Pengembangan Kurva Kerapuhan Berbasis Incremental Dynamic Analysis Untuk Evaluasi Kinerja Seismik Jembatan Rangka Baja Kelengkapan Skripsi

perpustakaan.uns.ac.id

digilib.uns.ac.id

PENGEMBANGAN KURVA KERAPUHAN BERBASIS
INCREMENTAL DYNAMIC ANALYSIS UNTUK EVALUASI
KINERJA SEISMIK JEMBATAN RANGKA BAJA
DEVELOPMENT OF FRAGILITY CURVE BASED ON INCREMENTAL DYNAMIC
ANALYSIS FOR SEISMIC PERFORMANCE EVALUATION OF STEEL TRUSS
BRIDGE

SKRIPSI
Disusun sebagai Salah Satu Syarat Memperoleh Gelar Sarjana Teknik
Pada Program Studi Teknik Sipil Fakultas Teknik
Universitas Sebelas Maret
Surakarta

Disusun oleh :

DEAN HADI WARDANA
I 0112026


PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK
UNIVERSITAS SEBELAS MARET
SURAKARTA
commit
to user
2016

perpustakaan.uns.ac.id

digilib.uns.ac.id

LEMBAR PERSETUt t AN



PENGEMBANGAN KURVA KERAPUHAN BERBASI S
Ⅵ跡憂張燿い燿И L D…

Zys・S・ I NTUK EVALUASI

KI NEt t A SEI SMI K J EMBATAN RANGKA BAJ A

DE7EZOPル 匿ⅣT θ FJ RИ


G″

二ySI S FOR SE賢 昴″ C

σ 駅 閣 以 SED aV″ Ⅵ刃υ t t θ 〕″ И ZDt t Z

PEMORMИ NCE E″

Zし И t t OⅣ

OF STEEZ r R酬

Bt t G二

Di susun ol eh:


DEAN HADI WARDANA
10112026
Tel ah di set t ui l l nt uk di pci ahankan di hadapan Ti m Peng可

i

Pcndadar an Pr ogr al n St udi Tekni k Si pi l Fakul t as Tekni k l 」 ni ver si t as
Sebelas Maret Surakarta

Dosen Pembimbing

I

Dr . Senot Sangadi i o S. T. . M. T.
NI P。 197208072000031002

Dosen Pembimbing

Pr o■


S. A. 聰 i st i awane

II

S. T。 . PI I . Sc. Ph. D

NI P. 19690501 1995121001
commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id


MOTTO
“Fa-inna ma’al ‘usri yusran”
“Karena sesungguhnya, sesudah kesulitan itu ada kemudahan,” – (QS.94:5)

PERSEMBAHAN
Saya persembahkan karya ini untuk:
Bapak dan almarhumah ibu yang telah membuat saya bisa menjadi seperti ini
Seseorang yang terkasih yang selalu mensupport dalam keadaan apapun
Teman-teman yang selalu memberikan bantuan, dukungan dan semangat

Terima kasih kepada:
Pembimbing yang selalu mengarahkan dengan sabar serta membagi ilmunya
Seluruh dosen dan staf Program Studi Teknik Sipil yang telah memberi banyak bekal

commit to user

iv

perpustakaan.uns.ac.id


digilib.uns.ac.id

ABSTRAK
Dean Hadi Wardana, 2016. Pengembangan Kurva Kerapuhan Berbasis
Incremental Dynamic Analysis untuk Evaluasi Kinerja Seismik Jembatan
Rangka Baja. Skripsi. Program Studi Teknik Sipil Fakultas teknik Universitas
Sebelas Maret Surakarta.
Dampak yang ditimbulkan akibat gempa bumi sangat luas. Salah satunya adalah
kegagalan pada infrastruktur jembatan. Untuk mengantisipasi kegagalan tersebut
dibutuhkan suatu parameter serta metode untuk mengevaluasi kinerja seismik dari
struktur. Kurva kerapuhan merupakan parameter kinerja seismik yang cukup baik
untuk mengevaluasi suatu struktur khususnya jembatan. Metode yang digunakan
untuk membentuk kurva kerapuhan adalah incremental dynamic analysis yang
menggunakan analisis riwayat waktu yang dilakukan secara increment.
Penelitian ini menggunakan jembatan rangka baja hypothetic 1 span dengan
panjang 80m yang dimodelkan dalam bentuk 3D. Beban gravitasi dihitung
berdasarkan SNI T-03-2005 tentang perencanaan struktur baja untuk jembatan.
Beban gempa menggunakan 12 ground motion records yang disesuaikan dengan
target respon spektra daerah Semarang. Analisis dilakukan secara dinamis dengan
menjalankan analisis riwayat waktu. Setiap ground motion records dianalisis secara

