PEMBUATAN BIOBRIKET DARI CAMPURAN ARANG KULIT KACANG TANAH DAN ARANG AMPAS TEBU DENGAN ADITIF KMNO4

  

PEMBUATAN BIOBRIKET DARI CAMPURAN

ARANG KULIT KACANG TANAH DAN

ARANG AMPAS TEBU DENGAN ADITIF KMNO

  4 Siti Miskah*, Lucya Suhirman, Haika Rahmah Ramadhona

  • Jurusan Teknik Kimia, Fakultas Teknik, Universitas Sriwijaya Jl. Srijaya Negara, Bukit Besar, Palembang, 30139 e-mail : miskah56@yahoo.com

  

Abstrak

  Kulit kacang tanah dan ampas tebu sering dibuang dan dibakar begitu saja. Hal ini berdampak tidak baik bagi lingkungan padahal keduanya memiliki selulosa yang tinggi . Oleh karena itu diperlukan cara untuk peningkatan potensinya yaitu sebagai bahan bakar alternatif pengganti minyak tanah. Proses pembuatan biobriket dengan komposisi sebagai variabel bebas yaitu 30%:70%, 40%:60%, 50%:50%, 60%:40% dan 70% :30%, (30% adalah ampas dan 70 % adalah kulit kacang dan lain-lain ). Variabel tetap yaitu bahan

  o

  baku dikeringkan di bawah sinar matahari ± 3 hari, suhu karbonisasi 400

  C, tanpa dan dengan

  o

  penambahan KMnO4 5 gr, ukuran 40 mesh, suhu pengeringan briket 80 C 1 jam, ukuran briket uji penyalaan ± 1 gr. Dari hasil penelitian, nilai kalor tertinggi tanpa penambahan KMnO yaitu 5707 cal/gr,

  4

  kadar air 6,36 %, kadar abu 7,06 %, volatile matter 31,57 %, fixed carbon 55,11 %, lama nyala jadi abu 13,21 menit, kecepatan pembakaran 4,71 gr/detik, nyala awal 16,20 detik dan asap hilang 6,21 menit dan dengan penambahan KMnO yaitu 5476 cal/gr kadar air 7,62 %, kadar abu 11,55 %, volatile matter 27,86

  4

  %, fixed carbon 52,97%, lama nyala jadi abu 19,09 menit, kecepatan pembakaran 3,15 gr/detik, nyala awal 8,31 detik dan asap hilang 3,80 menit. Tanpa KMnO nilai kalor lebih tinggi dan dengan KMnO

  4

  4 waktu penyalaan lebih cepat.

  Kata kunci : Biobriket, Kulit kacang tanah, Ampas tebu, KMnO

  4 Abstract

  Peanut shells and bagasses are often being thrown away and burnt. These give bad effects to the environment whereas have a high cellulose, therefore they need a way for increasing their potency, they may be used as an alternative fuel that can raplace kerosene. Peanut shells mixed with bagasses at the certain ratio so that obtained compositions are: 30%:70%, 40%:60%, 50%:50%, 60%:40% and 70%:30% (30% is bagasses and 70% is peanut shells, etc). Fixed variabel used are raw material dried under sun rays

  o

  ±3 days, carbonisation temperatur 400

  C, with and without addition of 5 gr KMnO , particle size of 40

  4 o

  mesh, briquettes dried in temperature 80 C for 1 hour, briquettes size for ignition is ± 1 gr. This research showed the highest heating value without KMnO addition is 5707 cal/gr, water content 6,36%, ash

  

4

  content 7,06%, volatile matter 31,57%, fixed carbon 55,11 %, combution duration to be ashes of 13,21 minutes, combustion rate 4,71 gr/s, initial ignition 16,20 second and smoke disappear in 6,21 minutes, while highest heating value for briquettes with KMnO addition is 5476 cal/gr, water content 7,62 %, ash

  4

  content 11,55 %, volatile matter 27,86 %, fixed carbon 52,97 % and combustion duration for 19,09 minutes,combustion rate of 3,15 gr/s,initial ignition of 8,31 second and smoke disappear in 3,80 minutes. Without KMnO is the highest heating value and with KMnO is the faster ignition time.

  4

  4 Keywords: Bio-briquettes, peanut peels, bagasses, KMnO

  4

1. PENDAHULUAN

  • Emisi gas hasil pembakaran tidak mengandung racun

  • Kedap air dan hasil pembakaran tidak berjamur bila disimpan pada waktu lama.
    • – 2013 yaitu Rp.2500/liter harga minyak tanah meningkat menjadi Rp.9000/liter. Hal ini menuntut ekplorasi bahan bakar alternatif yang murah dan ramah lingkungan untuk industri kecil dan rumah tangga. Salah satu bahan bakar alternatif tersebut adalah biobriket dari limbah biomassa kulit kacang tanah dan ampas tebu. Limbah biomassa kulit kacang tanah dan ampas tebu berpotensi diolah menjadi biobriket karena tersedia melimpah dan memiliki kandungan selulosa yang tinggi. Semakin tinggi kandungan selulosa maka kualitas biobriket akan semakin baik (Fachry dkk, 2010).

  • Menunjukkan upaya laju pembakaran (waktu, laju pembakaran, dan suhu pembakaran) yang baik . (Fachry dkk, 2010)

  4 )

  Ampas tebu adalah suatu residu dari proses penggilingan tanaman tebu setelah diekstrak atau dikeluarkan niranya pada industri pemurnian gula sehingga diperoleh hasil samping sejumlah besar produk limbah berserat dan mempunyai tingkat higroskopis tinggi yang disebut ampas tebu (baggase). Ampas tebu mudah terbakar karena mengandung air, gula, serat dan mikroba sehingga bila tertumpuk akan terfermentasi dan melepaskan panas. Jika suhu tumpukan mencapai 94ºC akan terjadi kebakaran spontan (Nurwati dkk,2012).

