Fixed Point Theorems in Complex Valued B-Metric Spaces

CAUCHY โ€“ JURNAL MATEMATIKA MURNI DAN APLIKASI
Volume 4 (4) (2017), Pages 138-145
p-ISSN: 2086-0382; e-ISSN: 2477-3344

Fixed Point Theorems in Complex-Valued b-Metric Spaces
Dahliatul Hasanah
Mathematics Department, Universitas Negeri Malang
Jl. Semarang No. 5 Malang Jawa Timur Indonesia 65145
Email: [email protected]
ABSTRACT
Fixed point theorems in complex-valued metric spaces have been extensively studied following the
extension of the definition of a metric to a complex-valued metric. The definition of b-metric, which is
considered as an extension of a metric, is also extended to complex-valued b-metric. This extension causes
the study of existence and uniqueness of fixed point in complex-valued b-metric spaces. Fixed point
theorems that have been studied in b-metric spaces are now of interest whether the theorems are still
satisfied in complex-valued b-metric spaces.
In this paper, we study the existence and uniqueness of fixed point in complex valued b-metric spaces. We
consider some fixed point theorems in b-metric spaces to be extended to fixed point theorems in complex
valued b-metric spaces. By using the definition of complex-valued b-metric spaces and the properties of
partial order on complex numbers, we have obtained some fixed point theorems in complex-valued b-metric
spaces which are derived from the corresponding theorems in b-metric spaces.

Keywords: b-metric spaces, complex-valued b-metric spaces, fixed point theorems

INTRODUCTION
Fixed point theorems have been the main topic of many researches in various spaces
including metric spaces. Fixed point theorems in metric spaces have been studied extensively by
many researchers as in [1], [2], and [3]. After Bakhtin [4] introduced the notion of b-metric spaces
in 1989, researchers started to develop fixed point theorems in the spaces, for example in [5], [6],
and [7]. In 2011, Azzam et. al [8] introduced a new metric space called complex-valued metric
space as an extension of the classical metric space in terms of the defined metric. Fixed point
theorems are still of interest to study in the new space. This is shown by many articles talked
about fixed point theorems in complex valued-metric spaces as in [9], [10], dan [11]. The
extension of the notion of metric into complex-valued metric causes the extension of b-metric
spaces into complex-valued b-metric spaces. In this paper, we observe fixed point theorems which
have been established in b-metric space whether the theorems are still applicable in the spaces.

METHODS
First, we recall some basic definitions and properties of b-metric spaces given in [5] and
of complex-valued b-metric spaces given in [12].

Submitted: 14 Nopember 2016

Reviewed: 29 Nopember 2016
DOI: http://dx.doi.org/10.18860/ca.v4i4.3669

Accepted: 17 May 2017

Fixed Point Theorems in Complex-Valued b-Metric Spaces

b-Metric Spaces
A ๐‘-metric space is considered as a generalization of a metric space regarding the
definition of the metric as defined as follows.
Definition 1 (see [5]). Let ๐‘‹ be a nonempty set and let ๐‘  โ‰ฅ 1 be a given real number. A function
๐‘‘: ๐‘‹ ร— ๐‘‹ โ†’ [0, โˆž) is called a b-metric space if for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹ the following conditions are
satisfied.
๐‘‘(๐‘ฅ, ๐‘ฆ) = 0 if and only if ๐‘ฅ = ๐‘ฆ;
๐‘‘(๐‘ฅ, ๐‘ฆ) = ๐‘‘(๐‘ฆ, ๐‘ฅ);
๐‘‘(๐‘ฅ, ๐‘ฆ) โ‰ค ๐‘ [๐‘‘(๐‘ฅ, ๐‘ง) + ๐‘‘(๐‘ง, ๐‘ฆ)].
The pair (๐‘‹, ๐‘‘) is called a b-metric space. The number ๐‘  โ‰ฅ 1 is called the coefficient of
(๐‘‹, ๐‘‘).
2


Example 2. Let (๐‘‹, ๐‘‘) be a metric space. The function ๐œŒ(๐‘ฅ, ๐‘ฆ) is defined by ๐œŒ(๐‘ฅ, ๐‘ฆ) = (๐‘‘(๐‘ฅ, ๐‘ฆ)) .
Then (๐‘‹, ๐œŒ) is a ๐‘-metric space with coefficient ๐‘  = 2. This can be seen from the nonnegativity
property and triangle inequality of metric to prove the property (iii).

Complex-Valued b-Metric Spaces
Unlike in real numbers which has completeness property, order is not well-defined in
complex numbers. Before giving the definition of complex-valued b-metric spaces, we define
partial order in complex numbers (see [12]). Let โ„‚ be the set of complex numbers and ๐‘ง1 , ๐‘ง2 โˆˆ โ„‚.
Define partial order โ‰ผ on โ„‚ as follows. We have ๐‘ง1 โ‰ผ ๐‘ง2 if and only if ๐‘…๐‘’(๐‘ง1 ) โ‰ค ๐‘…๐‘’(๐‘ง2 ) and
๐ผ๐‘š(๐‘ง1 ) โ‰ค ๐ผ๐‘š(๐‘ง2 ). This means that we would have ๐‘ง1 โ‰ผ ๐‘ง2 if and only if one of the following
conditions holds:
(i)
Re(๐‘ง1 ) = Re(๐‘ง2 ) and Im(๐‘ง1 ) < Im(๐‘ง2 ),
(ii)

(iii)
(iv)

Re(๐‘ง1 ) < Re(๐‘ง2 ) and Im(๐‘ง1 ) = Im(๐‘ง2 ),


Re(๐‘ง1 ) < Re(๐‘ง2 ) and Im(๐‘ง1 ) < Im(๐‘ง2 ),
Re(๐‘ง1 ) = Re(๐‘ง2 ) and Im(๐‘ง1 ) = Im(๐‘ง2 ).

If one of the conditions (i), (ii), and (iii) holds, then we will write ๐‘ง1 โ‹จ ๐‘ง2 . Particularly, we have
๐‘ง1 โ‰บ ๐‘ง2 if the condition (iv) is satisfied.
From the definition of partial order on complex numbers, partial order has the following
properties:
(i)
If 0 โ‰ผ ๐‘ง1 โ‹จ ๐‘ง2 , then |๐‘ง1 | < |๐‘ง2 |;
(ii)

(iii)

๐‘ง1 โ‰ผ ๐‘ง2 and ๐‘ง2 โ‰บ ๐‘ง3 imply ๐‘ง1 โ‰บ ๐‘ง3 ;

If ๐‘ง โˆˆ โ„‚, ๐‘Ž, ๐‘ โˆˆ โ„ and ๐‘Ž โ‰ค ๐‘, then ๐‘Ž๐‘ง โ‰ผ ๐‘๐‘ง.