increment hingga struktur collapse. Hasil analisis berupa 12 kurva IDA yang
menggambarkan perilaku linier dan nonlinier struktur pada arah x dan y.
Kurva kerapuhan berupa fungsi probabilistik dianalisis berdasarkan 12 kurva IDA
pada arah x dan y dengan menggunakan tingkat kerusakan berdasarkan definisi
Hazus (slight, moderate, extensive dan complete). Aleatory randomness dan
epistemic uncertainty digunakan untuk menghitung ketidakpastian total dari fungsi
probabilistik kurva kerapuhan. Berdasarkan kurva kerapuhan pada arah x dan y,
kerusakan struktur jembatan rangka baja untuk tiap batas kerusakan pada arah
sumbu x lebih besar daripada arah y. Hal ini menunjukkan bahwa arah x lebih rapuh
daripada arah y. Probabilitas kerusakan complete damage struktur jembatan rangka
baja mencapai 100% jika terjadi gempa dengan PGA sebesar 4 g untuk arah x dan
6,2 g untuk arah y. Namun dalam kenyataan, probabilitas terjadinya gempa dengan
PGA lebih dari 2 g kecil sekali. Ini menunjukkan bahwa desain kolom terlalu kuat.
Selain itu, probabilitas kerusakan complete damage pada arah y dengan nilai PGA
diatas 3,5 g tidak relevan dengan batas kerusakan yang dipakai karena terdapat
komponen struktur yang rusak terlebih dahulu yaitu LRB daripada komponen yang
ditinjau yaitu pier. Alasan ini juga yang menguatkan pernyataan bahwa adalah
kolom yang menjadi tinjauan terlalu kuat.
Kata Kunci: aleatory randomness, epistemic uncertainty, ground motion records,
incremental dynamic analysis, jembatan rangka baja, kurva

kerapuhan, kinerja seismik.

commit to user

v

perpustakaan.uns.ac.id

digilib.uns.ac.id

ABSTRACT
Dean Hadi Wardana, 2016. Development of Fragility Curve Based on
Incremental Dynamic Analysis for Seismic Performance Evaluation Steel Truss
Bridge. Thesis. Civil Engineering Department of Engineering Faculty of Sebelas
Maret University, Surakarta.
Earthquakes give so much impact. One of the impact is failure of bridge
infrastructure. To anticipate the failure, it needs a parameter and method to
evaluate seismic performance of structure. Fragility curve is a good parameter of
seismic performance to evaluate a structure, especially bridge. Method used to
create fragility curve is incremental dynamic analysis which uses time history

analysis incrementally.
This research uses 1 span hypothetic steel truss bridge with length 80m in 3D
modeling. Gravitation load is calculated based on SNI T-03-2005 “tentang
perencanaan struktur baja untuk jembatan”. Seismic load uses 12 ground motion
records which are matched with target response spectra in Semarang. Analysis is
conducted dynamically by time history analysis. Every ground motion record is
analysed incrementally till the structure was collapse. The result is 12 IDA curves
which describe linearity and non-linearity of structure in axis x and y.
Fragility curve which in the form of probabilistic function, is analysed based on 12
IDA curves in axis x and y using Hazus’s damage state (slight, moderate, extensive
dan complete). Aleatory randomness and epistemic uncertainty is used to calculate
uncertainty from probabilistic function of fragility curve. Based on fragility curve
to axis x and y, damage of steel truss bridge structure for every damage state on
axis x is higher than axis y. It indicates that the structure on axis x is more fragile
than on axis y. If earthquake occurs with PGA 4 g on axis x and 6,2 g on axis y, the
probability of complete damage on steel truss bridge structure reach 100%. But
probability of earthquake which its PGA over than 2 g is very low. Besides,
probability of complete damage on axis y which its PGA over than 3,5 g is irrelevant
to used damage state. It caused by earlier damaged component structure (LRB)
than the observed component (pier). This reason also strengthens the statement