  Komposisi kimia ampas tebu meliputi air 48-52%; abu 3,82%; lignin22,09%; selulosa 40,3 %; pentosan 27,97%; silika 3,01%; dan gula pereduksi 3,3% (Hanania dan Mitarlis, 2013).

  Kulit Kacang Tanah

  Sekitar 20%-30% dari kacang tanah adalah berupa kulit.Suplai kacang tanah pada industri – industri makanan yang berbahan dasar kacang tanah per satuan industri mampu mencakup hingga 1,25 ton biji kacang tanah bersih per hari. Dari jumlah tersebut akan dihasilkan limbah kulit kacang yang tidak sedikit. Untuk membuang atau membakar, jelas diperlukan lahan yang cukup luas. Demikian pula kalau dijual langsung ke perajin tahu, hanya dibeli Rp.50.000,00 - Rp. 55.000,00 per truk. Oleh karena itu, cara terbaik adalah berusaha memanfaatkannya sehingga keuntungan ganda bisa diperoleh. Di satu sisi bisa mengurangi pencemaran lingkungan dan di sisi lain dapat menghasilkan uang. Satu kilogram briket berisi 20-25 biji dijual Rp.2.500,00 (Fauzi dkk, 2010).

  Komposisi kimia kulit kacang tanah meliputi bahan kering 90,5%; protein kasar 8,4%; lemak kasar 1,8 %; serat kasar 63,5 %; abu 3,6 %; ADF (Acid Detergent Fiber) 68,3 %; NDF (Neutral Detergent Fiber) 77,2%; lignin 29,9 %; Selulosa 65 % (Sani, 2009).

  Kalium Permanganat (KMnO

  KMnO

  karena memiliki nilai titik ekuivalen yang tinggi (Rahmawati,2008). Kalium permanganat

  Ampas (bagasse)

  merupakan oksidator terkuat dibandingkan KBrO

  3

  dan K

  2 Cr

  2 O

  7

  4

  Karakteristik Biobriket

  Syarat briket yang baik adalah briket yang permukaannya halus dan tidak meninggalkan bekas hitam di tangan. Selain itu, sebagai bahan bakar, briket juga harus memenuhi kriteria sebagai berikut:

  4 .

  Kementrian Sekretariat Negara Republik Indonesia mencatat bahwa pada tahun 2009

  Menurut Didit (2009), kelemahan yaitu sulit dalam penyalaan awal sehingga dibutuhkan suatu bahan campuran berupa oksidator yang mampu mempercepat proses penyulutan. Oleh karena itu, dalam penelitian ini dilakukan pembuatan biobriket dari campuran arang kulit kacang tanah dan arang ampas tebu tanpa penambahan oksidator KMnO

  4

  dan dengan penambahan KMnO

  4

  untuk dibandingkan nilai kalor dan sifat-sifat penyalaannya. Permasalahan dalam penelitian ini adalah bagaimana proses pembuatan arang kulit kacang tanah dan arang ampas tebu dengan penggunaan KMnO

  Tujuan dari penelitian ini adalah mengetahui pengaruh penggunaan KMnO

  Biobriket adalah bahan bakar padat yang dapat diperbaharui yang dibuat dari campuran biomassa. Limbah tersebut dibuat dari biomassa yang dimampatkan sehingga dibutuhkan perekat didalamnya (Bimantara dan Miqdad, 2010).

  4

  terhadap kadar air, kadar abu, kadar volatile

  matter , fixed carbon dan nilai kalor terhadap

  kualitas biobriket yang dihasilkan, terhadap sifat-sifat penyalaan yaitu kecepatan pembakaran, lama penyalaan briket sampai menjadi abu, lama asap hilang dan waktu penyalaan awal dan mengetahui perbandingan tanpa dan dengan penambahan KMnO

  4

  ditinjau dari nilai kalor dan lama penyalaan awal.

  Biobriket

  • Mudah dinyalakan
  • Tidak mengeluarkan asap
  • Arang ampas tebu dan kulit kacang tanah dihomogenkan

  • Larutan kanji (10 % berat bahan) dipanaskan sampai berbentuk lem perbandingan konsentrasi perekat dan air adalah 1: 10 (Zaenal, 2012)
  • Dicampurkan dalam 1 loyang (langkah kedua dan ketiga)
  • Dilakukan pencetakan dalam cetakan briket
  • Pengeringan briket dilakukan dengan memasukkan ke oven pada suhu 80

2. METODOLOGI PENELITIAN Waktu dan Tempat Penelitian

  • Cawan kosong ditimbang terlebih dahulu
  • Sebanyak 1 gr sampel dimasukkan kedalam cawan tadi yang telah diketahui beratnya (W2) kemudian dimasukkan kedalam oven yang sudah dipanaskan pada suhu 104°C sampai 110°C selama 1 jam.
  • Laboratorium Operasi Teknik Kimia Universitas Sriwijaya.
  • Laboratorium Dinas Pertambangan dan Pengembangan Energi Sumatera Selatan.
  • Setelah 1 jam, cawan tersebut dimasukkan kedalam desikator selama
  • Menghitung kadar air terikat dengan menggunakan persamaan:

  4

  C selama ± 1 jam (Inalawati dan Ristamala, 2013)

  Analisa Kadar Air (ASTM Standar D 3173- 03)

  Cara menganalisis kandungan air adalah:

  (W1) kemudian dimasukkan kedalam oven selama 15 menit , kemudian didinginkan di dalam desikator 15-30 menit.