A b-metric on a b-metric space is a function having real value. Based on the definition of
partial order on complex numbers, real-valued b-metric can be generalized into complex-valued
b-metric as follows.

Definition 3 (see [13]). Let ๐‘‹ be a nonempty set and let ๐‘  โ‰ฅ 1 be a given real number. A function
๐‘‘: ๐‘‹ ร— ๐‘‹ โ†’ โ„‚ is called a complex-valued b-metric on ๐‘‹ if, for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ โ„‚, the following conditions
are satisfied:
(i) 0 โ‰ผ d(x, y) and ๐‘‘(๐‘ฅ, ๐‘ฆ) = 0 if and only if ๐‘ฅ = ๐‘ฆ,
(ii) ๐‘‘(๐‘ฅ, ๐‘ฆ) = ๐‘‘(๐‘ฆ, ๐‘ฅ),
(iii) ๐‘‘(๐‘ฅ, ๐‘ฆ) โ‰ผ s[d(x, z) + d(z, y)].
The pair (๐‘‹, ๐‘‘) is called a complex valued b-metric space.
Example 4. Let ๐‘‹ = โ„‚. Define the mapping ๐‘‘: โ„‚ ร— โ„‚ โ†’ โ„‚ by ๐‘‘(๐‘ฅ, ๐‘ฆ) = |๐‘ฅ โˆ’ ๐‘ฆ|2 + ๐‘–|๐‘ฅ โˆ’ ๐‘ฆ|2 for all
๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹. Then (โ„‚, ๐‘‘) is complex-valued b-metric space with ๐‘  = 2.
Definition 5 (see [13]). Let (๐‘‹, ๐‘‘) be a complex-valued b-metric space.
(i) A point ๐‘ฅ โˆˆ ๐‘‹ is called interior point of set ๐ด โІ ๐‘‹ if there exists 0 โ‰บ ๐‘Ÿ โˆˆ โ„‚ such that
๐ต(๐‘ฅ, ๐‘Ÿ) = {๐‘ฆ โˆˆ ๐‘Œ: ๐‘‘(๐‘ฅ, ๐‘ฆ) โ‰บ ๐‘Ÿ} โІ ๐ด.
Dahliatul Hasanah

139

Fixed Point Theorems in Complex-Valued b-Metric Spaces

(ii) A point ๐‘ฅ โˆˆ ๐‘‹ is called limit point of a set ๐ด if for every 0 โ‰บ ๐‘Ÿ โˆˆ โ„‚, ๐ต(๐‘ฅ, ๐‘Ÿ) โˆฉ (๐ด โˆ’ {๐‘ฅ}) โ‰ 
โˆ….

(iii) A subset ๐ด โІ ๐‘‹ is open if each element of ๐ด is an interior point of ๐ด.
(iv) A subset ๐ด โІ ๐‘‹ is closed if each limit point of ๐ด is contained in ๐ด.
Definition 6 (see [13]). Let (๐‘‹, ๐‘‘) be a complex valued b-metric space, (๐‘ฅ๐‘› ) be a sequence in ๐‘‹
and ๐‘ฅ โˆˆ ๐‘‹.
(i) (๐‘ฅ๐‘› ) is convergent to ๐‘ฅ โˆˆ ๐‘‹ if for every 0 โ‰บ ๐‘Ÿ โˆˆ โ„‚ there exists ๐‘ โˆˆ โ„• such that for all ๐‘› โ‰ฅ
๐‘, ๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ) โ‰บ ๐‘Ÿ. Thus ๐‘ฅ is the limit of (๐‘ฅ๐‘› ) and we write lim(๐‘ฅ๐‘› ) = ๐‘ฅ or (๐‘ฅ๐‘› ) โ†’ ๐‘ฅ as ๐‘› โ†’
โˆž.
(ii) (๐‘ฅ๐‘› ) is said to be Cauchy sequence if for every 0 โ‰บ ๐‘Ÿ โˆˆ โ„‚ there exists ๐‘ โˆˆ โ„• such that for
all ๐‘› โ‰ฅ ๐‘, ๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+๐‘š ) โ‰บ ๐‘Ÿ, where ๐‘š โˆˆ โ„•.
(iii) If for every Cauchy sequence in ๐‘‹ is convergent, then (๐‘‹, ๐‘‘) is said to be a complete
complex valued b-metric space.
Lemma 7 (see [13]). Let (๐‘‹, ๐‘‘) be a complex valued b-metric space ad let (๐‘ฅ๐‘› ) be a sequence in ๐‘‹.
Then (๐‘ฅ๐‘› ) converges to ๐‘ฅ if and only if |๐‘‘(๐‘ฅ, ๐‘ฆ)| โ†’ 0 as ๐‘› โ†’ โˆž.
Lemma 8 (see [13]). Let Let (๐‘‹, ๐‘‘) be a complex valued b-metric space ad let (๐‘ฅ๐‘› ) be a sequence
in ๐‘‹. Then (๐‘ฅ๐‘› ) is a Cauchy sequence if and only if |๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+๐‘š )| โ†’ 0 as ๐‘› โ†’ โˆž, where ๐‘š โˆˆ โ„•.

