Fixed Point Theorems in Complex Valued B-Metric Spaces
CAUCHY โ JURNAL MATEMATIKA MURNI DAN APLIKASI
Volume 4 (4) (2017), Pages 138-145
p-ISSN: 2086-0382; e-ISSN: 2477-3344
Fixed Point Theorems in Complex-Valued b-Metric Spaces
Dahliatul Hasanah
Mathematics Department, Universitas Negeri Malang
Jl. Semarang No. 5 Malang Jawa Timur Indonesia 65145
Email: [email protected]
ABSTRACT
Fixed point theorems in complex-valued metric spaces have been extensively studied following the
extension of the definition of a metric to a complex-valued metric. The definition of b-metric, which is
considered as an extension of a metric, is also extended to complex-valued b-metric. This extension causes
the study of existence and uniqueness of fixed point in complex-valued b-metric spaces. Fixed point
theorems that have been studied in b-metric spaces are now of interest whether the theorems are still
satisfied in complex-valued b-metric spaces.
In this paper, we study the existence and uniqueness of fixed point in complex valued b-metric spaces. We
consider some fixed point theorems in b-metric spaces to be extended to fixed point theorems in complex
valued b-metric spaces. By using the definition of complex-valued b-metric spaces and the properties of
partial order on complex numbers, we have obtained some fixed point theorems in complex-valued b-metric
spaces which are derived from the corresponding theorems in b-metric spaces.
Keywords: b-metric spaces, complex-valued b-metric spaces, fixed point theorems
INTRODUCTION
Fixed point theorems have been the main topic of many researches in various spaces
including metric spaces. Fixed point theorems in metric spaces have been studied extensively by
many researchers as in [1], [2], and [3]. After Bakhtin [4] introduced the notion of b-metric spaces
in 1989, researchers started to develop fixed point theorems in the spaces, for example in [5], [6],
and [7]. In 2011, Azzam et. al [8] introduced a new metric space called complex-valued metric
space as an extension of the classical metric space in terms of the defined metric. Fixed point
theorems are still of interest to study in the new space. This is shown by many articles talked
about fixed point theorems in complex valued-metric spaces as in [9], [10], dan [11]. The
extension of the notion of metric into complex-valued metric causes the extension of b-metric
spaces into complex-valued b-metric spaces. In this paper, we observe fixed point theorems which
have been established in b-metric space whether the theorems are still applicable in the spaces.
METHODS
First, we recall some basic definitions and properties of b-metric spaces given in [5] and
of complex-valued b-metric spaces given in [12].
Submitted: 14 Nopember 2016
Reviewed: 29 Nopember 2016
DOI: http://dx.doi.org/10.18860/ca.v4i4.3669
Accepted: 17 May 2017
Fixed Point Theorems in Complex-Valued b-Metric Spaces
b-Metric Spaces
A ๐-metric space is considered as a generalization of a metric space regarding the
definition of the metric as defined as follows.
Definition 1 (see [5]). Let ๐ be a nonempty set and let ๐ โฅ 1 be a given real number. A function
๐: ๐ ร ๐ โ [0, โ) is called a b-metric space if for all ๐ฅ, ๐ฆ, ๐ง โ ๐ the following conditions are
satisfied.
๐(๐ฅ, ๐ฆ) = 0 if and only if ๐ฅ = ๐ฆ;
๐(๐ฅ, ๐ฆ) = ๐(๐ฆ, ๐ฅ);
๐(๐ฅ, ๐ฆ) โค ๐ [๐(๐ฅ, ๐ง) + ๐(๐ง, ๐ฆ)].
The pair (๐, ๐) is called a b-metric space. The number ๐ โฅ 1 is called the coefficient of
(๐, ๐).
2
Example 2. Let (๐, ๐) be a metric space. The function ๐(๐ฅ, ๐ฆ) is defined by ๐(๐ฅ, ๐ฆ) = (๐(๐ฅ, ๐ฆ)) .
Then (๐, ๐) is a ๐-metric space with coefficient ๐ = 2. This can be seen from the nonnegativity
property and triangle inequality of metric to prove the property (iii).
Complex-Valued b-Metric Spaces
Unlike in real numbers which has completeness property, order is not well-defined in
complex numbers. Before giving the definition of complex-valued b-metric spaces, we define
partial order in complex numbers (see [12]). Let โ be the set of complex numbers and ๐ง1 , ๐ง2 โ โ.
Define partial order โผ on โ as follows. We have ๐ง1 โผ ๐ง2 if and only if ๐ ๐(๐ง1 ) โค ๐ ๐(๐ง2 ) and
๐ผ๐(๐ง1 ) โค ๐ผ๐(๐ง2 ). This means that we would have ๐ง1 โผ ๐ง2 if and only if one of the following
conditions holds:
(i)
Re(๐ง1 ) = Re(๐ง2 ) and Im(๐ง1 ) < Im(๐ง2 ),
(ii)
(iii)
(iv)
Re(๐ง1 ) < Re(๐ง2 ) and Im(๐ง1 ) = Im(๐ง2 ),
Re(๐ง1 ) < Re(๐ง2 ) and Im(๐ง1 ) < Im(๐ง2 ),
Re(๐ง1 ) = Re(๐ง2 ) and Im(๐ง1 ) = Im(๐ง2 ).
If one of the conditions (i), (ii), and (iii) holds, then we will write ๐ง1 โจ ๐ง2 . Particularly, we have
๐ง1 โบ ๐ง2 if the condition (iv) is satisfied.
From the definition of partial order on complex numbers, partial order has the following
properties:
(i)
If 0 โผ ๐ง1 โจ ๐ง2 , then |๐ง1 | < |๐ง2 |;
(ii)
(iii)
๐ง1 โผ ๐ง2 and ๐ง2 โบ ๐ง3 imply ๐ง1 โบ ๐ง3 ;
If ๐ง โ โ, ๐, ๐ โ โ and ๐ โค ๐, then ๐๐ง โผ ๐๐ง.
A b-metric on a b-metric space is a function having real value. Based on the definition of
partial order on complex numbers, real-valued b-metric can be generalized into complex-valued
b-metric as follows.
Definition 3 (see [13]). Let ๐ be a nonempty set and let ๐ โฅ 1 be a given real number. A function
๐: ๐ ร ๐ โ โ is called a complex-valued b-metric on ๐ if, for all ๐ฅ, ๐ฆ, ๐ง โ โ, the following conditions
are satisfied:
(i) 0 โผ d(x, y) and ๐(๐ฅ, ๐ฆ) = 0 if and only if ๐ฅ = ๐ฆ,
(ii) ๐(๐ฅ, ๐ฆ) = ๐(๐ฆ, ๐ฅ),
(iii) ๐(๐ฅ, ๐ฆ) โผ s[d(x, z) + d(z, y)].
The pair (๐, ๐) is called a complex valued b-metric space.
Example 4. Let ๐ = โ. Define the mapping ๐: โ ร โ โ โ by ๐(๐ฅ, ๐ฆ) = |๐ฅ โ ๐ฆ|2 + ๐|๐ฅ โ ๐ฆ|2 for all
๐ฅ, ๐ฆ โ ๐. Then (โ, ๐) is complex-valued b-metric space with ๐ = 2.
Definition 5 (see [13]). Let (๐, ๐) be a complex-valued b-metric space.
(i) A point ๐ฅ โ ๐ is called interior point of set ๐ด โ ๐ if there exists 0 โบ ๐ โ โ such that
๐ต(๐ฅ, ๐) = {๐ฆ โ ๐: ๐(๐ฅ, ๐ฆ) โบ ๐} โ ๐ด.
Dahliatul Hasanah
139
Fixed Point Theorems in Complex-Valued b-Metric Spaces
(ii) A point ๐ฅ โ ๐ is called limit point of a set ๐ด if for every 0 โบ ๐ โ โ, ๐ต(๐ฅ, ๐) โฉ (๐ด โ {๐ฅ}) โ
โ .
(iii) A subset ๐ด โ ๐ is open if each element of ๐ด is an interior point of ๐ด.
(iv) A subset ๐ด โ ๐ is closed if each limit point of ๐ด is contained in ๐ด.
Definition 6 (see [13]). Let (๐, ๐) be a complex valued b-metric space, (๐ฅ๐ ) be a sequence in ๐
and ๐ฅ โ ๐.
(i) (๐ฅ๐ ) is convergent to ๐ฅ โ ๐ if for every 0 โบ ๐ โ โ there exists ๐ โ โ such that for all ๐ โฅ
๐, ๐(๐ฅ๐ , ๐ฅ) โบ ๐. Thus ๐ฅ is the limit of (๐ฅ๐ ) and we write lim(๐ฅ๐ ) = ๐ฅ or (๐ฅ๐ ) โ ๐ฅ as ๐ โ
โ.
(ii) (๐ฅ๐ ) is said to be Cauchy sequence if for every 0 โบ ๐ โ โ there exists ๐ โ โ such that for
all ๐ โฅ ๐, ๐(๐ฅ๐ , ๐ฅ๐+๐ ) โบ ๐, where ๐ โ โ.
(iii) If for every Cauchy sequence in ๐ is convergent, then (๐, ๐) is said to be a complete
complex valued b-metric space.
Lemma 7 (see [13]). Let (๐, ๐) be a complex valued b-metric space ad let (๐ฅ๐ ) be a sequence in ๐.
Then (๐ฅ๐ ) converges to ๐ฅ if and only if |๐(๐ฅ, ๐ฆ)| โ 0 as ๐ โ โ.
Lemma 8 (see [13]). Let Let (๐, ๐) be a complex valued b-metric space ad let (๐ฅ๐ ) be a sequence
in ๐. Then (๐ฅ๐ ) is a Cauchy sequence if and only if |๐(๐ฅ๐ , ๐ฅ๐+๐ )| โ 0 as ๐ โ โ, where ๐ โ โ.
RESULTS AND DISCUSSIONS
The following fixed point theorem is studied by Mishra,et.al [5] in b-metric spaces:
Theorem 9. Let (๐, ๐) be a complete b-metric space and let ๐: ๐ โ ๐ be a function with the
following
๐(๐๐ฅ, ๐๐ฆ) โค ๐๐(๐ฅ, ๐๐ฅ) + ๐๐(๐ฆ, ๐๐ฆ) + ๐๐(๐ฅ, ๐ฆ), โ๐ฅ, ๐ฆ โ ๐
where ๐, ๐, and ๐ are non-negative real numbers and satisfy ๐ + ๐ (๐ + ๐) < 1 for ๐ โฅ 1 then ๐ has
a uniqe fixed point.