above that observed pier is too strong.
Keyword:

aleatory randomness, epistemic uncertainty, ground motion records,
incremental dynamic analysis, jembatan rangka baja, fragility
curve, seismic performance

commit to user

vi

perpustakaan.uns.ac.id

digilib.uns.ac.id

PENGANTAR
Puji syukur penyusun panjatkan kepada Tuhan Yang Maha Kuasa yang telah
melimpahkan rahmat-Nya sehingga penyusun dapat menyelesaikan Skripsi dengan
judul Pengembangan Kurva Kerapuhan Berbasis Incremental Dynamic Analysis
untuk Evaluasi Kinerja Seismik Jembatan Rangka Baja. Skripsi ini merupakan

salah satu persyaratan akademik untuk menyelesaikan Program Sarjana pada
Program Studi Teknik Sipil Fakultas Teknik Universitas Sebelas Maret Surakarta.

Penyusun menyadari keterbatasan kemampuan dan pengetahuan yang penyusun
miliki sehingga masih ada kekurangan dalam penyusunan skripsi ini, untuk itu
penyusun mengharapkan kritik dan saran yang membangun dari para pembaca.
Akhir kata semoga skripsi ini bermanfaat bagi penyusun khususnya dan pembaca
umumnya.

Surakarta, Agustus 2016

Penyusun

commit to user

vii

perpustakaan.uns.ac.id

digilib.uns.ac.id

DAFTAR ISI

JUDUL ...............................................................................................................

i

LEMBAR PERSETUJUAN...............................................................................

ii

HALAMAN PENGESAHAN ............................................................................ iii
MOTTO DAN PERSEMBAHAN ..................................................................... iv
ABSTRAK .........................................................................................................

v

ABSTRACK ........................................................................................................ vi
PENGANTAR ................................................................................................... vii
DAFTAR ISI ...................................................................................................... viii
DAFTAR TABEL .............................................................................................. xi
DAFTAR GAMBAR ......................................................................................... xii
DAFTAR LAMPIRAN ...................................................................................... xiv
DAFTAR NOTASI ............................................................................................ xv

BAB 1 PENDAHULUAN
1.1

Latar Belakang .....................................................................................

1

1.2

Rumusan Masalah ................................................................................

2

1.3

Tujuan Penelitian .................................................................................

3

1.4

Batasan Masalah ..................................................................................

3

1.5

Manfaat ................................................................................................

4

BAB 2 LANDASAN TEORI
2.1

Struktur Jembatan ................................................................................

5

2.1.1

Jembatan ..............................................................................................

5

2.1.2

Jembatan Rangka Baja .........................................................................

6

2.1.3

Pembebanan Jembatan .........................................................................

6

2.2

Analisis Riwayat Waktu ...................................................................... 12

2.2.1

Akselerogram ....................................................................................... 13

2.2.2

Target Respon Spektra ......................................................................... 14
commit to user

viii

perpustakaan.uns.ac.id

digilib.uns.ac.id

2.2.3

Menentukan Ground Motion Record dalam Analisis Riwayat Waktu 15

2.2.4

Penyesuaian Ground Motion Record dengan Target Respon Spektra
Analisis Riwayat Waktu ...................................................................... 17

2.3

Incremental Dynamic Analysis (IDA) .................................................. 18

2.3.1

Konsep Dasar Incremental Dynamic Analysis (IDA) .......................... 18

2.3.2

Limit State ............................................................................................ 20

2.3.3

Pengaplikasian Incremental Dynamic Analysis ................................... 22

2.4

Kurva Kerapuhan ................................................................................. 23

2.4.1

Metode Penurunan Kurva Kerapuhan .................................................. 24

2.4.2

Kurva Kerapuhan untuk Struktur Jembatan ......................................... 25

BAB 3 METODE PENELITIAN
3.1

Tahapan Penelitian ............................................................................... 28

3.1.1

Studi Literatur ...................................................................................... 28

3.1.2

Pengumpulan Data ............................................................................... 28

3.1.2.1 Struktur Jembatan ................................................................................ 28
3.1.2.2 Lokasi Jembatan................................................................................... 29
3.1.3