RESULTS AND DISCUSSIONS
The following fixed point theorem is studied by Mishra,et.al [5] in b-metric spaces:
Theorem 9. Let (๐‘‹, ๐œŒ) be a complete b-metric space and let ๐‘‡: ๐‘‹ โ†’ ๐‘‹ be a function with the
following

๐œŒ(๐‘‡๐‘ฅ, ๐‘‡๐‘ฆ) โ‰ค ๐‘Ž๐œŒ(๐‘ฅ, ๐‘‡๐‘ฅ) + ๐‘๐œŒ(๐‘ฆ, ๐‘‡๐‘ฆ) + ๐‘๐œŒ(๐‘ฅ, ๐‘ฆ), โˆ€๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹
where ๐‘Ž, ๐‘, and ๐‘ are non-negative real numbers and satisfy ๐‘Ž + ๐‘ (๐‘ + ๐‘) < 1 for ๐‘  โ‰ฅ 1 then ๐‘‡ has
a uniqe fixed point.
This theorem is extended to a fixed point theorem in complex valued b-metric spaces as
follows.
Theorem 10. Let (๐‘‹, ๐‘‘) be a complete complex valued b-metric space and let ๐‘‡: ๐‘‹ โ†’ ๐‘‹ be a
function with the following
๐‘‘(๐‘‡๐‘ฅ, ๐‘‡๐‘ฆ) โ‰ผ ๐‘Ž๐‘‘(๐‘ฅ, ๐‘‡๐‘ฅ) + ๐‘๐‘‘(๐‘ฆ, ๐‘‡๐‘ฆ) + ๐‘๐‘‘(๐‘ฅ, ๐‘ฆ), โˆ€๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹
where ๐‘Ž, ๐‘, and ๐‘ are non-negative real numbers and satisfy ๐‘Ž + ๐‘ (๐‘ + ๐‘) < 1 for ๐‘  โ‰ฅ 1 then ๐‘‡ has
a uniqe fixed point.
Proof. Let ๐‘ฅ0 โˆˆ ๐‘‹ and (๐‘ฅ๐‘› ) be a sequence in X such that
๐‘ฅ๐‘› = ๐‘‡๐‘ฅ๐‘›โˆ’1 = ๐‘‡ ๐‘› ๐‘ฅ0 .
Note that for all ๐‘› โˆˆ โ„•, we have
๐‘‘(๐‘ฅ๐‘›+2 , ๐‘ฅ๐‘›+1 ) = ๐‘‘(๐‘‡๐‘ฅ๐‘›+1 , ๐‘‡๐‘ฅ๐‘› )
โ‰ผ ๐‘Ž๐‘‘(๐‘ฅ๐‘›+1 , ๐‘‡๐‘ฅ๐‘›+1 ) + ๐‘๐‘‘(๐‘ฅ๐‘› , ๐‘‡๐‘ฅ๐‘› ) + ๐‘๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘› )
โ‰ผ ๐‘Ž๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘›+2 ) + ๐‘๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) + ๐‘๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘› )
โ‰ผ ๐‘Ž๐‘‘(๐‘ฅ๐‘›+2 , ๐‘ฅ๐‘›+1 ) + (๐‘ + ๐‘)๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘› )
(1 โˆ’ ๐‘Ž)๐‘‘(๐‘ฅ๐‘›+2 , ๐‘ฅ๐‘›+1 ) โ‰ผ (๐‘ + ๐‘)๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘› )
๐‘+๐‘
๐‘‘(๐‘ฅ๐‘›+2 , ๐‘ฅ๐‘›+1 ) โ‰ผ (

) ๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘› ).
1โˆ’๐‘Ž
๐‘+๐‘
If we take ๐›พ = 1โˆ’๐‘Ž and continuing this process, then we have
๐‘‘(๐‘ฅ๐‘›+2 , ๐‘ฅ๐‘›+1 ) โ‰ผ ๐›พ ๐‘›+1 ๐‘‘(๐‘ฅ1 , ๐‘ฅ0 ).
For ๐‘š โˆˆ โ„•,
๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+๐‘š ) โ‰ผ ๐‘ [๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) + ๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘›+๐‘š )]
โ‰ผ ๐‘ ๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) + ๐‘  2 ๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘›+2 ) + ๐‘  2 ๐‘‘(๐‘ฅ๐‘›+2 , ๐‘ฅ๐‘›+๐‘š )
โ‰ผ ๐‘ ๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) + ๐‘  2 ๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘›+2 ) + ๐‘  3 ๐‘‘(๐‘ฅ๐‘›+2 , ๐‘ฅ๐‘›+3 ) + โ‹ฏ + ๐‘  ๐‘š ๐‘‘(๐‘ฅ๐‘›+๐‘šโˆ’1 , ๐‘ฅ๐‘›+๐‘š )
โ‰ผ ๐‘ ๐›พ ๐‘› ๐‘‘(๐‘ฅ0 , ๐‘ฅ1 ) + ๐‘  2 ๐›พ ๐‘›+1 ๐‘‘(๐‘ฅ0 , ๐‘ฅ1 ) + ๐‘  3 ๐›พ ๐‘›+2 ๐‘‘(๐‘ฅ0 , ๐‘ฅ1 ) + โ‹ฏ + ๐‘  ๐‘š ๐›พ ๐‘›+๐‘šโˆ’1 ๐‘‘(๐‘ฅ0 , ๐‘ฅ1 )
โ‰ผ ๐‘ ๐›พ ๐‘› ๐‘‘(๐‘ฅ0 , ๐‘ฅ1 )[1 + ๐‘ ๐›พ + (๐‘ ๐›พ)2 + โ‹ฏ + (๐‘ ๐›พ)๐‘šโˆ’1 ]
Dahliatul Hasanah

140

Fixed Point Theorems in Complex-Valued b-Metric Spaces

Now,
|๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+๐‘š )| โ‰ค |๐‘ ๐›พ ๐‘› ๐‘‘(๐‘ฅ0 , ๐‘ฅ1 )[1 + ๐‘ ๐›พ + (๐‘ ๐›พ)2 + โ‹ฏ + (๐‘ ๐›พ)๐‘šโˆ’1 ]|
= ๐‘ ๐›พ ๐‘› ๐‘‘(๐‘ฅ0 , ๐‘ฅ1 )[1 + ๐‘ ๐›พ + (๐‘ ๐›พ)2 + โ‹ฏ + (๐‘ ๐›พ)๐‘šโˆ’1 ]