This theorem is extended to a fixed point theorem in complex valued b-metric spaces as
follows.
Theorem 10. Let (๐, ๐) be a complete complex valued b-metric space and let ๐: ๐ โ ๐ be a
function with the following
๐(๐๐ฅ, ๐๐ฆ) โผ ๐๐(๐ฅ, ๐๐ฅ) + ๐๐(๐ฆ, ๐๐ฆ) + ๐๐(๐ฅ, ๐ฆ), โ๐ฅ, ๐ฆ โ ๐
where ๐, ๐, and ๐ are non-negative real numbers and satisfy ๐ + ๐ (๐ + ๐) < 1 for ๐ โฅ 1 then ๐ has
a uniqe fixed point.
Proof. Let ๐ฅ0 โ ๐ and (๐ฅ๐ ) be a sequence in X such that
๐ฅ๐ = ๐๐ฅ๐โ1 = ๐ ๐ ๐ฅ0 .
Note that for all ๐ โ โ, we have
๐(๐ฅ๐+2 , ๐ฅ๐+1 ) = ๐(๐๐ฅ๐+1 , ๐๐ฅ๐ )
โผ ๐๐(๐ฅ๐+1 , ๐๐ฅ๐+1 ) + ๐๐(๐ฅ๐ , ๐๐ฅ๐ ) + ๐๐(๐ฅ๐+1 , ๐ฅ๐ )
โผ ๐๐(๐ฅ๐+1 , ๐ฅ๐+2 ) + ๐๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐๐(๐ฅ๐+1 , ๐ฅ๐ )
โผ ๐๐(๐ฅ๐+2 , ๐ฅ๐+1 ) + (๐ + ๐)๐(๐ฅ๐+1 , ๐ฅ๐ )
(1 โ ๐)๐(๐ฅ๐+2 , ๐ฅ๐+1 ) โผ (๐ + ๐)๐(๐ฅ๐+1 , ๐ฅ๐ )
๐+๐
๐(๐ฅ๐+2 , ๐ฅ๐+1 ) โผ (
) ๐(๐ฅ๐+1 , ๐ฅ๐ ).
1โ๐
๐+๐
If we take ๐พ = 1โ๐ and continuing this process, then we have
๐(๐ฅ๐+2 , ๐ฅ๐+1 ) โผ ๐พ ๐+1 ๐(๐ฅ1 , ๐ฅ0 ).
For ๐ โ โ,
๐(๐ฅ๐ , ๐ฅ๐+๐ ) โผ ๐ [๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐(๐ฅ๐+1 , ๐ฅ๐+๐ )]
โผ ๐ ๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐ 2 ๐(๐ฅ๐+1 , ๐ฅ๐+2 ) + ๐ 2 ๐(๐ฅ๐+2 , ๐ฅ๐+๐ )
โผ ๐ ๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐ 2 ๐(๐ฅ๐+1 , ๐ฅ๐+2 ) + ๐ 3 ๐(๐ฅ๐+2 , ๐ฅ๐+3 ) + โฏ + ๐ ๐ ๐(๐ฅ๐+๐โ1 , ๐ฅ๐+๐ )
โผ ๐ ๐พ ๐ ๐(๐ฅ0 , ๐ฅ1 ) + ๐ 2 ๐พ ๐+1 ๐(๐ฅ0 , ๐ฅ1 ) + ๐ 3 ๐พ ๐+2 ๐(๐ฅ0 , ๐ฅ1 ) + โฏ + ๐ ๐ ๐พ ๐+๐โ1 ๐(๐ฅ0 , ๐ฅ1 )
โผ ๐ ๐พ ๐ ๐(๐ฅ0 , ๐ฅ1 )[1 + ๐ ๐พ + (๐ ๐พ)2 + โฏ + (๐ ๐พ)๐โ1 ]
Dahliatul Hasanah
140
Fixed Point Theorems in Complex-Valued b-Metric Spaces
Now,
|๐(๐ฅ๐ , ๐ฅ๐+๐ )| โค |๐ ๐พ ๐ ๐(๐ฅ0 , ๐ฅ1 )[1 + ๐ ๐พ + (๐ ๐พ)2 + โฏ + (๐ ๐พ)๐โ1 ]|
= ๐ ๐พ ๐ ๐(๐ฅ0 , ๐ฅ1 )[1 + ๐ ๐พ + (๐ ๐พ)2 + โฏ + (๐ ๐พ)๐โ1 ]
Since ๐ + ๐ (๐ + ๐) < 1 for ๐ โฅ 1 then ๐พ < 1 and ๐ ๐พ < 1. Taking limit ๐ โ โ, we have ๐พ ๐ โ 0. This
implies |๐(๐ฅ๐ , ๐ฅ๐+๐ )| โ 0 as ๐ โ โ. By Lemma 8, the sequence (๐ฅ๐ ) is Cauchy sequence in X.
Since ๐ is a complete complex valued b-metric space then (๐ฅ๐ ) is a convergent sequence.
Let ๐ฅ โ be the limit of (๐ฅ๐ ). We show that ๐ฅ โ is a fixed point of ๐.
We have
๐(๐ฅ โ , ๐๐ฅ โ ) โผ ๐ [๐(๐ฅ โ , ๐ฅ๐ ) + ๐(๐ฅ๐ , ๐๐ฅ โ )]
= ๐ [๐(๐ฅ โ , ๐ฅ๐ ) + ๐(๐๐ฅ๐โ1 , ๐๐ฅ โ )]
โผ ๐ [๐(๐ฅ โ , ๐ฅ๐ ) + ๐๐(๐ฅ๐โ1 , ๐๐ฅ๐โ1 ) + ๐๐(๐ฅ โ , ๐๐ฅ โ ) + ๐๐(๐ฅ๐โ1 , ๐ฅ โ )]
(1 โ ๐๐ )๐(๐ฅ โ , ๐๐ฅ โ ) โผ ๐ [๐(๐ฅ โ , ๐ฅ๐ ) + ๐๐(๐ฅ๐โ1 , ๐๐ฅ๐โ1 ) + ๐๐(๐ฅ๐โ1 , ๐ฅ โ )]
๐
[๐(๐ฅ โ , ๐ฅ๐ ) + ๐๐(๐ฅ๐โ1 , ๐๐ฅ๐โ1 ) + ๐๐(๐ฅ๐โ1 , ๐ฅ โ )]
๐(๐ฅ โ , ๐๐ฅ โ ) โผ
1 โ ๐๐
๐
[๐(๐ฅ โ , ๐ฅ๐ ) + ๐๐(๐ฅ๐โ1 , ๐ฅ๐ ) + ๐๐(๐ฅ๐โ1 , ๐ฅ โ )]
๐(๐ฅ โ , ๐๐ฅ โ ) โผ
1 โ ๐๐
Taking the absolute value of both sides, we get
๐
|๐(๐ฅ โ , ๐ฅ๐ ) + ๐๐(๐ฅ๐โ1 , ๐ฅ๐ ) + ๐๐(๐ฅ๐โ1 , ๐ฅ โ )|
|๐(๐ฅ โ , ๐๐ฅ โ )| โค
1 โ ๐๐
๐
(|๐(๐ฅ โ , ๐ฅ๐ )| + |๐๐(๐ฅ๐โ1 , ๐ฅ๐ )| + |๐๐(๐ฅ๐โ1 , ๐ฅ โ )|)
โค
1 โ ๐๐
๐
(|๐(๐ฅ โ , ๐ฅ๐ )| + ๐๐พ ๐ |๐(๐ฅ1 , ๐ฅ0 )| + ๐|๐(๐ฅ๐โ1 , ๐ฅ โ )|)
โค
1 โ ๐๐
Since (๐ฅ๐ ) converges to ๐ฅ โ , taking ๐ โ โ implies |๐(๐ฅ โ , ๐ฅ๐ )| โ 0 and |๐(๐ฅ๐โ1 , ๐ฅ โ )| โ 0. Thus for
๐ โ โ, we have
lim|๐(๐ฅ โ , ๐๐ฅ โ )| = 0.
This yields
โ
๐ฅ โ = ๐๐ฅ โ .
Hence ๐ฅ is a fixed point of ๐.
Now we show the uniqueness of the fixed point of ๐. We assume that there are two fixed
points of ๐ which are ๐ฅ = ๐๐ฅ and ๐ฆ = ๐๐ฆ. Thus,
๐(๐ฅ, ๐ฆ) = ๐(๐๐ฅ, ๐๐ฆ)
โผ ๐๐(๐ฅ, ๐๐ฅ) + ๐๐(๐ฆ, ๐๐ฆ) + ๐๐(๐ฅ, ๐ฆ)
โผ ๐๐(๐ฅ, ๐ฅ) + ๐๐(๐ฆ, ๐ฆ) + ๐๐(๐ฅ, ๐ฆ)
โผ ๐๐(๐ฅ, ๐ฆ).
Taking the absolute value of both sides, we have
|๐(๐ฅ, ๐ฆ)| โค |๐๐(๐ฅ, ๐ฆ)|.
This implies ๐(๐ฅ, ๐ฆ) = 0. Based on the properties of complex valued b-metric, we get ๐ฅ = ๐ฆ. This
completes the proof.
Corollary 11. Let (๐, ๐) be a complete complex valued b-metric space with the coefficient ๐ โฅ 1.
Let ๐: ๐ โ ๐ be a mapping (for some fixed ๐) satisfying
๐(๐ ๐ ๐ฅ, ๐ ๐ ๐ฆ) โผ ๐๐(๐ฅ, ๐ ๐ ๐ฅ) + ๐๐(๐ฆ, ๐ ๐ ๐ฆ) + ๐๐(๐ฅ, ๐ฆ)
for all ๐ฅ, ๐ฆ โ ๐ where ๐, ๐, ๐ are non-negative real numbers with ๐ + ๐ (๐ + ๐) < 1. Then ๐ has a
unique fixed point in ๐.
Proof. Suppose ๐ = ๐ ๐ , then by the Theorem 10, there is a fixed point ๐ข such that
๐(๐ข) = ๐ข.
๐ (๐ข)
= ๐ข.