  15 menit, kemudian ditimbang berat sesudah di oven (W3).

   % IM = − − x 100% Keterangan:

  Adapun langkah-langkah dalam pembriketan yaitu :

  Dengan Penambahan KMnO

  50%:50%, 60%:40%, 70%:30%

  Pembriketan

  Preparasi sampel meliputi pengumpulan bahan baku, pengeringan dan pengecilan ukuran, karbonisasi dan penghalusan ukuran bahan baku.

  Preparasi Sampel

  Pada proses pembuatan biobriket dari arang kulit kacang tanah dan arang ampas tebu. Waktu pelaksaanaan penelitian dilakukan dibulan Oktober – November 2013. Adapun penelitian pembuatan biobriket ini dilakukan di :

  memiliki nama lain yaitu chameleon mineral, CI 77755, kristal condy’s dan cairox merupakan kristal yang berwarna ungu menjadi kristal perunggu dan stabil. Penambahan reaktan oksigen pada briket akan mempercepat reaksi pembakaran sehingga semakin tinggi konsentrasi oksidator akan semakin reaktif briket tersebut. Kereaktifan briket tersebut dapat dilihat dari kehilangan massa hasil pembakaran dimana semakin tinggi kandungan oksidatornya akan semakin besar massa briket yang hilang terbakar pada selang waktu pembakaran yang sama (Hasibuan, 2007).

  % IM = Persentase air terikat dalam sampel (%)

  o

  • Bahan baku kulit kacang tanah dan ampas tebu 20 gram dengan komposisi 30%:70%, 40%:60%, 50%:50%, 60%:40%, 70%:30%
  • KMnO
  • Ampas tebu, kulit kacang tanah dan KMnO

  4

  W2 = Berat cawan timbang + sampel + tutup (gr) W3 = Berat cawan timbang + residu + tutup

  o C.

  C yang telah di set selama 1 jam kemudian dipanaskan lagi sampai suhu akhir furnace yang telah di set 815

  o

  Cara menganalisa kandungan abu adalah:

  Analisa Kadar Abu (ASTM Standar D 3174- 04)

  (gr)

  W1 = Berat cawan timbang kosong + tutup (gr)

  4

  (5 gram ) ditumbuk halus

  4

  dihomogenkan

  • Larutan kanji (10% berat bahan) dipanaskan sampai berbentuk lem dengan perbandingan konsentrasi perekat dan air adalah 1: 10 (Zaenal, 2012)
  • Dicampurkan dalam 1 loyang (langkah kedua dan ketiga)
  • Crucible kosong di timbang ( W1).
  • Sampel dimasukkan kedalam Crucible sebanyak 1 gram ( W2)
  • Dilakukan pencetakan dalam cetakan briket
  • Pengeringan briket dilakukan dengan memasukkan ke oven pada suhu 80
  • Kemudian dimasukkan kedalam furnace pada suhu 450-500

  o

  C selama ± 1 jam (Inalawati dan Ristamala, 2013)

  Tanpa Penambahan KMnO

  • Crucible tadi dikeluarkan dari dalam furnace, dan diletakkan di atas lempengan
  • Arang kulit kacang tanah dan ampas tebu 20 gram dengan komposisi 30%:70%, 40%:60%,
  • Setelah didinginkan,cawan yang berisi abu tadi ditimbang (W3)

  • Menghitung kadar abu dengan menggunakan persamaan : % Ash =

  Nilai kalor ini dapat ditentukan dengan menggunakan peralatan Bomb

  × % − %

  Keterangan :

  % VM = Persentase zat terbang dalam sampel (%)

  W1 = Berat crucible kosong + tutup (gr) W2 = Berat crucible + sampel + tutup (gr) W3 = Berat crucible + residu + tutup (gr) % IM = Persentase kadar air

  Analisa kadar karbon terikat /Fixed Carbon (%)

  Penentuan jumlah karbon tertambat pada bahan baku dapat ditentukan langsung yaitu, pengurangan seratus persen terhadap jumlah kandungan air, zat terbang dan abu.Fixed Carbon dapat dihitung dengan menggunakan persamaan :.

  FC = 100 % - (IM + VM +ASH) Analisa Nilai Kalor (ASTM Standar D 5865- 07a, Cal/gr )

  Calorimeter . Prosedur kerja:

  • Menimbang 1 gr sampel dalam cawan logam, lalu ditempatkan kedalam kaitan yang tersedia pada bomb kalori meter.
  • Memasangkan 10 cm benang pembakar dari katun pada kawat penghubung kedua katub bomb head, pelintir benang sampai ujungnya menyentuh sampel.

   % VM = − −

  head yang berisi sampel

  • Bomb

  dimasukkan kedalam alat calorimeter, kemudian memutarnya sampai tertutup dan terkunci.

  • Menekan tombol“start”, lalu menekan tombol “continue”,memasukkan nama Kode atau ID sampel kemudian tekan enter. Melihat ID bomb sesuaikan dengan kode bomb headnya lalu tekan enter dan mengetik berat sampel kemudian menekan enter kembali,maka secara otomatis alat akan menganalisis sampel dan menghitungnya.
  • Crucible kosong dan tutup ditimbang ( W1 )
  • 1 gram sampel dan crucible dan tutup di timbang ( W2 )
  • Memasukkan dan meletakkan crucible berisi sampel dalam keadaan tertutup di dalam oven.
  • Menunggu selama + 15 menit, tanda bunyi 3 kali menandakan proses Pembakaran sedang berlangsung.
  • Memanaskan pada temperature 900
  • Mengeluarkan crucible berisi residu dari furnace.
  • Setelah itu, Nilai kalor di print out secara otomatis menandakan proses telah selesai,Bomb head dikeluarkan, lalu cawan dan bomb headnya dibersihkan & alat siap digunakan kembali.
  • Mendinginkan di udara bebas dan kemudian dimasukkan ke dalam desikator selama 10 menit.Menimbang berat residu beserta
  • Setelah selesai analisis, bomb calorimeter dibersihkan dan dikeringkan.
  • Mencatat dan menghitung persentase Volatile

  Nilai kalor = − −

  Keterangan: E = Energi ekuivalen e1 = koreksi asam (10)

  t = temperature rise e2 = koreksi benang (50) m = berat sampel

  Analisa lama penyalaan sampai menjadi abu (menit)

  Matter (VM)

  Kadar zat terbang dapat dihitung dengan menggunakan persamaan :.