Since ๐‘Ž + ๐‘ (๐‘ + ๐‘) < 1 for ๐‘  โ‰ฅ 1 then ๐›พ < 1 and ๐‘ ๐›พ < 1. Taking limit ๐‘› โ†’ โˆž, we have ๐›พ ๐‘› โ†’ 0. This
implies |๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+๐‘š )| โ†’ 0 as ๐‘› โ†’ โˆž. By Lemma 8, the sequence (๐‘ฅ๐‘› ) is Cauchy sequence in X.
Since ๐‘‹ is a complete complex valued b-metric space then (๐‘ฅ๐‘› ) is a convergent sequence.
Let ๐‘ฅ โˆ— be the limit of (๐‘ฅ๐‘› ). We show that ๐‘ฅ โˆ— is a fixed point of ๐‘‡.
We have
๐‘‘(๐‘ฅ โˆ— , ๐‘‡๐‘ฅ โˆ— ) โ‰ผ ๐‘ [๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘‘(๐‘ฅ๐‘› , ๐‘‡๐‘ฅ โˆ— )]
= ๐‘ [๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘‘(๐‘‡๐‘ฅ๐‘›โˆ’1 , ๐‘‡๐‘ฅ โˆ— )]
โ‰ผ ๐‘ [๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘Ž๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘‡๐‘ฅ๐‘›โˆ’1 ) + ๐‘๐‘‘(๐‘ฅ โˆ— , ๐‘‡๐‘ฅ โˆ— ) + ๐‘๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘ฅ โˆ— )]
(1 โˆ’ ๐‘๐‘ )๐‘‘(๐‘ฅ โˆ— , ๐‘‡๐‘ฅ โˆ— ) โ‰ผ ๐‘ [๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘Ž๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘‡๐‘ฅ๐‘›โˆ’1 ) + ๐‘๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘ฅ โˆ— )]
๐‘ 
[๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘Ž๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘‡๐‘ฅ๐‘›โˆ’1 ) + ๐‘๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘ฅ โˆ— )]
๐‘‘(๐‘ฅ โˆ— , ๐‘‡๐‘ฅ โˆ— ) โ‰ผ
1 โˆ’ ๐‘๐‘ 
๐‘ 
[๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘Ž๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘ฅ๐‘› ) + ๐‘๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘ฅ โˆ— )]
๐‘‘(๐‘ฅ โˆ— , ๐‘‡๐‘ฅ โˆ— ) โ‰ผ
1 โˆ’ ๐‘๐‘ 
Taking the absolute value of both sides, we get
๐‘ 
|๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘Ž๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘ฅ๐‘› ) + ๐‘๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘ฅ โˆ— )|

|๐‘‘(๐‘ฅ โˆ— , ๐‘‡๐‘ฅ โˆ— )| โ‰ค
1 โˆ’ ๐‘๐‘ 
๐‘ 
(|๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› )| + |๐‘Ž๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘ฅ๐‘› )| + |๐‘๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘ฅ โˆ— )|)
โ‰ค
1 โˆ’ ๐‘๐‘ 
๐‘ 
(|๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› )| + ๐‘Ž๐›พ ๐‘› |๐‘‘(๐‘ฅ1 , ๐‘ฅ0 )| + ๐‘|๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘ฅ โˆ— )|)
โ‰ค
1 โˆ’ ๐‘๐‘ 
Since (๐‘ฅ๐‘› ) converges to ๐‘ฅ โˆ— , taking ๐‘› โ†’ โˆž implies |๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› )| โ†’ 0 and |๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘ฅ โˆ— )| โ†’ 0. Thus for
๐‘› โ†’ โˆž, we have
lim|๐‘‘(๐‘ฅ โˆ— , ๐‘‡๐‘ฅ โˆ— )| = 0.

This yields
โˆ—

๐‘ฅ โˆ— = ๐‘‡๐‘ฅ โˆ— .

Hence ๐‘ฅ is a fixed point of ๐‘‡.

Now we show the uniqueness of the fixed point of ๐‘‡. We assume that there are two fixed
points of ๐‘‡ which are ๐‘ฅ = ๐‘‡๐‘ฅ and ๐‘ฆ = ๐‘‡๐‘ฆ. Thus,
๐‘‘(๐‘ฅ, ๐‘ฆ) = ๐‘‘(๐‘‡๐‘ฅ, ๐‘‡๐‘ฆ)
โ‰ผ ๐‘Ž๐‘‘(๐‘ฅ, ๐‘‡๐‘ฅ) + ๐‘๐‘‘(๐‘ฆ, ๐‘‡๐‘ฆ) + ๐‘๐‘‘(๐‘ฅ, ๐‘ฆ)
โ‰ผ ๐‘Ž๐‘‘(๐‘ฅ, ๐‘ฅ) + ๐‘๐‘‘(๐‘ฆ, ๐‘ฆ) + ๐‘๐‘‘(๐‘ฅ, ๐‘ฆ)
โ‰ผ ๐‘๐‘‘(๐‘ฅ, ๐‘ฆ).
Taking the absolute value of both sides, we have
|๐‘‘(๐‘ฅ, ๐‘ฆ)| โ‰ค |๐‘๐‘‘(๐‘ฅ, ๐‘ฆ)|.
This implies ๐‘‘(๐‘ฅ, ๐‘ฆ) = 0. Based on the properties of complex valued b-metric, we get ๐‘ฅ = ๐‘ฆ. This
completes the proof.
Corollary 11. Let (๐‘‹, ๐‘‘) be a complete complex valued b-metric space with the coefficient ๐‘  โ‰ฅ 1.
Let ๐‘‡: ๐‘‹ โ†’ ๐‘‹ be a mapping (for some fixed ๐‘›) satisfying
๐‘‘(๐‘‡ ๐‘› ๐‘ฅ, ๐‘‡ ๐‘› ๐‘ฆ) โ‰ผ ๐‘Ž๐‘‘(๐‘ฅ, ๐‘‡ ๐‘› ๐‘ฅ) + ๐‘๐‘‘(๐‘ฆ, ๐‘‡ ๐‘› ๐‘ฆ) + ๐‘๐‘‘(๐‘ฅ, ๐‘ฆ)
for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ where ๐‘Ž, ๐‘, ๐‘ are non-negative real numbers with ๐‘Ž + ๐‘ (๐‘ + ๐‘) < 1. Then ๐‘‡ has a
unique fixed point in ๐‘‹.
Proof. Suppose ๐‘† = ๐‘‡ ๐‘› , then by the Theorem 10, there is a fixed point ๐‘ข such that
๐‘†(๐‘ข) = ๐‘ข.
๐‘› (๐‘ข)
= ๐‘ข.
Thus ๐‘‡
We have
๐‘‘(๐‘‡(๐‘ข), ๐‘ข) = ๐‘‘(๐‘‡(๐‘‡ ๐‘› (๐‘ข)), ๐‘ข)
= ๐‘‘ (๐‘‡ ๐‘› (๐‘‡(๐‘ข)), ๐‘‡ ๐‘› (๐‘ข))