Thus ๐
We have
๐(๐(๐ข), ๐ข) = ๐(๐(๐ ๐ (๐ข)), ๐ข)
= ๐ (๐ ๐ (๐(๐ข)), ๐ ๐ (๐ข))
โผ ๐๐ (๐(๐ข), ๐ ๐ (๐(๐ข))) + ๐๐(๐ข, ๐ ๐ (๐ข)) + ๐๐(๐(๐ข), ๐ข)
= ๐๐ (๐(๐ข), ๐(๐ ๐ (๐ข))) + ๐๐(๐ข, ๐ข) + ๐๐(๐(๐ข), ๐ข)
Dahliatul Hasanah
141
Fixed Point Theorems in Complex-Valued b-Metric Spaces
= ๐๐(๐(๐ข), ๐(๐ข)) + ๐๐(๐ข, ๐ข) + ๐๐(๐(๐ข), ๐ข)
= ๐๐(๐(๐ข), ๐ข).
Taking the absolute value of both sides, we have
|๐(๐(๐ข), ๐ข)| โค ๐|๐(๐(๐ข), ๐ข)|.
Hence
(1 โ ๐)|๐(๐(๐ข), ๐ข)| โค 0.
This must be
|๐(๐(๐ข), ๐ข)| = 0,
which is
๐(๐ข) = ๐ข = ๐ ๐ (๐ข).
So ๐ has a fixed point.
To prove its uniqueness, suppose ๐ฃ is also a fixed point of ๐. We need to prove that ๐ข = ๐ฃ.
We see that
๐(๐ข, ๐ฃ) = ๐(๐ ๐ (๐ข), ๐ ๐ (๐ฃ))
โผ ๐๐(๐ข, ๐ ๐ (๐ข)) + ๐๐(๐ฃ, ๐ ๐ (๐ฃ)) + ๐๐(๐ข, ๐ฃ)
= ๐๐(๐ข, ๐ข) + ๐๐(๐ฃ, ๐ฃ) + ๐๐(๐ข, ๐ฃ)
= ๐๐(๐ข, ๐ฃ).
Taking the absolute value of both sides we get
(1 โ ๐)๐(๐ข, ๐ฃ) โค 0.
Since ๐ < 1, this yields
๐(๐ข, ๐ฃ) = 0.
Thus ๐ข = ๐ฃ.
This completes the uniqueness of the fixed point.
Theorem 12. Let (๐, ๐) be a complete complex-valued b-metric space with constant ๐ โฅ 1 and let
๐: ๐ โ ๐ be a mapping such that
๐(๐๐ฅ, ๐๐ฆ) โผ ๐ผ๐(๐ฅ, ๐๐ฆ) + ๐ฝ๐(๐ฆ, ๐๐ฅ)
1
1
for every ๐ฅ, ๐ฆ โ ๐, where ๐ผ, ๐ฝ โฅ 0 with ๐ผ๐ < 1+๐ or ๐ฝ๐ < 1+๐ . Then ๐ has a fixed point in ๐.
Moreover, if ๐ผ + ๐ฝ < 1, then ๐ has a unique fixed point in ๐.
Proof. Let ๐ฅ0 โ ๐ and (๐ฅ๐ ) be a sequence in X such that
๐ฅ๐ = ๐๐ฅ๐โ1 = ๐ ๐ ๐ฅ0 .
Now, for every ๐ โ โ we have
๐(๐ฅ๐+2 , ๐ฅ๐+1 ) = ๐(๐๐ฅ๐+1 , ๐๐ฅ๐ )
โผ ๐ผ๐(๐ฅ๐+1 , ๐๐ฅ๐ ) + ๐ฝ๐(๐ฅ๐ , ๐๐ฅ๐+1 )
= ๐ผ๐(๐ฅ๐+1 , ๐ฅ๐+1 ) + ๐ฝ๐(๐ฅ๐ , ๐ฅ๐+2 )
= ๐ฝ๐(๐ฅ๐ , ๐ฅ๐+2 )
โผ ๐ ๐ฝ๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐ ๐ฝ๐(๐ฅ๐+1 , ๐ฅ๐+2 )
(1 โ ๐ฝ๐ )๐(๐ฅ๐+1 , ๐ฅ๐+2 ) โผ ๐ ๐ฝ๐(๐ฅ๐ , ๐ฅ๐+1 )
๐ ๐ฝ
๐(๐ฅ๐+1 , ๐ฅ๐+2 ) โผ
๐(๐ฅ๐ , ๐ฅ๐+1 ).
1 โ ๐ฝ๐
๐ ๐ฝ
Taking ๐พ = 1โ๐ฝ๐ and continuing the process yields
๐(๐ฅ๐+1 , ๐ฅ๐+2 ) โผ ๐พ๐(๐ฅ๐ , ๐ฅ๐+1 )
โผ ๐พ 2 ๐(๐ฅ๐โ1 , ๐ฅ๐ )
โฎ
๐+1
โผ๐พ
๐(๐ฅ0 , ๐ฅ1 ).
On the other hand,
๐(๐ฅ๐ , ๐ฅ๐+๐ ) โผ ๐ [๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐(๐ฅ๐+1 , ๐ฅ๐+๐ )]
โผ ๐ ๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐ 2 ๐(๐ฅ๐+1 , ๐ฅ๐+2 ) + ๐ 2 ๐(๐ฅ๐+2 , ๐ฅ๐+๐ )
โผ ๐ ๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐ 2 ๐(๐ฅ๐+1 , ๐ฅ๐+2 ) + ๐ 3 ๐(๐ฅ๐+2 , ๐ฅ๐+3 ) + โฏ + ๐ ๐ ๐(๐ฅ๐+๐โ1 , ๐ฅ๐+๐ )
โผ ๐ ๐พ ๐ ๐(๐ฅ0 , ๐ฅ1 ) + ๐ 2 ๐พ ๐+1 ๐(๐ฅ0 , ๐ฅ1 ) + ๐ 3 ๐พ ๐+2 ๐(๐ฅ0 , ๐ฅ1 ) + โฏ + ๐ ๐ ๐พ ๐+๐โ1 ๐(๐ฅ0 , ๐ฅ1 )
โผ ๐ ๐พ ๐ ๐(๐ฅ0 , ๐ฅ1 )[1 + ๐ ๐พ + (๐ ๐พ)2 + โฏ + (๐ ๐พ)๐โ1 ].
Dahliatul Hasanah
142
Fixed Point Theorems in Complex-Valued b-Metric Spaces
1
1
Since ๐ฝ๐ < 1+๐ then ๐พ โ (0, ๐ ) and ๐ ๐พ < 1. Taking limit ๐ โ โ, we have ๐พ ๐ โ 0. This implies
|๐(๐ฅ๐ , ๐ฅ๐+๐ )| โ 0 as ๐ โ โ. By Lemma 8, the sequence (๐ฅ๐ ) is Cauchy sequence in X. Since ๐ is a
complete complex valued b-metric space then (๐ฅ๐ ) is a convergent sequence.
Suppose that (๐ฅ๐ ) converges to ๐ฅ โ โ ๐. We show that ๐ฅ โ is a fixed point of ๐.
๐(๐ฅ โ , ๐๐ฅ โ ) โผ ๐ [๐(๐ฅ โ , ๐ฅ๐ ) + ๐(๐ฅ๐ , ๐๐ฅ โ )]
= ๐ ๐(๐ฅ โ , ๐ฅ๐ ) + ๐ ๐(๐๐ฅ๐โ1 , ๐๐ฅ โ )
= ๐ ๐(๐ฅ โ , ๐ฅ๐ ) + ๐ ๐ผ๐(๐ฅ๐โ1 , ๐๐ฅ โ ) + ๐ ๐ฝ๐(๐๐ฅ๐โ1 , ๐ฅ โ )
= ๐ ๐(๐ฅ โ , ๐ฅ๐ ) + ๐ ๐ผ๐(๐ฅ๐โ1 , ๐๐ฅ โ ) + ๐ ๐ฝ๐(๐ฅ๐ , ๐ฅ โ )
= (๐ + ๐ ๐ฝ)๐(๐ฅ โ , ๐ฅ๐ ) + ๐ 2 ๐ผ๐(๐ฅ๐โ1 , ๐ฅ โ ) + ๐ 2 ๐ผ๐(๐ฅ โ , ๐๐ฅ โ )
(1 โ ๐ผ๐ 2 )๐(๐ฅ โ , ๐๐ฅ โ ) โผ (๐ + ๐ ๐ฝ)๐(๐ฅ โ , ๐ฅ๐ ) + ๐ 2 ๐ผ๐(๐ฅ๐โ1 , ๐ฅ โ ).
Since (๐ฅ๐ ) converges to ๐ฅ โ that is |๐(๐ฅ โ , ๐ฅ๐ )| โ 0 as ๐ โ โ. and taking the absolute value of both
sides, we have
|๐(๐ฅ โ , ๐๐ฅ โ )| โค 0.
This means that |๐(๐ฅ โ , ๐๐ฅ โ )| = 0, i.e. ๐ฅ โ = ๐๐ฅ โ . So the limit of the sequence is a fixed point of ๐.
Now we suppose that ๐ผ + ๐ฝ < 1. Assume that there are ๐ข, ๐ฃ โ ๐ such that ๐ข = ๐๐ข and ๐ฃ = ๐๐ฃ.
๐(๐ข, ๐ฃ) = ๐(๐๐ข, ๐๐ฃ)
โผ ๐ผ๐(๐ข, ๐๐ฃ) + ๐ฝ๐(๐ฃ, ๐๐ข)
= ๐ผ๐(๐ข, ๐ฃ) + ๐ฝ๐(๐ฃ, ๐ข)
= (๐ผ + ๐ฝ)๐(๐ข, ๐ฃ).
This means that |๐(๐ข, ๐ฃ)| โค (๐ผ + ๐ฝ)|๐(๐ข, ๐ฃ)|. Since ๐ผ + ๐ฝ < 1, then we must have |๐(๐ข, ๐ฃ)| = 0,
i.e. ๐ข = ๐ฃ. The proof of the uniqueness of the fixed point of ๐ when ๐ผ + ๐ฝ < 1 is complete.
Mir [14] studied the following fixed point theorem in b-metric spaces and we generalize
it into complex-valued b-metric spaces.
Theorem 13. Let (๐, ๐) be a complete b-metric space with constant ๐ โฅ 1 and define the sequence
(๐ฅ๐ ) by the recursion
๐ฅ๐ = ๐๐ฅ๐โ1 = ๐ ๐ ๐ฅ0 , ๐ = 1,2, โฆ
1
Let ๐: ๐ โ ๐ be a mapping for which there exists ๐ โ [๐, 2) such that
๐(๐๐ฅ, ๐๐ฆ) โค ๐[๐(๐ฅ, ๐๐ฅ) + ๐(๐ฆ, ๐๐ฆ)]
for all ๐ฅ, ๐ฆ โ ๐. Then there exists ๐ฅ โ โ ๐ such that ๐ฅ๐ โ ๐ฅ โ and ๐ฅ โ is unique fixed point of ๐.