  Analisis Kadar Zat Terbang (ISO 562-1998)

  logam. Lalu didinginkan sampai 10 menit, kemudian dimasukkan kedalam desikator 15 menit.

  − −

  × %

  Keterangan:

  % Ash = Persentase abu dalam sampel (%) W1 = Berat crucible kosong (gr) W2 = Berat crucible + sampel (gr) W3 = Berat crucible + residu (gr)

  Penentuan kandungan zat terbang yang terkandung dalan bahan baku dilakukan dengan menghitung bobot contoh bahan baku yang hilang setelah dikoreksi terhadap kandungan air yang dipanaskan pada suhu 900

  crucible dan tutup( W3 )

  o

  C selama 7 menit dalam

  Furnace tanpa kontak dengan udara.Langkah-

  langkah yang dilakukan dalam penentuan zat terbang pada bahan baku adalah:

  o

  C selama 7 menit.

  Cara menganalisa lama penyalaan sampai menjadi abu adalah:

  • ± 1 gram biobriket dipotong dari komposisi 20 gram yang telah dicetak.
  • Dihitung dengan stopwatch dari awal dinyalakannya biobriket sampai menjadi abu.
  • ± 1 gram biobriket dipotong dari komposisi 20 gram yang telah dicetak.

  • Dihitung dengan stopwatch dari awal dinyalakannya biobriket saat timbul asap sampai asap menghilang.
  • ± 1 gram biobriket dipotong dari komposisi 20 gram yang telah dicetak.
  • Dihitung dengan stopwatch dari penyulutan awal menggunakan korek api sampai menyala 3.

  4

  4

  memiliki kadar abu lebih tinggi dibandingkan tanpa penambahan KMnO

  4

  . Hal ini disebabkan oleh KMnO

  4

  menambah unsur oksida logam yang menyebabkan terbentuknya abu pembakaran yaitu unsur KO

  2

  dan MnO

  2

  (Nadir, 2011). Kadar abu tertinggi pada pencampuran dengan penambahan KMnO

  yaitu pada komposisi 60%:40% sebesar 13,83% dan yang terendah pada komposisi 30%:70% sebesar 11,55% dan kadar abu tertinggi pada pencampuran tanpa penambahan KMnO yaitu 7.62 7.71 8.25 7.89 8.9 7.69 8.69 6.42 6.36 8.76 1 2 3 4 5 6 7 8 9 10 AT 30% : KKT 70% AT 70% : KKT 30% AT 50% : KKT 50% AT 40% : KKT 60% AT 60% : KKT 40%

  4

  K ad ar A ir ( %)

  Komposisi Dengan KMnO4 Tanpa KMnO4 11.55 13.44 12.25 12.57 13.83 7.23 3.68 6.48 7.06 4.6

  2

  4

  6

  8

  10

  12

  14

  16 AT 30% : KKT 70% AT 70% : KKT 30% AT 50% : KKT 50% AT 40% : KKT 60% AT 60% : KKT 40% K ad ar A b u ( %)

  terhadap analisa kadar abu (%) Dari gambar 2 terlihat bahwa kadar abu biobriket campuran dari kulit kacang tanah dan ampas tebu dengan penambahan KMnO

  dengan dan tanpa penambahan KMnO

  Analisa kecepatan pembakaran (gr/detik)

  yaitu komposisi 40%:60% sebesar 6,36% dan yang tertinggi yaitu pada komposisi 60%:40% sebesar 8,76% dibandingkan dengan penambahan KMnO

  Untuk menentukan kecepatan pembakaran dilakukan dengan perhitungan sebagai berikut:

  ( ) ( ) x 60 min/s Analisa lama asap hilang (menit)

  Cara menganalisa lama asap hilang adalah:

  Analisa lama penyalaan awal (detik)

  Cara menganalisa lama penyalaan awal adalah:

   HASIL DAN PEMBAHASAN Analisa Kadar Air (%) Gambar 1. Histogram biobriket KKT+AT

  dengan dan tanpa penambahan KMnO

  4

  terhadap analisa kadar air (%) Dari gambar 1 terlihat bahwa pada pencampuran ampas tebu dan kulit kacang tanah nilai kadar air terendah pada tanpa penambahan KMnO

  4

  4

  Analisa Kadar Abu (%) Gambar 2. Histogram biobriket KKT+AT

  nilai kadar air terendah yaitu pada komposisi 30%:70% sebesar 7,62% dan yang tertinggi pada 60%:40% sebesar 8,9 %. Kadar air yang tinggi disebabkan oleh jumlah pori-pori masih cukup banyak yang menyebabkan menurunnya nilai kalor dan efesiensi pembakaran (Santosa dkk, 2011). Dari kedua komposisi kadar air tertinggi yaitu 60%:40% tanpa dan dengan KMnO

  4

  terlihat bahwa besarnya komposisi ampas tebu menyebabkan kecenderungan peningkatan kadar air , hal ini diduga ampas tebu dapat menyerap kadar air dari kulit kacang tanah yang akan menambah persentase kadar air dan ditambah kadar air dari lingkungan serta kadar air dari perekat, hal ini sependapat dengan (Nurwati dkk, 2012) bahwa ampas tebu mempunyai tingkat higroskopis yang tinggi. Penggunaan KMnO

  4

  memiliki kadar air tinggi hal ini di duga karena penambahna oksidator dapat mengikat oksigen di udara. Kadar air yang tinggi dapat menyulitkan penyalaan dan mengurangi temperatur pembakaran (Sulistyanto, 2007). Oleh sebab itu biobriket harus juga diperhatikan pada proses penyimpanan, penyimpanan biobriket harus diletakan di dalam desikator.