โ‰ผ ๐‘Ž๐‘‘ (๐‘‡(๐‘ข), ๐‘‡ ๐‘› (๐‘‡(๐‘ข))) + ๐‘๐‘‘(๐‘ข, ๐‘‡ ๐‘› (๐‘ข)) + ๐‘๐‘‘(๐‘‡(๐‘ข), ๐‘ข)
= ๐‘Ž๐‘‘ (๐‘‡(๐‘ข), ๐‘‡(๐‘‡ ๐‘› (๐‘ข))) + ๐‘๐‘‘(๐‘ข, ๐‘ข) + ๐‘๐‘‘(๐‘‡(๐‘ข), ๐‘ข)

Dahliatul Hasanah

141

Fixed Point Theorems in Complex-Valued b-Metric Spaces

= ๐‘Ž๐‘‘(๐‘‡(๐‘ข), ๐‘‡(๐‘ข)) + ๐‘๐‘‘(๐‘ข, ๐‘ข) + ๐‘๐‘‘(๐‘‡(๐‘ข), ๐‘ข)
= ๐‘๐‘‘(๐‘‡(๐‘ข), ๐‘ข).
Taking the absolute value of both sides, we have
|๐‘‘(๐‘‡(๐‘ข), ๐‘ข)| โ‰ค ๐‘|๐‘‘(๐‘‡(๐‘ข), ๐‘ข)|.
Hence
(1 โˆ’ ๐‘)|๐‘‘(๐‘‡(๐‘ข), ๐‘ข)| โ‰ค 0.
This must be
|๐‘‘(๐‘‡(๐‘ข), ๐‘ข)| = 0,
which is
๐‘‡(๐‘ข) = ๐‘ข = ๐‘‡ ๐‘› (๐‘ข).
So ๐‘‡ has a fixed point.
To prove its uniqueness, suppose ๐‘ฃ is also a fixed point of ๐‘‡. We need to prove that ๐‘ข = ๐‘ฃ.
We see that
๐‘‘(๐‘ข, ๐‘ฃ) = ๐‘‘(๐‘‡ ๐‘› (๐‘ข), ๐‘‡ ๐‘› (๐‘ฃ))
โ‰ผ ๐‘Ž๐‘‘(๐‘ข, ๐‘‡ ๐‘› (๐‘ข)) + ๐‘๐‘‘(๐‘ฃ, ๐‘‡ ๐‘› (๐‘ฃ)) + ๐‘๐‘‘(๐‘ข, ๐‘ฃ)
= ๐‘Ž๐‘‘(๐‘ข, ๐‘ข) + ๐‘๐‘‘(๐‘ฃ, ๐‘ฃ) + ๐‘๐‘‘(๐‘ข, ๐‘ฃ)
= ๐‘๐‘‘(๐‘ข, ๐‘ฃ).
Taking the absolute value of both sides we get
(1 โˆ’ ๐‘)๐‘‘(๐‘ข, ๐‘ฃ) โ‰ค 0.
Since ๐‘ < 1, this yields
๐‘‘(๐‘ข, ๐‘ฃ) = 0.
Thus ๐‘ข = ๐‘ฃ.
This completes the uniqueness of the fixed point.
Theorem 12. Let (๐‘‹, ๐‘‘) be a complete complex-valued b-metric space with constant ๐‘  โ‰ฅ 1 and let
๐‘‡: ๐‘‹ โ†’ ๐‘‹ be a mapping such that
๐‘‘(๐‘‡๐‘ฅ, ๐‘‡๐‘ฆ) โ‰ผ ๐›ผ๐‘‘(๐‘ฅ, ๐‘‡๐‘ฆ) + ๐›ฝ๐‘‘(๐‘ฆ, ๐‘‡๐‘ฅ)
1
1
for every ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹, where ๐›ผ, ๐›ฝ โ‰ฅ 0 with ๐›ผ๐‘  < 1+๐‘  or ๐›ฝ๐‘  < 1+๐‘ . Then ๐‘‡ has a fixed point in ๐‘‹.
Moreover, if ๐›ผ + ๐›ฝ < 1, then ๐‘‡ has a unique fixed point in ๐‘‹.
Proof. Let ๐‘ฅ0 โˆˆ ๐‘‹ and (๐‘ฅ๐‘› ) be a sequence in X such that
๐‘ฅ๐‘› = ๐‘‡๐‘ฅ๐‘›โˆ’1 = ๐‘‡ ๐‘› ๐‘ฅ0 .
Now, for every ๐‘› โˆˆ โ„• we have
๐‘‘(๐‘ฅ๐‘›+2 , ๐‘ฅ๐‘›+1 ) = ๐‘‘(๐‘‡๐‘ฅ๐‘›+1 , ๐‘‡๐‘ฅ๐‘› )
โ‰ผ ๐›ผ๐‘‘(๐‘ฅ๐‘›+1 , ๐‘‡๐‘ฅ๐‘› ) + ๐›ฝ๐‘‘(๐‘ฅ๐‘› , ๐‘‡๐‘ฅ๐‘›+1 )
= ๐›ผ๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘›+1 ) + ๐›ฝ๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+2 )
= ๐›ฝ๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+2 )
โ‰ผ ๐‘ ๐›ฝ๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) + ๐‘ ๐›ฝ๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘›+2 )
(1 โˆ’ ๐›ฝ๐‘ )๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘›+2 ) โ‰ผ ๐‘ ๐›ฝ๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 )
๐‘ ๐›ฝ
๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘›+2 ) โ‰ผ
๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ).
1 โˆ’ ๐›ฝ๐‘ 
๐‘ ๐›ฝ
Taking ๐›พ = 1โˆ’๐›ฝ๐‘  and continuing the process yields
๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘›+2 ) โ‰ผ ๐›พ๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 )
โ‰ผ ๐›พ 2 ๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘ฅ๐‘› )
โ‹ฎ
๐‘›+1
โ‰ผ๐›พ
๐‘‘(๐‘ฅ0 , ๐‘ฅ1 ).
On the other hand,
๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+๐‘š ) โ‰ผ ๐‘ [๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) + ๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘›+๐‘š )]
โ‰ผ ๐‘ ๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) + ๐‘  2 ๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘›+2 ) + ๐‘  2 ๐‘‘(๐‘ฅ๐‘›+2 , ๐‘ฅ๐‘›+๐‘š )
โ‰ผ ๐‘ ๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) + ๐‘  2 ๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘›+2 ) + ๐‘  3 ๐‘‘(๐‘ฅ๐‘›+2 , ๐‘ฅ๐‘›+3 ) + โ‹ฏ + ๐‘  ๐‘š ๐‘‘(๐‘ฅ๐‘›+๐‘šโˆ’1 , ๐‘ฅ๐‘›+๐‘š )
โ‰ผ ๐‘ ๐›พ ๐‘› ๐‘‘(๐‘ฅ0 , ๐‘ฅ1 ) + ๐‘  2 ๐›พ ๐‘›+1 ๐‘‘(๐‘ฅ0 , ๐‘ฅ1 ) + ๐‘  3 ๐›พ ๐‘›+2 ๐‘‘(๐‘ฅ0 , ๐‘ฅ1 ) + โ‹ฏ + ๐‘  ๐‘š ๐›พ ๐‘›+๐‘šโˆ’1 ๐‘‘(๐‘ฅ0 , ๐‘ฅ1 )
โ‰ผ ๐‘ ๐›พ ๐‘› ๐‘‘(๐‘ฅ0 , ๐‘ฅ1 )[1 + ๐‘ ๐›พ + (๐‘ ๐›พ)2 + โ‹ฏ + (๐‘ ๐›พ)๐‘šโˆ’1 ].