Theorem 14. Let (๐, ๐) be a complete complex-valued b-metric space with constant ๐ โฅ 1. Let
1
๐: ๐ โ ๐ be a mapping for which there exists ๐ โ [๐, ) such that
2
๐(๐๐ฅ, ๐๐ฆ) โค ๐[๐(๐ฅ, ๐๐ฅ) + ๐(๐ฆ, ๐๐ฆ)]
for all ๐ฅ, ๐ฆ โ ๐. Then there exists unique fixed point of ๐.
Proof. We construct a sequence (๐ฅ๐ ) in ๐ by
๐ฅ๐ = ๐๐ฅ๐โ1 = ๐ ๐ ๐ฅ0 , ๐ = 1,2, โฆ
for any ๐ฅ0 โ ๐. We show that this sequence (๐ฅ๐ ) is Cauchy sequence in ๐ and hence is convergent
sequence.
For every ๐ โ โ we have
๐(๐ฅ๐+2 , ๐ฅ๐+1 ) = ๐(๐๐ฅ๐+1 , ๐๐ฅ๐ )
โผ ๐(๐(๐ฅ๐+1 , ๐๐ฅ๐+1 ) + ๐(๐ฅ๐ , ๐๐ฅ๐ ))
= ๐(๐(๐ฅ๐+1 , ๐ฅ๐+2 ) + ๐(๐ฅ๐ , ๐๐ฅ๐ ))
(1 โ ๐)๐(๐ฅ๐+2 , ๐ฅ๐+1 ) โผ ๐๐(๐ฅ๐ , ๐๐ฅ๐ )
๐
๐(๐ฅ๐+1 , ๐ฅ๐ )
๐(๐ฅ๐+2 , ๐ฅ๐+1 ) โผ
1โ๐
If this process continues, for all ๐ โ โ we have
๐ ๐+1
)
๐(๐ฅ1 , ๐ฅ0 ).
๐(๐ฅ๐+2 , ๐ฅ๐+1 ) โผ (
1โ๐
Therefore,
๐(๐ฅ๐ , ๐ฅ๐+๐ ) โผ ๐ [๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐(๐ฅ๐+1 , ๐ฅ๐+๐ )]
โผ ๐ ๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐ 2 ๐(๐ฅ๐+1 , ๐ฅ๐+2 ) + ๐ 2 ๐(๐ฅ๐+2 , ๐ฅ๐+๐ )
Dahliatul Hasanah
143
Fixed Point Theorems in Complex-Valued b-Metric Spaces
โผ ๐ ๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐ 2 ๐(๐ฅ๐+1 , ๐ฅ๐+2 ) + ๐ 3 ๐(๐ฅ๐+2 , ๐ฅ๐+3 ) + โฏ + ๐ ๐ ๐(๐ฅ๐+๐โ1 , ๐ฅ๐+๐ )
๐ ๐
๐ ๐+1
๐ ๐+2
โผ ๐ (
) ๐(๐ฅ0 , ๐ฅ1 ) + ๐ 2 (
)
๐(๐ฅ0 , ๐ฅ1 ) + ๐ 3 (
)
๐(๐ฅ0 , ๐ฅ1 ) + โฏ
1โ๐
1โ๐
1โ๐
๐ ๐+๐โ1
+ ๐ ๐ (
)
๐(๐ฅ0 , ๐ฅ1 ).
1โ๐
2
๐โ1
๐
๐
๐
๐ ๐
) ๐(๐ฅ0 , ๐ฅ1 ) [1 + ๐ (
) + (๐ (
)) + โฏ + (๐ (
))
โผ ๐ (
].
1โ๐
1โ๐
1โ๐
1โ๐
1
๐
Note that ๐ โ [๐, 2) implies (1โ๐) โ [0,1). Taking the absolute value of both sides gives
|๐(๐ฅ๐ , ๐ฅ๐+๐ )| โ 0 as ๐ โ โ.
Thus (๐ฅ๐ ) is Cauchy sequence in ๐ and is therefore a convergent sequence. Suppose ๐ฅ โ โ ๐ is the
limit of sequence (๐ฅ๐ ). We show that ๐ฅ โ is a fixed point of ๐.
Using the properties of b-metric and the mapping ๐, we get
๐(๐ฅ โ , ๐๐ฅ โ ) โผ ๐ [๐(๐ฅ โ , ๐ฅ๐ ) + ๐(๐ฅ๐ , ๐๐ฅ โ )]
= ๐ ๐(๐ฅ โ , ๐ฅ๐ ) + ๐ ๐(๐๐ฅ๐โ1 , ๐๐ฅ โ )
= ๐ ๐(๐ฅ โ , ๐ฅ๐ ) + ๐ ๐๐(๐ฅ๐โ1 , ๐๐ฅ๐โ1 ) + ๐ ๐๐(๐ฅ โ , ๐๐ฅ โ )
= ๐ ๐(๐ฅ โ , ๐ฅ๐ ) + ๐ ๐๐(๐ฅ๐โ1 , ๐ฅ๐ ) + ๐ ๐๐(๐ฅ โ , ๐๐ฅ โ )
(1 โ ๐ ๐)๐(๐ฅ โ , ๐๐ฅ โ ) โผ ๐ ๐(๐ฅ โ , ๐ฅ๐ ) + ๐ ๐๐(๐ฅ๐โ1 , ๐ฅ๐ )
๐ ๐โ1
= ๐ ๐(๐ฅ โ , ๐ฅ๐ ) + ๐ ๐ (
)
๐(๐ฅ1 , ๐ฅ0 )
1โ๐
1
๐ ๐โ1
(๐ ๐(๐ฅ โ , ๐ฅ๐ ) + ๐ ๐ (
)
๐(๐ฅ1 , ๐ฅ0 )).
๐(๐ฅ โ , ๐๐ฅ โ ) โผ
(1 โ ๐ ๐)
1โ๐
Taking the absolute value of both sides and taking ๐ โ โ, we have
lim ๐(๐ฅ โ , ๐๐ฅ โ ) = 0.
This implies ๐ฅ โ is a fixed point of ๐, i.e. ๐ฅ โ = ๐๐ฅ โ .
Now we assume that there exists another fixed point ๐ฃ of ๐, that is ๐ฃ = ๐๐ฃ.
We have
๐(๐ฅ โ , ๐ฃ) = ๐(๐๐ฅ โ , ๐๐ฃ)
โผ ๐(๐(๐ฅ โ , ๐๐ฅ โ ) + ๐(๐ฃ, ๐๐ฃ))
= ๐(๐(๐ฅ โ , ๐ฅ โ ) + ๐(๐ฃ, ๐ฃ))
= 0.
Taking the absolute value of both sides we obtain |๐(๐ฅ โ , ๐ฃ)| โค 0 which is a contradiction to the
distinct fixed points. Hence ๐ฅ โ is the unique fixed point of ๐.
CONCLUSION
Complex valued b-metric spaces are considered as a generalisation of b-metric spaces by
changing the definition of real valued metric into complex valued metric. This change is expected
to bring wider applications of fixed point theorems. In this paper, we extend fixed point theorems
in b-metric spaces into fixed point theorems in complex valued b-metric spaces. By using the
properties of partial order on complex numbers, a mapping ๐ on a real valued b-metric space
which has unique fixed point still has unique fixed point in a complex valued b-metric space.
REFERENCES
[1] T. Zamfirescu, "Fix point theorems in metric spaces," Archiv der Mathematik, vol. 2, no. 1, pp. 292-298,
1972.
Dahliatul Hasanah
144
Fixed Point Theorems in Complex-Valued b-Metric Spaces
[2] G. Emmanuele, "Fixed point theorems in complete metric spaces," Nonlinear Analysis: Theory, Methods
& Aplications, vol. 5, no. 3, pp. 287-292, 1981.
[3] T. Suzuki, "A new type of fixed point theorem in metric spaces," Nonlinear Analysis: Theory, Methods
& Applications, vol. 71, no. 11, pp. 5313-5317, 2009.
[4] I. A. Bakhtin, "The contraction principle in quasimetric spaces," Functional Analysis, vol. 30, pp. 26-37,
1989.
[5] P. K. Misra, S. Sachdeva and S. K. Banerjee, "Some fixed point theorems in b-metric space," Tourkish
Journal of Analysis and Number Theory, vol. 2, no. 1, pp. 19-22, 2014.
[6] A. K. Dubey, R. Shukla and R. P. Dubey, "Some fixed point results in b-metric spaces," Asian Journal of
Mathematics and Applications, vol. 2014, 2014.
[7] M. Demma and P. Vetro, "Picard sequence and fixed point results on b-metric spaces," Hindawi
Publishing Corporation. Journal of Function Spaces, vol. 2015, 2015.
[8] A. Azzam, B. Fisher and M. Khan, "Common fixed point theorems in complex valued metric spaces,"
Numerical Functional Analysis and Optimization, vol. 32, no. 3, pp. 243-253, 2011.
[9] K. Sitthikul and S. Saejung, "Some fixed point theorems in complex valued metric spaces," Fixed Point
Theory and Applications, p. 189, 2012.
[10] W. Sintunavarat and P. Kumam, "Generalised common fixed point theorems in complex valued metric
spaces and applications," Journal of Inequalities and Applications, 2012.
[11] H. K. Nashine, M. Imdad and M. Hasan, "Common fixed point theorems under rational contractions in
complex valued metric spaces," Journal of Nonlinear Science and Applications, vol. 7, pp. 42-50, 2014.
[12] A. A. Mukheimer, "Some common fixed point theorems in complex valued b-metric spaces," Hindawi
Publishing Coorporation. The Scientific World Journal, vol. 2014, 2014.
[13] A. K. Dubey, R. Shukla and R. P. Dubey, "Some fixed point theorems in complex valued b-metric
spaces," Hindawi Publishing Coorporation. Journal of Complex Systems, vol. 2015, 2015.
[14] M. Kir and H. Kiziltunc, "On some well known fixed point b-metric spaces," Turkish Journal of Analysis
and Number Theory, vol. 1, no. 1, pp. 13-16, 2013.