  Pada campuran ampas tebu dan kulit kacang tanah tanpa penambahan KMnO

  4

  dengan komposisi 30%:70%, 40%:60%, 50%:50% dan pada penambahan KMnO

  4

  yaitu pada komposisi 30%:70%, 40%:60% dan 70%:30% sudah memenuhi standar SNI No. 1/6235/2000 yaitu ≤ 8 dan kadar air komposisi seluruh pencampuran biobriket sudah memenuhi standar Permen ESDM No.47 2006 yaitu ≤ 15.

  Komposisi Dengan KMnO4 Tanpa KMnO4 pada komposisi 30%:70% sebesar 7,23% dan yang terendah pada komposisi 70%:30% sebesar 3,68%. Kadar abu adalah jumlah residu anorganik yang dihasilkan dari pengabuan/pemijaran suatu produk .Residu tersebut berupa zat-zat mineral yang tidak hilang selama proses pembakaran. Kadar abu sangat berperan penting dalam pembuatan briket, karena semakin tinggi kadar abu briket maka semakin kurang baik kualitas briket yang dihasilkan, karena dapat membentuk kerak. Kadar abu yang tinggi dapat menurunkan nilai kalor briket (Artati, 2012). Untuk kadar abu yang tanpa penambahan KMnO

  4

  4

  4

  terhadap analisa kadar fixed carbon (%) Dari gambar 4 di atas terlihat bahwa

  fixed carbon bahan baku tanpa penambahan

  KMnO

  4

  lebih tinggi daripada dengan penambahan KMnO

  4

  dan pada biobriket campuran dari kulit kacang tanah dan ampas tebu nilai fixed carbon (%) tanpa penambahan KMnO

  yang tertinggi yaitu pada komposisi 40%:60% sebesar 55,11% dan yang terendah yaitu pada komposisi 60%:40% sebesar 50,14% dan pada campuran biobriket ampas tebu dan kulit kacang tanah dengan penambahan KMnO

  Analisa Kadar Fixed Carbon (%) Gambar 4. Histogram biobriket KKT+AT

  4

  yang tertinggi pada komposisi 30%:70% sebesar 52,97% dan yang terendah yaitu pada komposisi 60%:40% sebesar 47,02%. Maka dari perbandingan tersebut dapat diketahui bahwa tanpa penambahan KMnO

  4

  nilai fixed carbon jauh lebih tinggi. Hal ini disebabkan oleh kadar air dan abu yang lebih rendah,hal ini sependapat dengan (Santosa dkk, 2011) bahwa kadar karbon terikat (fixed carbon) merupakan fraksi karbon yang terikat di dalam briket selain fraksi abu dan zat mudah menguap. Kadar karbon akan bernilai tinggi apabila kadar abunya dan zat menguap briket rendah.

  Selain itu nilai kadar air yang rendah akan meningkatkan nilai kalor dan fixed carbon. Menurut standar kualitas briket kadar fixed

  carbon sudah memenuhi standar Permen ESDM No.47 2006 yaitu Sesuai bahan baku. 27.86 28.97 30.04 29.87 30.25 32.43 34.12 32.34 31.47 36.5 5 10 15 20 25 30 35 40 AT 30% : KKT 70% AT 70% : KKT 30% AT 50% : KKT 50% AT 40% : KKT 60% AT 60% : KKT 40% K ad ar

  V o la ti le M at te r (%)

  Komposisi Dengan KMnO4 Tanpa KMnO4 52.97 49.88 49.46 49.67 47.02 52.47 53.51 54.76 55.11 50.14 42 44 46 48 50 52 54 56 AT 30% : KKT 70% AT 70% : KKT 30% AT 50% : KKT 50% AT 40% : KKT 60% AT 60% : KKT 40% K ad ar F ix ed C ar b o n ( %)

  dengan dan tanpa penambahan KMnO

  standar Permen ESDM No.47 2006 yaitu sesuai bahan baku.

  sudah memenuhi standar SNI No.1/6235/2000 yaitu ≤ 8 dan dengan penambahan KMnO

  lebih rendah daripada tanpa penambahan KMnO

  4

  belum memenuhi standar SNI No.1/6235/2000 yaitu ≤ 8 namun sudah memenuhi standar Permen

  ESDM No.47 2006 yaitu ≤ 15.