Dahliatul Hasanah

142

Fixed Point Theorems in Complex-Valued b-Metric Spaces

1

1

Since ๐›ฝ๐‘  < 1+๐‘  then ๐›พ โˆˆ (0, ๐‘  ) and ๐‘ ๐›พ < 1. Taking limit ๐‘› โ†’ โˆž, we have ๐›พ ๐‘› โ†’ 0. This implies
|๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+๐‘š )| โ†’ 0 as ๐‘› โ†’ โˆž. By Lemma 8, the sequence (๐‘ฅ๐‘› ) is Cauchy sequence in X. Since ๐‘‹ is a
complete complex valued b-metric space then (๐‘ฅ๐‘› ) is a convergent sequence.
Suppose that (๐‘ฅ๐‘› ) converges to ๐‘ฅ โˆ— โˆˆ ๐‘‹. We show that ๐‘ฅ โˆ— is a fixed point of ๐‘‡.
๐‘‘(๐‘ฅ โˆ— , ๐‘‡๐‘ฅ โˆ— ) โ‰ผ ๐‘ [๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘‘(๐‘ฅ๐‘› , ๐‘‡๐‘ฅ โˆ— )]
= ๐‘ ๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘ ๐‘‘(๐‘‡๐‘ฅ๐‘›โˆ’1 , ๐‘‡๐‘ฅ โˆ— )
= ๐‘ ๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘ ๐›ผ๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘‡๐‘ฅ โˆ— ) + ๐‘ ๐›ฝ๐‘‘(๐‘‡๐‘ฅ๐‘›โˆ’1 , ๐‘ฅ โˆ— )
= ๐‘ ๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘ ๐›ผ๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘‡๐‘ฅ โˆ— ) + ๐‘ ๐›ฝ๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ โˆ— )
= (๐‘  + ๐‘ ๐›ฝ)๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘  2 ๐›ผ๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘ฅ โˆ— ) + ๐‘  2 ๐›ผ๐‘‘(๐‘ฅ โˆ— , ๐‘‡๐‘ฅ โˆ— )
(1 โˆ’ ๐›ผ๐‘  2 )๐‘‘(๐‘ฅ โˆ— , ๐‘‡๐‘ฅ โˆ— ) โ‰ผ (๐‘  + ๐‘ ๐›ฝ)๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘  2 ๐›ผ๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘ฅ โˆ— ).
Since (๐‘ฅ๐‘› ) converges to ๐‘ฅ โˆ— that is |๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› )| โ†’ 0 as ๐‘› โ†’ โˆž. and taking the absolute value of both
sides, we have
|๐‘‘(๐‘ฅ โˆ— , ๐‘‡๐‘ฅ โˆ— )| โ‰ค 0.
This means that |๐‘‘(๐‘ฅ โˆ— , ๐‘‡๐‘ฅ โˆ— )| = 0, i.e. ๐‘ฅ โˆ— = ๐‘‡๐‘ฅ โˆ— . So the limit of the sequence is a fixed point of ๐‘‡.
Now we suppose that ๐›ผ + ๐›ฝ < 1. Assume that there are ๐‘ข, ๐‘ฃ โˆˆ ๐‘‹ such that ๐‘ข = ๐‘‡๐‘ข and ๐‘ฃ = ๐‘‡๐‘ฃ.
๐‘‘(๐‘ข, ๐‘ฃ) = ๐‘‘(๐‘‡๐‘ข, ๐‘‡๐‘ฃ)
โ‰ผ ๐›ผ๐‘‘(๐‘ข, ๐‘‡๐‘ฃ) + ๐›ฝ๐‘‘(๐‘ฃ, ๐‘‡๐‘ข)
= ๐›ผ๐‘‘(๐‘ข, ๐‘ฃ) + ๐›ฝ๐‘‘(๐‘ฃ, ๐‘ข)
= (๐›ผ + ๐›ฝ)๐‘‘(๐‘ข, ๐‘ฃ).
This means that |๐‘‘(๐‘ข, ๐‘ฃ)| โ‰ค (๐›ผ + ๐›ฝ)|๐‘‘(๐‘ข, ๐‘ฃ)|. Since ๐›ผ + ๐›ฝ < 1, then we must have |๐‘‘(๐‘ข, ๐‘ฃ)| = 0,
i.e. ๐‘ข = ๐‘ฃ. The proof of the uniqueness of the fixed point of ๐‘‡ when ๐›ผ + ๐›ฝ < 1 is complete.
Mir [14] studied the following fixed point theorem in b-metric spaces and we generalize
it into complex-valued b-metric spaces.
Theorem 13. Let (๐‘‹, ๐‘‘) be a complete b-metric space with constant ๐‘  โ‰ฅ 1 and define the sequence
(๐‘ฅ๐‘› ) by the recursion
๐‘ฅ๐‘› = ๐‘‡๐‘ฅ๐‘›โˆ’1 = ๐‘‡ ๐‘› ๐‘ฅ0 , ๐‘› = 1,2, โ€ฆ
1
Let ๐‘‡: ๐‘‹ โ†’ ๐‘‹ be a mapping for which there exists ๐œ‡ โˆˆ [๐‘œ, 2) such that
๐‘‘(๐‘‡๐‘ฅ, ๐‘‡๐‘ฆ) โ‰ค ๐œ‡[๐‘‘(๐‘ฅ, ๐‘‡๐‘ฅ) + ๐‘‘(๐‘ฆ, ๐‘‡๐‘ฆ)]
for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹. Then there exists ๐‘ฅ โˆ— โˆˆ ๐‘‹ such that ๐‘ฅ๐‘› โ†’ ๐‘ฅ โˆ— and ๐‘ฅ โˆ— is unique fixed point of ๐‘‡.