Dahliatul Hasanah
145
Volume 4 (4) (2017), Pages 138-145
p-ISSN: 2086-0382; e-ISSN: 2477-3344
Fixed Point Theorems in Complex-Valued b-Metric Spaces
Dahliatul Hasanah
Mathematics Department, Universitas Negeri Malang
Jl. Semarang No. 5 Malang Jawa Timur Indonesia 65145
Email: [email protected]
ABSTRACT
Fixed point theorems in complex-valued metric spaces have been extensively studied following the
extension of the definition of a metric to a complex-valued metric. The definition of b-metric, which is
considered as an extension of a metric, is also extended to complex-valued b-metric. This extension causes
the study of existence and uniqueness of fixed point in complex-valued b-metric spaces. Fixed point
theorems that have been studied in b-metric spaces are now of interest whether the theorems are still
satisfied in complex-valued b-metric spaces.
In this paper, we study the existence and uniqueness of fixed point in complex valued b-metric spaces. We
consider some fixed point theorems in b-metric spaces to be extended to fixed point theorems in complex
valued b-metric spaces. By using the definition of complex-valued b-metric spaces and the properties of
partial order on complex numbers, we have obtained some fixed point theorems in complex-valued b-metric
spaces which are derived from the corresponding theorems in b-metric spaces.
Keywords: b-metric spaces, complex-valued b-metric spaces, fixed point theorems
INTRODUCTION
Fixed point theorems have been the main topic of many researches in various spaces
including metric spaces. Fixed point theorems in metric spaces have been studied extensively by
many researchers as in [1], [2], and [3]. After Bakhtin [4] introduced the notion of b-metric spaces
in 1989, researchers started to develop fixed point theorems in the spaces, for example in [5], [6],
and [7]. In 2011, Azzam et. al [8] introduced a new metric space called complex-valued metric
space as an extension of the classical metric space in terms of the defined metric. Fixed point
theorems are still of interest to study in the new space. This is shown by many articles talked
about fixed point theorems in complex valued-metric spaces as in [9], [10], dan [11]. The
extension of the notion of metric into complex-valued metric causes the extension of b-metric
spaces into complex-valued b-metric spaces. In this paper, we observe fixed point theorems which
have been established in b-metric space whether the theorems are still applicable in the spaces.
METHODS
First, we recall some basic definitions and properties of b-metric spaces given in [5] and
of complex-valued b-metric spaces given in [12].
Submitted: 14 Nopember 2016
Reviewed: 29 Nopember 2016
DOI: http://dx.doi.org/10.18860/ca.v4i4.3669
Accepted: 17 May 2017
Fixed Point Theorems in Complex-Valued b-Metric Spaces
b-Metric Spaces
A ๐-metric space is considered as a generalization of a metric space regarding the
definition of the metric as defined as follows.
Definition 1 (see [5]). Let ๐ be a nonempty set and let ๐ โฅ 1 be a given real number. A function
๐: ๐ ร ๐ โ [0, โ) is called a b-metric space if for all ๐ฅ, ๐ฆ, ๐ง โ ๐ the following conditions are
satisfied.
๐(๐ฅ, ๐ฆ) = 0 if and only if ๐ฅ = ๐ฆ;
๐(๐ฅ, ๐ฆ) = ๐(๐ฆ, ๐ฅ);
๐(๐ฅ, ๐ฆ) โค ๐ [๐(๐ฅ, ๐ง) + ๐(๐ง, ๐ฆ)].
The pair (๐, ๐) is called a b-metric space. The number ๐ โฅ 1 is called the coefficient of
(๐, ๐).
2
Example 2. Let (๐, ๐) be a metric space. The function ๐(๐ฅ, ๐ฆ) is defined by ๐(๐ฅ, ๐ฆ) = (๐(๐ฅ, ๐ฆ)) .
Then (๐, ๐) is a ๐-metric space with coefficient ๐ = 2. This can be seen from the nonnegativity
property and triangle inequality of metric to prove the property (iii).
Complex-Valued b-Metric Spaces
Unlike in real numbers which has completeness property, order is not well-defined in
complex numbers. Before giving the definition of complex-valued b-metric spaces, we define
partial order in complex numbers (see [12]). Let โ be the set of complex numbers and ๐ง1 , ๐ง2 โ โ.
Define partial order โผ on โ as follows. We have ๐ง1 โผ ๐ง2 if and only if ๐ ๐(๐ง1 ) โค ๐ ๐(๐ง2 ) and
๐ผ๐(๐ง1 ) โค ๐ผ๐(๐ง2 ). This means that we would have ๐ง1 โผ ๐ง2 if and only if one of the following
conditions holds:
(i)
Re(๐ง1 ) = Re(๐ง2 ) and Im(๐ง1 ) < Im(๐ง2 ),
(ii)
(iii)
(iv)
Re(๐ง1 ) < Re(๐ง2 ) and Im(๐ง1 ) = Im(๐ง2 ),
Re(๐ง1 ) < Re(๐ง2 ) and Im(๐ง1 ) < Im(๐ง2 ),
Re(๐ง1 ) = Re(๐ง2 ) and Im(๐ง1 ) = Im(๐ง2 ).
If one of the conditions (i), (ii), and (iii) holds, then we will write ๐ง1 โจ ๐ง2 . Particularly, we have
๐ง1 โบ ๐ง2 if the condition (iv) is satisfied.
From the definition of partial order on complex numbers, partial order has the following
properties:
(i)
If 0 โผ ๐ง1 โจ ๐ง2 , then |๐ง1 | < |๐ง2 |;
(ii)
(iii)
๐ง1 โผ ๐ง2 and ๐ง2 โบ ๐ง3 imply ๐ง1 โบ ๐ง3 ;
If ๐ง โ โ, ๐, ๐ โ โ and ๐ โค ๐, then ๐๐ง โผ ๐๐ง.
A b-metric on a b-metric space is a function having real value. Based on the definition of
partial order on complex numbers, real-valued b-metric can be generalized into complex-valued
b-metric as follows.
Definition 3 (see [13]). Let ๐ be a nonempty set and let ๐ โฅ 1 be a given real number. A function
๐: ๐ ร ๐ โ โ is called a complex-valued b-metric on ๐ if, for all ๐ฅ, ๐ฆ, ๐ง โ โ, the following conditions
are satisfied:
(i) 0 โผ d(x, y) and ๐(๐ฅ, ๐ฆ) = 0 if and only if ๐ฅ = ๐ฆ,
(ii) ๐(๐ฅ, ๐ฆ) = ๐(๐ฆ, ๐ฅ),
(iii) ๐(๐ฅ, ๐ฆ) โผ s[d(x, z) + d(z, y)].
The pair (๐, ๐) is called a complex valued b-metric space.
Example 4. Let ๐ = โ. Define the mapping ๐: โ ร โ โ โ by ๐(๐ฅ, ๐ฆ) = |๐ฅ โ ๐ฆ|2 + ๐|๐ฅ โ ๐ฆ|2 for all
๐ฅ, ๐ฆ โ ๐. Then (โ, ๐) is complex-valued b-metric space with ๐ = 2.
Definition 5 (see [13]). Let (๐, ๐) be a complex-valued b-metric space.
(i) A point ๐ฅ โ ๐ is called interior point of set ๐ด โ ๐ if there exists 0 โบ ๐ โ โ such that
๐ต(๐ฅ, ๐) = {๐ฆ โ ๐: ๐(๐ฅ, ๐ฆ) โบ ๐} โ ๐ด.
Dahliatul Hasanah
139
Fixed Point Theorems in Complex-Valued b-Metric Spaces
(ii) A point ๐ฅ โ ๐ is called limit point of a set ๐ด if for every 0 โบ ๐ โ โ, ๐ต(๐ฅ, ๐) โฉ (๐ด โ {๐ฅ}) โ
โ .
(iii) A subset ๐ด โ ๐ is open if each element of ๐ด is an interior point of ๐ด.
(iv) A subset ๐ด โ ๐ is closed if each limit point of ๐ด is contained in ๐ด.
Definition 6 (see [13]). Let (๐, ๐) be a complex valued b-metric space, (๐ฅ๐ ) be a sequence in ๐
and ๐ฅ โ ๐.
(i) (๐ฅ๐ ) is convergent to ๐ฅ โ ๐ if for every 0 โบ ๐ โ โ there exists ๐ โ โ such that for all ๐ โฅ
๐, ๐(๐ฅ๐ , ๐ฅ) โบ ๐. Thus ๐ฅ is the limit of (๐ฅ๐ ) and we write lim(๐ฅ๐ ) = ๐ฅ or (๐ฅ๐ ) โ ๐ฅ as ๐ โ
โ.
(ii) (๐ฅ๐ ) is said to be Cauchy sequence if for every 0 โบ ๐ โ โ there exists ๐ โ โ such that for
all ๐ โฅ ๐, ๐(๐ฅ๐ , ๐ฅ๐+๐ ) โบ ๐, where ๐ โ โ.
(iii) If for every Cauchy sequence in ๐ is convergent, then (๐, ๐) is said to be a complete
complex valued b-metric space.
Lemma 7 (see [13]). Let (๐, ๐) be a complex valued b-metric space ad let (๐ฅ๐ ) be a sequence in ๐.
Then (๐ฅ๐ ) converges to ๐ฅ if and only if |๐(๐ฅ, ๐ฆ)| โ 0 as ๐ โ โ.
Lemma 8 (see [13]). Let Let (๐, ๐) be a complex valued b-metric space ad let (๐ฅ๐ ) be a sequence
in ๐. Then (๐ฅ๐ ) is a Cauchy sequence if and only if |๐(๐ฅ๐ , ๐ฅ๐+๐ )| โ 0 as ๐ โ โ, where ๐ โ โ.
RESULTS AND DISCUSSIONS
The following fixed point theorem is studied by Mishra,et.al [5] in b-metric spaces:
Theorem 9. Let (๐, ๐) be a complete b-metric space and let ๐: ๐ โ ๐ be a function with the
following
๐(๐๐ฅ, ๐๐ฆ) โค ๐๐(๐ฅ, ๐๐ฅ) + ๐๐(๐ฆ, ๐๐ฆ) + ๐๐(๐ฅ, ๐ฆ), โ๐ฅ, ๐ฆ โ ๐
where ๐, ๐, and ๐ are non-negative real numbers and satisfy ๐ + ๐ (๐ + ๐) < 1 for ๐ โฅ 1 then ๐ has
a uniqe fixed point.
