10 m/detik = 34.621,51 mm/hari

  q2 x 2d

  Tepi kiri =

  2 h1

  −5 1,34 x 10 / det x 2 x 0,29 m

  =

  

2

(0,265 m )

  • 4

  = 1,1 x 10 m/detik = 9.562,13 mm/hari Lampiran 12. Perhitungan efisiensi saluran No Lokasi Jarak pengukuran Efisiensi(%)

  1 Saluran 1 30 m 91,02

  2 Saluran 2 30 m 81,02 Saluran 1 Q hulu = 2,34 l/det Q hilir = 2,13 l/det

  Qhilir

  W = x 100%

  Qhulu 2,13 l/det

  = x 100%

  2,34 l/det

  W = 91,02% Saluran 2 Q hulu = 1,79 l/det Q hilir = 2,19 l/det

  Qhilir

  W = x 100%

  Qhulu 1,79 l/det

  = x 100%

  2,19 l/det

  W = 81,73%

  Lampiran 13. Dokumentasi Penelitian Pengukuran Debit Saluran 1 Pengukuran Debit Saluran 2

  Pengukuran Perkolasi Saluran 1 Pengukuran Perkolasi Saluran 2

Dokumen yang terkait

BAB II TINJAUAN PUSTAKA 2.1 Automasi Perpustakaan 2.1.1 Pengertian Automasi Perpustakaan - Penerapan Automasi Pada Perpustakaan Universitas Darma Agung Medan

0 0 18

Efek Waktu Milling Menggunakan Hem (High Energy Milling) Pada Pembuatan Magnet Bonded Pr-Fe-B

0 0 14

BAB 2 LANDASAN TEORI - Efek Waktu Milling Menggunakan Hem (High Energy Milling) Pada Pembuatan Magnet Bonded Pr-Fe-B

0 0 16

BAB 2 LANDASAN TEORI - Kajian Teori Permainan Pada Strategi Pemasaran Suatu Produk Dengan Metode Simpleks

0 0 11

BAB II PENGATURAN PERBURUAN PAUS DI DALAM HUKUM INTERNASIONAL - Perlindungan Terhadap Paus Di Southren Ocean Whale Sanctuary Menurut International Convention For The Regulation Of Whaling (Studi Pada Sengketa Perburuan Paus Antara Jepang Dan Australia )

0 0 17

Perlindungan Terhadap Paus Di Southren Ocean Whale Sanctuary Menurut International Convention For The Regulation Of Whaling (Studi Pada Sengketa Perburuan Paus Antara Jepang Dan Australia )

0 0 23

Reklasifikasi Ultisol Arboretum Usu Kwala Bekala Kecamatan Pancur Batu Kabupaten Deli Serdang

0 1 9

Pengaruh Pakan Dan Inang Terhadap Perkembangan Imago Parasitoid Xanthocampoplex Sp. ( Hymenoptera : Ichneumonidae) Di Laboratorium

0 0 15

Pengaruh Pakan Dan Inang Terhadap Perkembangan Imago Parasitoid Xanthocampoplex Sp. ( Hymenoptera : Ichneumonidae) Di Laboratorium

0 0 13

KATA PENGANTAR - Pengaruh Pakan Dan Inang Terhadap Perkembangan Imago Parasitoid Xanthocampoplex Sp. ( Hymenoptera : Ichneumonidae) Di Laboratorium

0 0 10