Pemodelan Struktur .............................................................................. 30

3.1.4

Perhitungan Pembebanan ..................................................................... 31

3.1.5

Analisis Struktur dengan Metode Incremental Dynamic Analysis ...... 31

3.1.6

Analisis Hasil Incremental Dynamic Analysis ..................................... 32

3.1.7

Analisis dan Penggambaran Kurva Kerapuhan ................................... 32

3.2

Diagram Alir Penelitian ....................................................................... 33

BAB 4 ANALISIS DAN PEMBAHASAN
4.1

Pemodelan Struktur .............................................................................. 35

4.2

Perhitungan Beban Mati dan Beban Hidup ......................................... 35

4.2.1

Perhitungan Beban Mati ...................................................................... 35

4.2.2

Perhitungan Beban Hidup .................................................................... 36

4.2.2.2 Perhitungan Beban Truk (T) ............................................................... 37
4.3

Pembebanan Gempa............................................................................. 37

4.3.1

Target Respon Spektrum...................................................................... 37
commit to user
Pemilihan Ground Motion Records ..................................................... 38

4.3.2

ix

perpustakaan.uns.ac.id

digilib.uns.ac.id

4.3.3

Perhitungan Scale Factor ..................................................................... 39

4.3.4

Penyesuaian Ground Motion Records dengan Target Respon Spektra
Menggunakan SeismoMatch ................................................................ 41

4.4

Analisis Incremental Dynamic Analysis .............................................. 46

4.5

Hasil Analisis Incremental Dynamic Analysis ..................................... 47

4.6

Analisis Kurva Kerapuhan ................................................................... 50

4.7

Hasil Analisis Kurva Kerapuhan ......................................................... 53

BAB 5 KESIMPULAN DAN SARAN
5.1.

Kesimpulan .......................................................................................... 60

5.2.

Saran .................................................................................................... 61

DAFTAR PUSTAKA ........................................................................................ 63
LAMPIRAN

commit to user

x

perpustakaan.uns.ac.id

digilib.uns.ac.id

DAFTAR TABEL
Tabel 2.1 Jumlah lajur lalu lintas rencana... ....................................................... 10
Tabel 2.2 Deskripsi batas kerusakan (Limit State) berdasarkan HAZUS... ........ 21
Tabel 2.3 Definisi limit state untuk pier jembatan... .......................................... 21
Tabel 4.1 Perhitungan beban perkerasan jalan dan pelat... ................................. 36
Tabel 4.2 Perhitungan beban trotoar... ................................................................ 36
Tabel 4.3 Ground motion records yang digunakan... ......................................... 39
Tabel 4.4 Nilai scale factor setiap gempa untuk arah x dan arah y .................... 41
Tabel 4.5 Penambahan scale factor... ................................................................. 47
Tabel 4.6 Nilai ground motion parameter sesuai limit state, λ (rata-rata dari ln(x)
dengan x adalah ground motion parameter), ketidakpastian total,
aleatory serta epistemic untuk arah x... .............................................. 51
Tabel 4.7 Nilai ground motion parameter sesuai limit state, λ (rata-rata dari ln(x)
dengan x adalah ground motion parameter), ketidakpastian total,
aleatory serta epistemic untuk arah y... .............................................. 52
Tabel 4.8 Perbandingan gaya aksial aktual dengan kapasitas gaya aksial LRB... 58

commit to user

xi

perpustakaan.uns.ac.id

digilib.uns.ac.id

DAFTAR GAMBAR
Gambar 2.1

Jembatan rangka ..........................................................................

6

Gambar 2.2

Beban “D” : BTR vs panjang yang dibebani ...............................

8

Gambar 2.3

Beban lajur “D” ...........................................................................