This theorem is extended to a fixed point theorem in complex valued b-metric spaces as
follows.
Theorem 10. Let (๐, ๐) be a complete complex valued b-metric space and let ๐: ๐ โ ๐ be a
function with the following
๐(๐๐ฅ, ๐๐ฆ) โผ ๐๐(๐ฅ, ๐๐ฅ) + ๐๐(๐ฆ, ๐๐ฆ) + ๐๐(๐ฅ, ๐ฆ), โ๐ฅ, ๐ฆ โ ๐
where ๐, ๐, and ๐ are non-negative real numbers and satisfy ๐ + ๐ (๐ + ๐) < 1 for ๐ โฅ 1 then ๐ has
a uniqe fixed point.
Proof. Let ๐ฅ0 โ ๐ and (๐ฅ๐ ) be a sequence in X such that
๐ฅ๐ = ๐๐ฅ๐โ1 = ๐ ๐ ๐ฅ0 .
Note that for all ๐ โ โ, we have
๐(๐ฅ๐+2 , ๐ฅ๐+1 ) = ๐(๐๐ฅ๐+1 , ๐๐ฅ๐ )
โผ ๐๐(๐ฅ๐+1 , ๐๐ฅ๐+1 ) + ๐๐(๐ฅ๐ , ๐๐ฅ๐ ) + ๐๐(๐ฅ๐+1 , ๐ฅ๐ )
โผ ๐๐(๐ฅ๐+1 , ๐ฅ๐+2 ) + ๐๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐๐(๐ฅ๐+1 , ๐ฅ๐ )
โผ ๐๐(๐ฅ๐+2 , ๐ฅ๐+1 ) + (๐ + ๐)๐(๐ฅ๐+1 , ๐ฅ๐ )
(1 โ ๐)๐(๐ฅ๐+2 , ๐ฅ๐+1 ) โผ (๐ + ๐)๐(๐ฅ๐+1 , ๐ฅ๐ )
๐+๐
๐(๐ฅ๐+2 , ๐ฅ๐+1 ) โผ (
) ๐(๐ฅ๐+1 , ๐ฅ๐ ).
1โ๐
๐+๐
If we take ๐พ = 1โ๐ and continuing this process, then we have
๐(๐ฅ๐+2 , ๐ฅ๐+1 ) โผ ๐พ ๐+1 ๐(๐ฅ1 , ๐ฅ0 ).
For ๐ โ โ,
๐(๐ฅ๐ , ๐ฅ๐+๐ ) โผ ๐ [๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐(๐ฅ๐+1 , ๐ฅ๐+๐ )]
โผ ๐ ๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐ 2 ๐(๐ฅ๐+1 , ๐ฅ๐+2 ) + ๐ 2 ๐(๐ฅ๐+2 , ๐ฅ๐+๐ )
โผ ๐ ๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐ 2 ๐(๐ฅ๐+1 , ๐ฅ๐+2 ) + ๐ 3 ๐(๐ฅ๐+2 , ๐ฅ๐+3 ) + โฏ + ๐ ๐ ๐(๐ฅ๐+๐โ1 , ๐ฅ๐+๐ )
โผ ๐ ๐พ ๐ ๐(๐ฅ0 , ๐ฅ1 ) + ๐ 2 ๐พ ๐+1 ๐(๐ฅ0 , ๐ฅ1 ) + ๐ 3 ๐พ ๐+2 ๐(๐ฅ0 , ๐ฅ1 ) + โฏ + ๐ ๐ ๐พ ๐+๐โ1 ๐(๐ฅ0 , ๐ฅ1 )
โผ ๐ ๐พ ๐ ๐(๐ฅ0 , ๐ฅ1 )[1 + ๐ ๐พ + (๐ ๐พ)2 + โฏ + (๐ ๐พ)๐โ1 ]
Dahliatul Hasanah
140
Fixed Point Theorems in Complex-Valued b-Metric Spaces
Now,
|๐(๐ฅ๐ , ๐ฅ๐+๐ )| โค |๐ ๐พ ๐ ๐(๐ฅ0 , ๐ฅ1 )[1 + ๐ ๐พ + (๐ ๐พ)2 + โฏ + (๐ ๐พ)๐โ1 ]|
= ๐ ๐พ ๐ ๐(๐ฅ0 , ๐ฅ1 )[1 + ๐ ๐พ + (๐ ๐พ)2 + โฏ + (๐ ๐พ)๐โ1 ]
Since ๐ + ๐ (๐ + ๐) < 1 for ๐ โฅ 1 then ๐พ < 1 and ๐ ๐พ < 1. Taking limit ๐ โ โ, we have ๐พ ๐ โ 0. This
implies |๐(๐ฅ๐ , ๐ฅ๐+๐ )| โ 0 as ๐ โ โ. By Lemma 8, the sequence (๐ฅ๐ ) is Cauchy sequence in X.
Since ๐ is a complete complex valued b-metric space then (๐ฅ๐ ) is a convergent sequence.
Let ๐ฅ โ be the limit of (๐ฅ๐ ). We show that ๐ฅ โ is a fixed point of ๐.
We have
๐(๐ฅ โ , ๐๐ฅ โ ) โผ ๐ [๐(๐ฅ โ , ๐ฅ๐ ) + ๐(๐ฅ๐ , ๐๐ฅ โ )]
= ๐ [๐(๐ฅ โ , ๐ฅ๐ ) + ๐(๐๐ฅ๐โ1 , ๐๐ฅ โ )]
โผ ๐ [๐(๐ฅ โ , ๐ฅ๐ ) + ๐๐(๐ฅ๐โ1 , ๐๐ฅ๐โ1 ) + ๐๐(๐ฅ โ , ๐๐ฅ โ ) + ๐๐(๐ฅ๐โ1 , ๐ฅ โ )]
(1 โ ๐๐ )๐(๐ฅ โ , ๐๐ฅ โ ) โผ ๐ [๐(๐ฅ โ , ๐ฅ๐ ) + ๐๐(๐ฅ๐โ1 , ๐๐ฅ๐โ1 ) + ๐๐(๐ฅ๐โ1 , ๐ฅ โ )]
๐
[๐(๐ฅ โ , ๐ฅ๐ ) + ๐๐(๐ฅ๐โ1 , ๐๐ฅ๐โ1 ) + ๐๐(๐ฅ๐โ1 , ๐ฅ โ )]
๐(๐ฅ โ , ๐๐ฅ โ ) โผ
1 โ ๐๐
๐
[๐(๐ฅ โ , ๐ฅ๐ ) + ๐๐(๐ฅ๐โ1 , ๐ฅ๐ ) + ๐๐(๐ฅ๐โ1 , ๐ฅ โ )]
๐(๐ฅ โ , ๐๐ฅ โ ) โผ
1 โ ๐๐
Taking the absolute value of both sides, we get
๐
|๐(๐ฅ โ , ๐ฅ๐ ) + ๐๐(๐ฅ๐โ1 , ๐ฅ๐ ) + ๐๐(๐ฅ๐โ1 , ๐ฅ โ )|
|๐(๐ฅ โ , ๐๐ฅ โ )| โค
1 โ ๐๐
๐
(|๐(๐ฅ โ , ๐ฅ๐ )| + |๐๐(๐ฅ๐โ1 , ๐ฅ๐ )| + |๐๐(๐ฅ๐โ1 , ๐ฅ โ )|)
โค
1 โ ๐๐
๐
(|๐(๐ฅ โ , ๐ฅ๐ )| + ๐๐พ ๐ |๐(๐ฅ1 , ๐ฅ0 )| + ๐|๐(๐ฅ๐โ1 , ๐ฅ โ )|)
โค
1 โ ๐๐
Since (๐ฅ๐ ) converges to ๐ฅ โ , taking ๐ โ โ implies |๐(๐ฅ โ , ๐ฅ๐ )| โ 0 and |๐(๐ฅ๐โ1 , ๐ฅ โ )| โ 0. Thus for
๐ โ โ, we have
lim|๐(๐ฅ โ , ๐๐ฅ โ )| = 0.
This yields
โ
๐ฅ โ = ๐๐ฅ โ .
Hence ๐ฅ is a fixed point of ๐.
Now we show the uniqueness of the fixed point of ๐. We assume that there are two fixed
points of ๐ which are ๐ฅ = ๐๐ฅ and ๐ฆ = ๐๐ฆ. Thus,
๐(๐ฅ, ๐ฆ) = ๐(๐๐ฅ, ๐๐ฆ)
โผ ๐๐(๐ฅ, ๐๐ฅ) + ๐๐(๐ฆ, ๐๐ฆ) + ๐๐(๐ฅ, ๐ฆ)
โผ ๐๐(๐ฅ, ๐ฅ) + ๐๐(๐ฆ, ๐ฆ) + ๐๐(๐ฅ, ๐ฆ)
โผ ๐๐(๐ฅ, ๐ฆ).
Taking the absolute value of both sides, we have
|๐(๐ฅ, ๐ฆ)| โค |๐๐(๐ฅ, ๐ฆ)|.
This implies ๐(๐ฅ, ๐ฆ) = 0. Based on the properties of complex valued b-metric, we get ๐ฅ = ๐ฆ. This
completes the proof.
Corollary 11. Let (๐, ๐) be a complete complex valued b-metric space with the coefficient ๐ โฅ 1.
Let ๐: ๐ โ ๐ be a mapping (for some fixed ๐) satisfying
๐(๐ ๐ ๐ฅ, ๐ ๐ ๐ฆ) โผ ๐๐(๐ฅ, ๐ ๐ ๐ฅ) + ๐๐(๐ฆ, ๐ ๐ ๐ฆ) + ๐๐(๐ฅ, ๐ฆ)
for all ๐ฅ, ๐ฆ โ ๐ where ๐, ๐, ๐ are non-negative real numbers with ๐ + ๐ (๐ + ๐) < 1. Then ๐ has a
unique fixed point in ๐.
Proof. Suppose ๐ = ๐ ๐ , then by the Theorem 10, there is a fixed point ๐ข such that
๐(๐ข) = ๐ข.
๐ (๐ข)
= ๐ข.