Theorem 14. Let (๐‘‹, ๐‘‘) be a complete complex-valued b-metric space with constant ๐‘  โ‰ฅ 1. Let
1
๐‘‡: ๐‘‹ โ†’ ๐‘‹ be a mapping for which there exists ๐œ‡ โˆˆ [๐‘œ, ) such that
2
๐‘‘(๐‘‡๐‘ฅ, ๐‘‡๐‘ฆ) โ‰ค ๐œ‡[๐‘‘(๐‘ฅ, ๐‘‡๐‘ฅ) + ๐‘‘(๐‘ฆ, ๐‘‡๐‘ฆ)]
for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹. Then there exists unique fixed point of ๐‘‡.
Proof. We construct a sequence (๐‘ฅ๐‘› ) in ๐‘‹ by
๐‘ฅ๐‘› = ๐‘‡๐‘ฅ๐‘›โˆ’1 = ๐‘‡ ๐‘› ๐‘ฅ0 , ๐‘› = 1,2, โ€ฆ
for any ๐‘ฅ0 โˆˆ ๐‘‹. We show that this sequence (๐‘ฅ๐‘› ) is Cauchy sequence in ๐‘‹ and hence is convergent
sequence.
For every ๐‘› โˆˆ โ„• we have
๐‘‘(๐‘ฅ๐‘›+2 , ๐‘ฅ๐‘›+1 ) = ๐‘‘(๐‘‡๐‘ฅ๐‘›+1 , ๐‘‡๐‘ฅ๐‘› )
โ‰ผ ๐œ‡(๐‘‘(๐‘ฅ๐‘›+1 , ๐‘‡๐‘ฅ๐‘›+1 ) + ๐‘‘(๐‘ฅ๐‘› , ๐‘‡๐‘ฅ๐‘› ))
= ๐œ‡(๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘›+2 ) + ๐‘‘(๐‘ฅ๐‘› , ๐‘‡๐‘ฅ๐‘› ))
(1 โˆ’ ๐œ‡)๐‘‘(๐‘ฅ๐‘›+2 , ๐‘ฅ๐‘›+1 ) โ‰ผ ๐œ‡๐‘‘(๐‘ฅ๐‘› , ๐‘‡๐‘ฅ๐‘› )
๐œ‡
๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘› )
๐‘‘(๐‘ฅ๐‘›+2 , ๐‘ฅ๐‘›+1 ) โ‰ผ
1โˆ’๐œ‡
If this process continues, for all ๐‘› โˆˆ โ„• we have
๐œ‡ ๐‘›+1
)
๐‘‘(๐‘ฅ1 , ๐‘ฅ0 ).
๐‘‘(๐‘ฅ๐‘›+2 , ๐‘ฅ๐‘›+1 ) โ‰ผ (
1โˆ’๐œ‡
Therefore,
๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+๐‘š ) โ‰ผ ๐‘ [๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) + ๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘›+๐‘š )]
โ‰ผ ๐‘ ๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) + ๐‘  2 ๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘›+2 ) + ๐‘  2 ๐‘‘(๐‘ฅ๐‘›+2 , ๐‘ฅ๐‘›+๐‘š )
Dahliatul Hasanah

143

Fixed Point Theorems in Complex-Valued b-Metric Spaces

โ‰ผ ๐‘ ๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+1 ) + ๐‘  2 ๐‘‘(๐‘ฅ๐‘›+1 , ๐‘ฅ๐‘›+2 ) + ๐‘  3 ๐‘‘(๐‘ฅ๐‘›+2 , ๐‘ฅ๐‘›+3 ) + โ‹ฏ + ๐‘  ๐‘š ๐‘‘(๐‘ฅ๐‘›+๐‘šโˆ’1 , ๐‘ฅ๐‘›+๐‘š )
๐œ‡ ๐‘›
๐œ‡ ๐‘›+1
๐œ‡ ๐‘›+2
โ‰ผ ๐‘ (
) ๐‘‘(๐‘ฅ0 , ๐‘ฅ1 ) + ๐‘  2 (
)
๐‘‘(๐‘ฅ0 , ๐‘ฅ1 ) + ๐‘  3 (
)
๐‘‘(๐‘ฅ0 , ๐‘ฅ1 ) + โ‹ฏ
1โˆ’๐œ‡
1โˆ’๐œ‡
1โˆ’๐œ‡
๐œ‡ ๐‘›+๐‘šโˆ’1
+ ๐‘ ๐‘š (
)
๐‘‘(๐‘ฅ0 , ๐‘ฅ1 ).
1โˆ’๐œ‡
2
๐‘šโˆ’1
๐œ‡
๐œ‡
๐œ‡
๐œ‡ ๐‘›
) ๐‘‘(๐‘ฅ0 , ๐‘ฅ1 ) [1 + ๐‘  (
) + (๐‘  (
)) + โ‹ฏ + (๐‘  (
))
โ‰ผ ๐‘ (
].
1โˆ’๐œ‡
1โˆ’๐œ‡
1โˆ’๐œ‡
1โˆ’๐œ‡
1

๐œ‡

Note that ๐œ‡ โˆˆ [๐‘œ, 2) implies (1โˆ’๐œ‡) โˆˆ [0,1). Taking the absolute value of both sides gives