  Analisa Kadar Volatile Matter (%) Gambar 3. Histogram biobriket KKT+AT

  dengan dan tanpa penambahan KMnO

  4

  terhadap analisa kadar Volatile Matter (%) Dari gambar 3 dapat dilihat bahwa persentase kadar zat terbang juga dipengaruhi oleh kadar air bahan baku. Kadar air yang tinggi akan menghasilkan nilai zat terbang yang tinggi pula. Tinggi rendahnya volatile matter mempengaruhi karakteristik pembakaran (Lusyiani, 2011). Nilai volatile matter pada pencampuran kulit kacang tanah dan ampas tebu dengan penambahan KMnO

  4

  4,

  matter , kadar volatile matter sudah memenuhi

  hal ini diduga karena KMnO

  4

  dapat menyerap gas-gas yang mudah terbakar yang terkandung dalam biobriket. Nilai volatile matter tertinggi dengan penambahan KMnO

  4

  yaitu pada komposisi 60%:40% sebesar 30,25 % dan yang terendah pada komposisi 30%:70% sebesar 27,86% dan

  volatile matter tertinggi pada pencampuran

  ampas tebu dan kulit kacang tanah tanpa penambahan KMnO

  4

  yaitu pada komposisi 60%:40% sebesar 36,50% dan yang terendah pada komposisi 40%:60% sebesar 31,47 %. semakin cepatnya asap hilang. Kandungan kadar zat menguap yang tinggi didalam briket arang akan menyebabkan asap yang lebih banyak pada saat dinyalakan apabila CO bernilai tinggi hal ini tidak baik untuk kesehatan dan lingkungan sekitar (Triono, 2006). Untuk nilai volatile

  Komposisi Dengan KMnO4 Tanpa KMnO4

  Analisa Nilai Kalor ( cal/gr ) Gambar 5. Histogram biobriket KKT+AT

  4

  3.15 2.44 3.02 2.89 2.70 5.91 4.80 5.44 4.71 4.18 1 2 3 4 5 6 7 AT 30% : KKT 70% AT 70% : KKT 30% AT 50% : KKT 50% AT 40% : KKT 60% AT 60% : KKT 40% (g r/ d et ik )

  Komposisi Lama Penyalaan Sampai Menjadi Abu Dengan KMnO4 Tanpa KMnO4

  Komposisi Dengan KMnO4 Tanpa KMnO4 19.09 25.09 20.84 22.38 23.95 10.19 12.81 11.3 13.21 14.96 5 10 15 20 25 30 AT 30% : KKT 70% AT 70% : KKT 30% AT 50% : KKT 50% AT 40% : KKT 60% AT 60% : KKT 40% W ak tu ( me n it )

  N il ai K al o r (c al /g r)

  kecepatan pembakaran tercepat terdapat pada komposisi biobriket AT 30% : 5800 5600 5400 5200 5000 4800 4600 5495 5707 5698 5632 5538 4997 5344 5325 5366 5476 campuran arang ampas tebu dan arang kulit KKT 70% AT 70% : KKT 30% AT 50% : KKT 50% AT 40% : KKT 60% AT 60% : KKT 40%

  4

  Lama penyalaan sampai menjadi abu berbanding terbalik dengan kecepatan pembakaran. Kecepatan pembakaran diperoleh dari berat komposisi (gram) dibagi dengan lama penyalaan sampai menjadi abu (detik). Penambahan KMnO

  lama penyalaan sampai menjadi abu terlama terdapat pada komposisi campuran 60%:40% yaitu 14,96 menit dan yang tercepat terdapat pada komposisi campuran 30%:70% sebesar 10,19 menit.

  4

  lama penyalaan sampai menjadi abu terlama terdapat pada komposisi biobriket campuran arang ampas tebu dan arang kulit kacang tanah 70%:30% yaitu 25,09 menit dan yang tercepat terdapat pada komposisi campuran 30%:70% sebesar 19,09 menit. Sedangkan pada tanpa penambahan KMnO

  4

  Dari gambar 6 dapat dilihat bahwa pada penambahan KMnO

  terhadap analisa lama penyalaan sampai menjadi abu (menit) dan analisa kecepatan pembakaran (gr/detik)

  dengan dan tanpa penambahan KMnO

  dengan dan tanpa penambahan KMnO

  Analisa lama penyalaan sampai menjadi abu (menit) dan kecepatan pembakaran (gr/detik) Gambar 6. Histogram biobriket KKT+AT

  disebabkan oleh kadar abu yang tinggi, dari nilai kalor tertinggi yang didapatkan sudah sesuai standar SNI No.47 2006 yaitu ≥ 5000, standar Jepang yaitu 5000-6000 dan standar USA yaitu 4000-6500.

  4

  Hal ini sependapat dengan (Triono, 2006) bahwa nilai kalor briket arang akan tinggi apabila nilai kadar karbon terikat pada briket tinggi .Penurunan nilai kalor pada penambahan KMnO

  biobriket dari campuran kulit kacang tanah dan ampas tebu.

  carbon maka semakin tinggi nilai kalor pada

  yaitu pada komposisi 30%:70% sebesar 5476 cal/gr dan yang terendah yaitu pada komposisi 60%:40% sebesar 4997 cal/gr .Tinggi rendahnya nilai kalor dipengaruhi oleh tinggi rendahnya fixed carbon, semakin tinggi fixed

  4

  yaitu pada komposisi 40%:60% sebesar 5707 cal/gr dan yang terendah yaitu pada komposisi 60%:40% sebesar 5495 cal/gr serta pada pencampuran ampas tebu dan kulit kacang tanah nilai kalor tertinggi dengan penambahan KMnO

  4

  dan pada pencampuran ampas tebu dan kulit kacang tanah, nilai kalor tertinggi pada tanpa KMnO

  4

  terhadap analisa nilai kalor (cal/gr) Dari gambar 5 terlihat bahwa nilai kalor biobriket dari bahan baku yang tertinggi yaitu tanpa penambahan KMnO

  4

  Komposisi Kecepatan Pembakaran Dengan KMnO4 Tanpa KMnO4 kacang tanah 70%:30% yaitu 2,44 gr/detik dan kecepatan pembakaran terlama terdapat pada komposisi campuran 30%:70% sebesar 3,15 gr/detik. Sedangkan pada tanpa penambahan KMnO