Thus ๐
We have
๐(๐(๐ข), ๐ข) = ๐(๐(๐ ๐ (๐ข)), ๐ข)
= ๐ (๐ ๐ (๐(๐ข)), ๐ ๐ (๐ข))
โผ ๐๐ (๐(๐ข), ๐ ๐ (๐(๐ข))) + ๐๐(๐ข, ๐ ๐ (๐ข)) + ๐๐(๐(๐ข), ๐ข)
= ๐๐ (๐(๐ข), ๐(๐ ๐ (๐ข))) + ๐๐(๐ข, ๐ข) + ๐๐(๐(๐ข), ๐ข)
Dahliatul Hasanah
141
Fixed Point Theorems in Complex-Valued b-Metric Spaces
= ๐๐(๐(๐ข), ๐(๐ข)) + ๐๐(๐ข, ๐ข) + ๐๐(๐(๐ข), ๐ข)
= ๐๐(๐(๐ข), ๐ข).
Taking the absolute value of both sides, we have
|๐(๐(๐ข), ๐ข)| โค ๐|๐(๐(๐ข), ๐ข)|.
Hence
(1 โ ๐)|๐(๐(๐ข), ๐ข)| โค 0.
This must be
|๐(๐(๐ข), ๐ข)| = 0,
which is
๐(๐ข) = ๐ข = ๐ ๐ (๐ข).
So ๐ has a fixed point.
To prove its uniqueness, suppose ๐ฃ is also a fixed point of ๐. We need to prove that ๐ข = ๐ฃ.
We see that
๐(๐ข, ๐ฃ) = ๐(๐ ๐ (๐ข), ๐ ๐ (๐ฃ))
โผ ๐๐(๐ข, ๐ ๐ (๐ข)) + ๐๐(๐ฃ, ๐ ๐ (๐ฃ)) + ๐๐(๐ข, ๐ฃ)
= ๐๐(๐ข, ๐ข) + ๐๐(๐ฃ, ๐ฃ) + ๐๐(๐ข, ๐ฃ)
= ๐๐(๐ข, ๐ฃ).
Taking the absolute value of both sides we get
(1 โ ๐)๐(๐ข, ๐ฃ) โค 0.
Since ๐ < 1, this yields
๐(๐ข, ๐ฃ) = 0.
Thus ๐ข = ๐ฃ.
This completes the uniqueness of the fixed point.
Theorem 12. Let (๐, ๐) be a complete complex-valued b-metric space with constant ๐ โฅ 1 and let
๐: ๐ โ ๐ be a mapping such that
๐(๐๐ฅ, ๐๐ฆ) โผ ๐ผ๐(๐ฅ, ๐๐ฆ) + ๐ฝ๐(๐ฆ, ๐๐ฅ)
1
1
for every ๐ฅ, ๐ฆ โ ๐, where ๐ผ, ๐ฝ โฅ 0 with ๐ผ๐ < 1+๐ or ๐ฝ๐ < 1+๐ . Then ๐ has a fixed point in ๐.
Moreover, if ๐ผ + ๐ฝ < 1, then ๐ has a unique fixed point in ๐.
Proof. Let ๐ฅ0 โ ๐ and (๐ฅ๐ ) be a sequence in X such that
๐ฅ๐ = ๐๐ฅ๐โ1 = ๐ ๐ ๐ฅ0 .
Now, for every ๐ โ โ we have
๐(๐ฅ๐+2 , ๐ฅ๐+1 ) = ๐(๐๐ฅ๐+1 , ๐๐ฅ๐ )
โผ ๐ผ๐(๐ฅ๐+1 , ๐๐ฅ๐ ) + ๐ฝ๐(๐ฅ๐ , ๐๐ฅ๐+1 )
= ๐ผ๐(๐ฅ๐+1 , ๐ฅ๐+1 ) + ๐ฝ๐(๐ฅ๐ , ๐ฅ๐+2 )
= ๐ฝ๐(๐ฅ๐ , ๐ฅ๐+2 )
โผ ๐ ๐ฝ๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐ ๐ฝ๐(๐ฅ๐+1 , ๐ฅ๐+2 )
(1 โ ๐ฝ๐ )๐(๐ฅ๐+1 , ๐ฅ๐+2 ) โผ ๐ ๐ฝ๐(๐ฅ๐ , ๐ฅ๐+1 )
๐ ๐ฝ
๐(๐ฅ๐+1 , ๐ฅ๐+2 ) โผ
๐(๐ฅ๐ , ๐ฅ๐+1 ).
1 โ ๐ฝ๐
๐ ๐ฝ
Taking ๐พ = 1โ๐ฝ๐ and continuing the process yields
๐(๐ฅ๐+1 , ๐ฅ๐+2 ) โผ ๐พ๐(๐ฅ๐ , ๐ฅ๐+1 )
โผ ๐พ 2 ๐(๐ฅ๐โ1 , ๐ฅ๐ )
โฎ
๐+1
โผ๐พ
๐(๐ฅ0 , ๐ฅ1 ).
On the other hand,
๐(๐ฅ๐ , ๐ฅ๐+๐ ) โผ ๐ [๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐(๐ฅ๐+1 , ๐ฅ๐+๐ )]
โผ ๐ ๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐ 2 ๐(๐ฅ๐+1 , ๐ฅ๐+2 ) + ๐ 2 ๐(๐ฅ๐+2 , ๐ฅ๐+๐ )
โผ ๐ ๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐ 2 ๐(๐ฅ๐+1 , ๐ฅ๐+2 ) + ๐ 3 ๐(๐ฅ๐+2 , ๐ฅ๐+3 ) + โฏ + ๐ ๐ ๐(๐ฅ๐+๐โ1 , ๐ฅ๐+๐ )
โผ ๐ ๐พ ๐ ๐(๐ฅ0 , ๐ฅ1 ) + ๐ 2 ๐พ ๐+1 ๐(๐ฅ0 , ๐ฅ1 ) + ๐ 3 ๐พ ๐+2 ๐(๐ฅ0 , ๐ฅ1 ) + โฏ + ๐ ๐ ๐พ ๐+๐โ1 ๐(๐ฅ0 , ๐ฅ1 )
โผ ๐ ๐พ ๐ ๐(๐ฅ0 , ๐ฅ1 )[1 + ๐ ๐พ + (๐ ๐พ)2 + โฏ + (๐ ๐พ)๐โ1 ].
Dahliatul Hasanah
142
Fixed Point Theorems in Complex-Valued b-Metric Spaces
1
1
Since ๐ฝ๐ < 1+๐ then ๐พ โ (0, ๐ ) and ๐ ๐พ < 1. Taking limit ๐ โ โ, we have ๐พ ๐ โ 0. This implies
|๐(๐ฅ๐ , ๐ฅ๐+๐ )| โ 0 as ๐ โ โ. By Lemma 8, the sequence (๐ฅ๐ ) is Cauchy sequence in X. Since ๐ is a
complete complex valued b-metric space then (๐ฅ๐ ) is a convergent sequence.
Suppose that (๐ฅ๐ ) converges to ๐ฅ โ โ ๐. We show that ๐ฅ โ is a fixed point of ๐.
๐(๐ฅ โ , ๐๐ฅ โ ) โผ ๐ [๐(๐ฅ โ , ๐ฅ๐ ) + ๐(๐ฅ๐ , ๐๐ฅ โ )]
= ๐ ๐(๐ฅ โ , ๐ฅ๐ ) + ๐ ๐(๐๐ฅ๐โ1 , ๐๐ฅ โ )
= ๐ ๐(๐ฅ โ , ๐ฅ๐ ) + ๐ ๐ผ๐(๐ฅ๐โ1 , ๐๐ฅ โ ) + ๐ ๐ฝ๐(๐๐ฅ๐โ1 , ๐ฅ โ )
= ๐ ๐(๐ฅ โ , ๐ฅ๐ ) + ๐ ๐ผ๐(๐ฅ๐โ1 , ๐๐ฅ โ ) + ๐ ๐ฝ๐(๐ฅ๐ , ๐ฅ โ )
= (๐ + ๐ ๐ฝ)๐(๐ฅ โ , ๐ฅ๐ ) + ๐ 2 ๐ผ๐(๐ฅ๐โ1 , ๐ฅ โ ) + ๐ 2 ๐ผ๐(๐ฅ โ , ๐๐ฅ โ )
(1 โ ๐ผ๐ 2 )๐(๐ฅ โ , ๐๐ฅ โ ) โผ (๐ + ๐ ๐ฝ)๐(๐ฅ โ , ๐ฅ๐ ) + ๐ 2 ๐ผ๐(๐ฅ๐โ1 , ๐ฅ โ ).
Since (๐ฅ๐ ) converges to ๐ฅ โ that is |๐(๐ฅ โ , ๐ฅ๐ )| โ 0 as ๐ โ โ. and taking the absolute value of both
sides, we have
|๐(๐ฅ โ , ๐๐ฅ โ )| โค 0.
This means that |๐(๐ฅ โ , ๐๐ฅ โ )| = 0, i.e. ๐ฅ โ = ๐๐ฅ โ . So the limit of the sequence is a fixed point of ๐.
Now we suppose that ๐ผ + ๐ฝ < 1. Assume that there are ๐ข, ๐ฃ โ ๐ such that ๐ข = ๐๐ข and ๐ฃ = ๐๐ฃ.
๐(๐ข, ๐ฃ) = ๐(๐๐ข, ๐๐ฃ)
โผ ๐ผ๐(๐ข, ๐๐ฃ) + ๐ฝ๐(๐ฃ, ๐๐ข)
= ๐ผ๐(๐ข, ๐ฃ) + ๐ฝ๐(๐ฃ, ๐ข)
= (๐ผ + ๐ฝ)๐(๐ข, ๐ฃ).
This means that |๐(๐ข, ๐ฃ)| โค (๐ผ + ๐ฝ)|๐(๐ข, ๐ฃ)|. Since ๐ผ + ๐ฝ < 1, then we must have |๐(๐ข, ๐ฃ)| = 0,
i.e. ๐ข = ๐ฃ. The proof of the uniqueness of the fixed point of ๐ when ๐ผ + ๐ฝ < 1 is complete.
Mir [14] studied the following fixed point theorem in b-metric spaces and we generalize
it into complex-valued b-metric spaces.
Theorem 13. Let (๐, ๐) be a complete b-metric space with constant ๐ โฅ 1 and define the sequence
(๐ฅ๐ ) by the recursion
๐ฅ๐ = ๐๐ฅ๐โ1 = ๐ ๐ ๐ฅ0 , ๐ = 1,2, โฆ
1
Let ๐: ๐ โ ๐ be a mapping for which there exists ๐ โ [๐, 2) such that
๐(๐๐ฅ, ๐๐ฆ) โค ๐[๐(๐ฅ, ๐๐ฅ) + ๐(๐ฆ, ๐๐ฆ)]
for all ๐ฅ, ๐ฆ โ ๐. Then there exists ๐ฅ โ โ ๐ such that ๐ฅ๐ โ ๐ฅ โ and ๐ฅ โ is unique fixed point of ๐.