|๐‘‘(๐‘ฅ๐‘› , ๐‘ฅ๐‘›+๐‘š )| โ†’ 0 as ๐‘› โ†’ โˆž.
Thus (๐‘ฅ๐‘› ) is Cauchy sequence in ๐‘‹ and is therefore a convergent sequence. Suppose ๐‘ฅ โˆ— โˆˆ ๐‘‹ is the
limit of sequence (๐‘ฅ๐‘› ). We show that ๐‘ฅ โˆ— is a fixed point of ๐‘‡.
Using the properties of b-metric and the mapping ๐‘‡, we get
๐‘‘(๐‘ฅ โˆ— , ๐‘‡๐‘ฅ โˆ— ) โ‰ผ ๐‘ [๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘‘(๐‘ฅ๐‘› , ๐‘‡๐‘ฅ โˆ— )]
= ๐‘ ๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘ ๐‘‘(๐‘‡๐‘ฅ๐‘›โˆ’1 , ๐‘‡๐‘ฅ โˆ— )
= ๐‘ ๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘ ๐œ‡๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘‡๐‘ฅ๐‘›โˆ’1 ) + ๐‘ ๐œ‡๐‘‘(๐‘ฅ โˆ— , ๐‘‡๐‘ฅ โˆ— )
= ๐‘ ๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘ ๐œ‡๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘ฅ๐‘› ) + ๐‘ ๐œ‡๐‘‘(๐‘ฅ โˆ— , ๐‘‡๐‘ฅ โˆ— )
(1 โˆ’ ๐‘ ๐œ‡)๐‘‘(๐‘ฅ โˆ— , ๐‘‡๐‘ฅ โˆ— ) โ‰ผ ๐‘ ๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘ ๐œ‡๐‘‘(๐‘ฅ๐‘›โˆ’1 , ๐‘ฅ๐‘› )
๐œ‡ ๐‘›โˆ’1
= ๐‘ ๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘ ๐œ‡ (
)
๐‘‘(๐‘ฅ1 , ๐‘ฅ0 )
1โˆ’๐œ‡
1
๐œ‡ ๐‘›โˆ’1
(๐‘ ๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ๐‘› ) + ๐‘ ๐œ‡ (
)
๐‘‘(๐‘ฅ1 , ๐‘ฅ0 )).
๐‘‘(๐‘ฅ โˆ— , ๐‘‡๐‘ฅ โˆ— ) โ‰ผ
(1 โˆ’ ๐‘ ๐œ‡)
1โˆ’๐œ‡
Taking the absolute value of both sides and taking ๐‘› โ†’ โˆž, we have
lim ๐‘‘(๐‘ฅ โˆ— , ๐‘‡๐‘ฅ โˆ— ) = 0.

This implies ๐‘ฅ โˆ— is a fixed point of ๐‘‡, i.e. ๐‘ฅ โˆ— = ๐‘‡๐‘ฅ โˆ— .
Now we assume that there exists another fixed point ๐‘ฃ of ๐‘‡, that is ๐‘ฃ = ๐‘‡๐‘ฃ.
We have
๐‘‘(๐‘ฅ โˆ— , ๐‘ฃ) = ๐‘‘(๐‘‡๐‘ฅ โˆ— , ๐‘‡๐‘ฃ)
โ‰ผ ๐œ‡(๐‘‘(๐‘ฅ โˆ— , ๐‘‡๐‘ฅ โˆ— ) + ๐‘‘(๐‘ฃ, ๐‘‡๐‘ฃ))
= ๐œ‡(๐‘‘(๐‘ฅ โˆ— , ๐‘ฅ โˆ— ) + ๐‘‘(๐‘ฃ, ๐‘ฃ))
= 0.
Taking the absolute value of both sides we obtain |๐‘‘(๐‘ฅ โˆ— , ๐‘ฃ)| โ‰ค 0 which is a contradiction to the
distinct fixed points. Hence ๐‘ฅ โˆ— is the unique fixed point of ๐‘‡.

CONCLUSION
Complex valued b-metric spaces are considered as a generalisation of b-metric spaces by
changing the definition of real valued metric into complex valued metric. This change is expected
to bring wider applications of fixed point theorems. In this paper, we extend fixed point theorems
in b-metric spaces into fixed point theorems in complex valued b-metric spaces. By using the
properties of partial order on complex numbers, a mapping ๐‘‡ on a real valued b-metric space
which has unique fixed point still has unique fixed point in a complex valued b-metric space.

REFERENCES
[1] T. Zamfirescu, "Fix point theorems in metric spaces," Archiv der Mathematik, vol. 2, no. 1, pp. 292-298,
1972.

Dahliatul Hasanah

144

Fixed Point Theorems in Complex-Valued b-Metric Spaces

[2] G. Emmanuele, "Fixed point theorems in complete metric spaces," Nonlinear Analysis: Theory, Methods
& Aplications, vol. 5, no. 3, pp. 287-292, 1981.
[3] T. Suzuki, "A new type of fixed point theorem in metric spaces," Nonlinear Analysis: Theory, Methods
& Applications, vol. 71, no. 11, pp. 5313-5317, 2009.
[4] I. A. Bakhtin, "The contraction principle in quasimetric spaces," Functional Analysis, vol. 30, pp. 26-37,
1989.
[5] P. K. Misra, S. Sachdeva and S. K. Banerjee, "Some fixed point theorems in b-metric space," Tourkish
Journal of Analysis and Number Theory, vol. 2, no. 1, pp. 19-22, 2014.
[6] A. K. Dubey, R. Shukla and R. P. Dubey, "Some fixed point results in b-metric spaces," Asian Journal of
Mathematics and Applications, vol. 2014, 2014.
[7] M. Demma and P. Vetro, "Picard sequence and fixed point results on b-metric spaces," Hindawi
Publishing Corporation. Journal of Function Spaces, vol. 2015, 2015.
[8] A. Azzam, B. Fisher and M. Khan, "Common fixed point theorems in complex valued metric spaces,"
Numerical Functional Analysis and Optimization, vol. 32, no. 3, pp. 243-253, 2011.
[9] K. Sitthikul and S. Saejung, "Some fixed point theorems in complex valued metric spaces," Fixed Point
Theory and Applications, p. 189, 2012.
[10] W. Sintunavarat and P. Kumam, "Generalised common fixed point theorems in complex valued metric
spaces and applications," Journal of Inequalities and Applications, 2012.
[11] H. K. Nashine, M. Imdad and M. Hasan, "Common fixed point theorems under rational contractions in
complex valued metric spaces," Journal of Nonlinear Science and Applications, vol. 7, pp. 42-50, 2014.
[12] A. A. Mukheimer, "Some common fixed point theorems in complex valued b-metric spaces," Hindawi
Publishing Coorporation. The Scientific World Journal, vol. 2014, 2014.
[13] A. K. Dubey, R. Shukla and R. P. Dubey, "Some fixed point theorems in complex valued b-metric
spaces," Hindawi Publishing Coorporation. Journal of Complex Systems, vol. 2015, 2015.
[14] M. Kir and H. Kiziltunc, "On some well known fixed point b-metric spaces," Turkish Journal of Analysis
and Number Theory, vol. 1, no. 1, pp. 13-16, 2013.

Dahliatul Hasanah

145