  4

  terjadi pembakaran tidak sempurna (kekurangan oksigen) sehingga CO

  4

  lebih cepat hilang karena KMnO

  4

  merupakan oksidator dan terjadi pembakaran sempurna antara karbon dan juga oksigen di udara yang membentuk karbon dioksida (CO

  2

  ) karena pembakaran sempurna terjadi hanya jika ada pasokan oksigen yang cukup. Oksigen merupakan salah satu elemen bumi paling umum yang jumlahnya mencapai 21% dari udara. Sehingga pada kondisi tertentu karbon yang terbakar yang membentuk CO

  2

  akan menghasilkan lebih banyak panas per satuan bahan bakar. Sedangkan pada tanpa penambahan KMnO

  4

  2

  4

  tidak akan terbentuk namun akan terbentuk CO atau asap.(Aswati, 2011).

  4. KESIMPULAN

  Berdasarkan dari hasil penelitian dapat diambil kesimpulan bahwa : 1)

  Penggunaan KMnO

  4

  dalam campuran biobriket dapat meningkatkan kadar air dan kadar abu namun dapat menurunkan kadar volatile matter, kadar fixed carbon dan nilai kalor. 8.31 9.03 14.38 10.57 15.35 19.62 19.1 16.76 16.2 19.8 5 10 15 20 25 AT 30% : KKT 70% AT 70% : KKT 30% AT 50% : KKT 50% AT 40% : KKT 60% AT 60% : KKT 40%

  W ak tu ( d et ik )

  Komposisi Lama Penyalaan Awal Dengan KMnO4 Tanpa KMnO4

  3.8 4.54 5.83 5.05 6.22 7.44 7.82 6.87 6.21 8.05 1 2 3 4 5 6 7 8 9 AT 30% : KKT 70% AT 70% : KKT 30% AT 50% : KKT 50% AT 40% : KKT 60% AT 60% : KKT 40% W ak tu ( me n it )

  asap lebih cepat hilang pada komposisi campuran 40%:60% yaitu 6,21 menit dan yang paling lama terdapat pada komposisi campuran 60%:40% sebesar 8,05 menit. Pada analisa lama asap hilang dengan penambahan KMnO

  asap lebih cepat hilang pada komposisi biobriket campuran arang ampas tebu dan arang kulit kacang tanah 30%:70% yaitu 3,80 menit dan yang paling lama terdapat pada komposisi campuran 60%:40% sebesar 6,22 menit. Sedangkan yang tanpa penambahan KMnO

  kecepatan pembakaran tercepat terdapat pada komposisi campuran 60%:40% yaitu 4,18 gr/detik dan kecepatan pembakaran terlama terdapat pada komposisi campuran 30%:70% sebesar 5,91 gr/detik.Dari penelitian ini lama penyalaan sampai menjadi abu dan kecepatan pembakaran disebabkan oleh adanya pengaruh oksidator. Pada penambahan KMnO

  4

  4

  waktu penyalaan sampai menjadi abu terlama dengan kecepatan pembakaran tercepat dibandingkan tanpa penambahan KMnO 4.

  Hal ini disebabkan karena terjadinya reaksi oksidasi yang mana KMnO

  4

  merupakan oksidator yang berfungsi sebagai pemberi oksigen atau memperbanyak oksigen di dalam biobriket agar biobriket lebih mudah terbakar (Nadir, 2011).

  Analisa Lama Penyalaan Awal (detik) dan Lama Asap Hilang (menit) Gambar 7. Histogram biobriket KKT+AT

  dengan dan tanpa penambahan KMnO

  4

  terhadap analisa lama penyalaan awal (detik) dan analisa lama asap hilang (menit) Dari gambar 7 dapat dilihat bahwa pada penambahan KMnO

  lama penyalaan awal tercepat terdapat pada komposisi biobriket campuran arang ampas tebu dan arang kulit kacang tanah 30%:70% yaitu 8,31 detik dan yang terlama pada komposisi campuran 60%:40% sebesar 15,35 detik sedangkan pada tanpa penambahan KMnO

  4

  4

  lama penyalaan awal tercepat terdapat pada komposisi campuran 40%;60% yaitu 16,2 detik dan yang terlama pada komposisi campuran 60%:40% sebesar 19,80 detik. Dari analisa lama penyalaan awal ini dapat diketahui bahwa dengan penambahan KMnO

  4

  waktu penyalaan awalnya lebih cepat daripada tanpa penambahan KMnO

  4

  karena KMnO

  4

  merupakan oksidator pemberi oksigen atau memperbanyak oksigen didalam biobriket sehingga biobriket lebih cepat terbakar (Nadir, 2011).

  Dan pada gambar 7 dapat dilihat bahwa pada penambahan KMnO

  Komposisi Lama Asap Hilang Dengan KMnO4 Tanpa KMnO4

  2) Penggunaan KMnO

  Bakar Briket Arang Kombinasi Cangkang Pala (Myristica Fragan Houtt) dan LIMBAH SAWIT (Elaeis Guenensis).

  Kelapa Sawit Dan Tandan Kosong Kelapa Sawit Sebagai Briket Bio Arang .

  Palembang : Politeknik Negeri Sriwijaya. Nadir, Mardhiyah. 2011. Pemanfaatan Limbah

  Sabut Kelapa Dan Cangkang Kemiri Untuk Pembuatan Biobriket. Samarinda:

  Politeknik Negeri Samarinda. Nay. 01 Desember 2007. Pengeringan Cabinet

  Dryer. http://naynienay. wordpress.com/ 2007/12/01/pengeringan-cabinet-dryer/.