Theorem 14. Let (๐, ๐) be a complete complex-valued b-metric space with constant ๐ โฅ 1. Let
1
๐: ๐ โ ๐ be a mapping for which there exists ๐ โ [๐, ) such that
2
๐(๐๐ฅ, ๐๐ฆ) โค ๐[๐(๐ฅ, ๐๐ฅ) + ๐(๐ฆ, ๐๐ฆ)]
for all ๐ฅ, ๐ฆ โ ๐. Then there exists unique fixed point of ๐.
Proof. We construct a sequence (๐ฅ๐ ) in ๐ by
๐ฅ๐ = ๐๐ฅ๐โ1 = ๐ ๐ ๐ฅ0 , ๐ = 1,2, โฆ
for any ๐ฅ0 โ ๐. We show that this sequence (๐ฅ๐ ) is Cauchy sequence in ๐ and hence is convergent
sequence.
For every ๐ โ โ we have
๐(๐ฅ๐+2 , ๐ฅ๐+1 ) = ๐(๐๐ฅ๐+1 , ๐๐ฅ๐ )
โผ ๐(๐(๐ฅ๐+1 , ๐๐ฅ๐+1 ) + ๐(๐ฅ๐ , ๐๐ฅ๐ ))
= ๐(๐(๐ฅ๐+1 , ๐ฅ๐+2 ) + ๐(๐ฅ๐ , ๐๐ฅ๐ ))
(1 โ ๐)๐(๐ฅ๐+2 , ๐ฅ๐+1 ) โผ ๐๐(๐ฅ๐ , ๐๐ฅ๐ )
๐
๐(๐ฅ๐+1 , ๐ฅ๐ )
๐(๐ฅ๐+2 , ๐ฅ๐+1 ) โผ
1โ๐
If this process continues, for all ๐ โ โ we have
๐ ๐+1
)
๐(๐ฅ1 , ๐ฅ0 ).
๐(๐ฅ๐+2 , ๐ฅ๐+1 ) โผ (
1โ๐
Therefore,
๐(๐ฅ๐ , ๐ฅ๐+๐ ) โผ ๐ [๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐(๐ฅ๐+1 , ๐ฅ๐+๐ )]
โผ ๐ ๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐ 2 ๐(๐ฅ๐+1 , ๐ฅ๐+2 ) + ๐ 2 ๐(๐ฅ๐+2 , ๐ฅ๐+๐ )
Dahliatul Hasanah
143
Fixed Point Theorems in Complex-Valued b-Metric Spaces
โผ ๐ ๐(๐ฅ๐ , ๐ฅ๐+1 ) + ๐ 2 ๐(๐ฅ๐+1 , ๐ฅ๐+2 ) + ๐ 3 ๐(๐ฅ๐+2 , ๐ฅ๐+3 ) + โฏ + ๐ ๐ ๐(๐ฅ๐+๐โ1 , ๐ฅ๐+๐ )
๐ ๐
๐ ๐+1
๐ ๐+2
โผ ๐ (
) ๐(๐ฅ0 , ๐ฅ1 ) + ๐ 2 (
)
๐(๐ฅ0 , ๐ฅ1 ) + ๐ 3 (
)
๐(๐ฅ0 , ๐ฅ1 ) + โฏ
1โ๐
1โ๐
1โ๐
๐ ๐+๐โ1
+ ๐ ๐ (
)
๐(๐ฅ0 , ๐ฅ1 ).
1โ๐
2
๐โ1
๐
๐
๐
๐ ๐
) ๐(๐ฅ0 , ๐ฅ1 ) [1 + ๐ (
) + (๐ (
)) + โฏ + (๐ (
))
โผ ๐ (
].
1โ๐
1โ๐
1โ๐
1โ๐
1
๐
Note that ๐ โ [๐, 2) implies (1โ๐) โ [0,1). Taking the absolute value of both sides gives
|๐(๐ฅ๐ , ๐ฅ๐+๐ )| โ 0 as ๐ โ โ.
Thus (๐ฅ๐ ) is Cauchy sequence in ๐ and is therefore a convergent sequence. Suppose ๐ฅ โ โ ๐ is the
limit of sequence (๐ฅ๐ ). We show that ๐ฅ โ is a fixed point of ๐.
Using the properties of b-metric and the mapping ๐, we get
๐(๐ฅ โ , ๐๐ฅ โ ) โผ ๐ [๐(๐ฅ โ , ๐ฅ๐ ) + ๐(๐ฅ๐ , ๐๐ฅ โ )]
= ๐ ๐(๐ฅ โ , ๐ฅ๐ ) + ๐ ๐(๐๐ฅ๐โ1 , ๐๐ฅ โ )
= ๐ ๐(๐ฅ โ , ๐ฅ๐ ) + ๐ ๐๐(๐ฅ๐โ1 , ๐๐ฅ๐โ1 ) + ๐ ๐๐(๐ฅ โ , ๐๐ฅ โ )
= ๐ ๐(๐ฅ โ , ๐ฅ๐ ) + ๐ ๐๐(๐ฅ๐โ1 , ๐ฅ๐ ) + ๐ ๐๐(๐ฅ โ , ๐๐ฅ โ )
(1 โ ๐ ๐)๐(๐ฅ โ , ๐๐ฅ โ ) โผ ๐ ๐(๐ฅ โ , ๐ฅ๐ ) + ๐ ๐๐(๐ฅ๐โ1 , ๐ฅ๐ )
๐ ๐โ1
= ๐ ๐(๐ฅ โ , ๐ฅ๐ ) + ๐ ๐ (
)
๐(๐ฅ1 , ๐ฅ0 )
1โ๐
1
๐ ๐โ1
(๐ ๐(๐ฅ โ , ๐ฅ๐ ) + ๐ ๐ (
)
๐(๐ฅ1 , ๐ฅ0 )).
๐(๐ฅ โ , ๐๐ฅ โ ) โผ
(1 โ ๐ ๐)
1โ๐
Taking the absolute value of both sides and taking ๐ โ โ, we have
lim ๐(๐ฅ โ , ๐๐ฅ โ ) = 0.
This implies ๐ฅ โ is a fixed point of ๐, i.e. ๐ฅ โ = ๐๐ฅ โ .
Now we assume that there exists another fixed point ๐ฃ of ๐, that is ๐ฃ = ๐๐ฃ.
We have
๐(๐ฅ โ , ๐ฃ) = ๐(๐๐ฅ โ , ๐๐ฃ)
โผ ๐(๐(๐ฅ โ , ๐๐ฅ โ ) + ๐(๐ฃ, ๐๐ฃ))
= ๐(๐(๐ฅ โ , ๐ฅ โ ) + ๐(๐ฃ, ๐ฃ))
= 0.
Taking the absolute value of both sides we obtain |๐(๐ฅ โ , ๐ฃ)| โค 0 which is a contradiction to the
distinct fixed points. Hence ๐ฅ โ is the unique fixed point of ๐.
CONCLUSION
Complex valued b-metric spaces are considered as a generalisation of b-metric spaces by
changing the definition of real valued metric into complex valued metric. This change is expected
to bring wider applications of fixed point theorems. In this paper, we extend fixed point theorems
in b-metric spaces into fixed point theorems in complex valued b-metric spaces. By using the
properties of partial order on complex numbers, a mapping ๐ on a real valued b-metric space
which has unique fixed point still has unique fixed point in a complex valued b-metric space.
REFERENCES
[1] T. Zamfirescu, "Fix point theorems in metric spaces," Archiv der Mathematik, vol. 2, no. 1, pp. 292-298,
1972.
Dahliatul Hasanah
144
Fixed Point Theorems in Complex-Valued b-Metric Spaces
[2] G. Emmanuele, "Fixed point theorems in complete metric spaces," Nonlinear Analysis: Theory, Methods
& Aplications, vol. 5, no. 3, pp. 287-292, 1981.
[3] T. Suzuki, "A new type of fixed point theorem in metric spaces," Nonlinear Analysis: Theory, Methods
& Applications, vol. 71, no. 11, pp. 5313-5317, 2009.
[4] I. A. Bakhtin, "The contraction principle in quasimetric spaces," Functional Analysis, vol. 30, pp. 26-37,
1989.
[5] P. K. Misra, S. Sachdeva and S. K. Banerjee, "Some fixed point theorems in b-metric space," Tourkish
Journal of Analysis and Number Theory, vol. 2, no. 1, pp. 19-22, 2014.
[6] A. K. Dubey, R. Shukla and R. P. Dubey, "Some fixed point results in b-metric spaces," Asian Journal of
Mathematics and Applications, vol. 2014, 2014.
[7] M. Demma and P. Vetro, "Picard sequence and fixed point results on b-metric spaces," Hindawi
Publishing Corporation. Journal of Function Spaces, vol. 2015, 2015.
[8] A. Azzam, B. Fisher and M. Khan, "Common fixed point theorems in complex valued metric spaces,"
Numerical Functional Analysis and Optimization, vol. 32, no. 3, pp. 243-253, 2011.
[9] K. Sitthikul and S. Saejung, "Some fixed point theorems in complex valued metric spaces," Fixed Point
Theory and Applications, p. 189, 2012.
[10] W. Sintunavarat and P. Kumam, "Generalised common fixed point theorems in complex valued metric
spaces and applications," Journal of Inequalities and Applications, 2012.
[11] H. K. Nashine, M. Imdad and M. Hasan, "Common fixed point theorems under rational contractions in
complex valued metric spaces," Journal of Nonlinear Science and Applications, vol. 7, pp. 42-50, 2014.
[12] A. A. Mukheimer, "Some common fixed point theorems in complex valued b-metric spaces," Hindawi
Publishing Coorporation. The Scientific World Journal, vol. 2014, 2014.
[13] A. K. Dubey, R. Shukla and R. P. Dubey, "Some fixed point theorems in complex valued b-metric
spaces," Hindawi Publishing Coorporation. Journal of Complex Systems, vol. 2015, 2015.
[14] M. Kir and H. Kiziltunc, "On some well known fixed point b-metric spaces," Turkish Journal of Analysis
and Number Theory, vol. 1, no. 1, pp. 13-16, 2013.
Dahliatul Hasanah
145