  Diakses pada tanggal 14 November 2013. Nisa, K. 2012. Pembuatan Briket Arang dari

  campuran serbuk gergaji kayu ulin, alang- alang dan batu bara sebagai bahan bakar alternatif. Samarinda: Politeknik Negeri Samarinda.

  Nurwati, Intin dkk. 2012.

  ”CANACTIVE”

  Bahan Active Packaging Dari Abu Ampas Tebu Untuk Komoditas Pertanian.

  Yogyakarta: UGM. Onu,Favan., Budi Nur Rahman., dan Sudarja.

  2010. Pengukuran Nilai Kalor Bahan

  Yogyakarta: UMY. Prasetya, D. D. dan Miftah Irwannuddin. 2009.

  Briket Arang Dari Campuran Kayu Galam ( Melaleuca Leucadendron Linn ) Dari Tempurung Kayu Galam ( Auleutites Moluceana Wind) . Banjarmasin:

  Pengaruh Oksidator (Kmno4) Terhadap Kualitas Biobriket Dari Campuran Bottom Ash,Sekam Padi Dan Sabut Kelapa Sebagai Bahan Bakar Alternatif. Surabaya:

  Institut Teknologi Sepuluh Nopember Surabaya. Rahmawati. 2008. Analisis Daya Oksidator

  K

  2 Cr

  2 O

  7 , KMnO

  4 , Dan KBrO

  3 Terhadap Ion Fe

  2+ Dalam Garam Mohr Dan Ion Sn

  2+ Dalam Garam SnCl

  2 .2H

  2 O Dengan Metode Titrimetri Redoks (Konsep Laboratory Based-Learning) . Bandung:

  ITB Revlisia, Rindy. 2012. Evaluasi Kandungan

  Universitas Lambung Mangkurat. Martharani, Febi. 2011. Pemanfaatan Cangkang

  Banjarmasin: Universitas Lambung Mangkurat. Lusyiani. 2011. Analisa Sifat Fisik Dan Kimia

  4

  Briket Campuran Eceng Gondok Dan Batubara Sebagai Bahan Bakar Alternatif Bagi Masyarakat Pedesaan. Palembang: UNSRI.

  dalam campuran biobriket dapat menyebabkan kecepatan pembakaran dan lama penyalaan jadi abu semakin lama dan waktu penyalaan awal serta lama asap hilang akan semakin cepat. 3)

  Ditinjau dari nilai kalor terbaik yaitu tanpa penambahan KMnO

  4

  dan jika ditinjau dari waktu penyalaan awal tercepat yaitu dengan penambahan KMnO 4.

  DAFTAR PUSTAKA Anonim. 01 Desember 2012. http://ariefm.

  lecture.ub.ac.id/files/2012/12/1.-teknologi bio briket.pptx. Diakses pada tanggal 3 Desember 2013. Artati, W. K. 2012. Kajian Eksperimental

  Terhadap Karakteristik Pembakaran Briket Limbah Ampas Kopi Instan Dan Kulit Kopi. Surabaya: ITS.

  Aswati, Nani. 2011. Peningkatan Mutu

  Batubara Peringkat Rendah Indonesia Melalui Teknik Slurry Dewatering. Jakarta:

  Universitas Indonesia. Bimantara, R. dan Miqdad. 2010. Pengaruh

  Jenis Perekat Terhadap Nilai Kalor Pada Biobriket Dari Campuran Bottom Ash Dengan Biomassa Sebagai Bahan Bakar Alternatif. Surabaya: ITS.

  Fachry, A.R dkk. 2010. Teknik Pembuatan

  Fauzi,Achmad., Moh.Lutfi Maulana dan Nuri Sawal Riyadi. 2010.Briket Kulit Kacang

  Lembaga Penelitian Universitas Lambung Mangkurat. 2011. Pembuatan portfolio investasi industri briket batubara .

  Sebagai Sumber Energi Alternatf . Malang: Universitas Negeri Malang.

  Hanania, V.E. dan Mitarlis. 2013. Pemanfaatan

  Limbah Padat Proses Sintesis Furfural Dengan Material Awal Ampas Tebu Sebagai Bahan Pembuatan Bahan Bakar Briket. Surabaya: Universitas Negeri

  Surabaya. Hasibuan, Frengky. 2007. Peningkatan Kualitas

  Penyalaan Briket Batubara Melalui Penambahan Oksidator. Jakarta:UI.

  Hasibuan, Rosdaneli. 2005. Proses

  Pengeringan. Medan: Universitas Sumatera Utara.

  Hernawati, N. S., dan Diana, P. I. 2010. Pabrik

  Silika Dari Abu Ampas Tebu Dengan Proses Presipitasi. Surabaya: ITS.

  Inalawati dan Diana Ristamala.2013.

  Pembuatan Briket Arang Dari Buah Nyamplung (Calophyllum Inophyllum L).

  Palembang: UNSRI. Jamilatun, Siti. 2008. Sifat-Sifat Penyalaan dan

  Batubara dan Arang Kayu . Yogyakarta: Universitas Ahmad Dahlan.

  Nutrien Panicum Maximum, Brachiaria Decumbens Dan Pueraria Thunbergiana

  Melalui Metode Pengeringan Yang Berbeda . Bogor: IPB.

  Widarti, E. S. 2010. Studi Eksperimental

  Supriyono. 2003. Mengukur Faktor-Faktor

  dalam Proses Pengeringan. Jakarta: Gramedia.

  Suryani, Indah dan M. Yusuf Permana. 2012.

  Pemanfaatan Briket Arang Dari Campuran Buah Bintaro Dan Tempurung Kelapa Menggunakan Perekat Amilum.

  Palembang: UNSRI. Titin. 2013. Proses Pembuatan Briket dari