9

Gambar 2.4

Penyebaran pembebanan pada arah melintang ............................ 10

Gambar 2.5

Pembebanan truk “T” (500 kN) ................................................... 11

Gambar 2.6

Akselerogram Hospital de Curico ............................................... 14

Gambar 2.7

Desain Respon Spektra ................................................................ 15

Gambar 2.8

Kurva IDA dengan 30 rekaman gempa ....................................... 19

Gambar 3.1

Perspektif jembatan hypothetic rangka baja ................................ 29

Gambar 3.2

Lokasi jembatan hypothetic rangka baja ..................................... 29

Gambar 3.3

Diagram alir penelitian ................................................................ 34

Gambar 4.1

Model tiga dimensi jembatan rangka baja kelas B ...................... 35

Gambar 4.2

Susunan pembebanan truk “T” (500 kN) .................................... 37

Gambar 4.3

Target respon spektra daerah Semarang ...................................... 38

Gambar 4.4

Akselerogram unscaled gempa Kern Country arah x.................. 40

Gambar 4.5

Respon spektra gempa Kern Country arah x ............................... 40

Gambar 4.6

Respon spektra ground motion records arah x yang belum
disesuaikan (unscaled)................................................................. 42

Gambar 4.7

Respon spektra ground motion records arah y yang belum
disesuaikan (unscaled)................................................................. 42

Gambar 4.8

Hasil matching dengan SeismoMatch .......................................... 44

Gambar 4.9

Hasil matching dengan SeismoMatch .......................................... 44

Gambar 4.10 Respon spektra ground motion records arah x yang telah
disesuaikan .................................................................................. 45
Gambar 4.11 Respon spektra ground motion records arah y yang telah
disesuaikan .................................................................................. 45
Gambar 4.12 Artificial akselerogram gempa Kern Country arah x .................. 46
Gambar 4.13 Kumpulan 12 kurva IDA arah x .................................................. 48
commit to user
Gambar 4.14 Kumpulan 12 kurva IDA arah y .................................................. 49
xii

perpustakaan.uns.ac.id

digilib.uns.ac.id

Gambar 4.15 Kurva kerapuhan struktur jembatan rangka baja arah x berdasarkan
limit state Kim dan Shinozuka (2004) ......................................... 53
Gambar 4.16 Kurva kerapuhan struktur jembatan rangka baja arah y berdasarkan
limit state Kim dan Shinozuka (2004) ......................................... 54
Gambar 4.17 Kurva kerapuhan struktur jembatan rangka baja arah x dan y pada
kerusakan complete damage ........................................................ 57

commit to user

xiii

perpustakaan.uns.ac.id

digilib.uns.ac.id

DAFTAR LAMPIRAN
LAMPIRAN A Geometri, data properti dan pemodelan struktur .......... LA-1-8
LAMPIRAN B Analisis pembebanan gempa ........................................ LB-1-66
LAMPIRAN C Hasil analisis IDA dan Kurva Kerapuhan..................... LC-1-44
LAMPIRAN D Surat-surat ..................................................................... LD-1-15

commit to user

xiv

perpustakaan.uns.ac.id

digilib.uns.ac.id

DAFTAR NOTASI
Ф[.]

=

fungsi standar normal distribusi kumulatif

δ

=

displacement

h

=

tinggi kolom

δ/h

=

drift ratio

λ

=

rata-rata dari ln(x)

βR

=

ketidakpastian aleatory

βU

=

ketidakpastian epistemic

βRU

=

ketidakpastian total

Ā

=

spectral acceleration target respon spectra

A

=

spectral acceleration respon spectra yang akan diskala

Fa

=

koefisien situs untuk perioda pendek (pada perioda 0,2 detik)

Fv

=

koefisien situs untuk perioda panjang (pada perioda 1 detik)

L

=

Panjang total jembatan yang dibebani

ln � 84% =

ln �16% =

ln dari percentile 16% dari nilai x

M

=

magnitude

n

=

jumlah data

P

=

probabilitas kerusakan

PGA

=

peak ground acceleration

p

=

intensitas beban garis (BGT) dalam arah melintang jembatan

q

=

intensitas beban terbagi rata (BTR) dalam arah memanjang jembatan

S1

=

parameter percepatan respons spektral MCE dari peta gempa pada
perioda 1 detik, redaman 5 persen

Sa

=

percepatan total maksimum

Sd

=

simpangan relatif maksimum

SD1

=

parameter percepatan respons spektral pada periode 1 detik,
redaman 5 persen
commit to user

ln dari percentile 84% dari nilai x

xv

perpustakaan.uns.ac.id

digilib.uns.ac.id

SDS

=

parameter percepatan respons spektral pada perioda pendek,
redaman 5 persen

SF

=

scale factor

Ss

=

parameter percepatan respons spektral MCE dari peta gempa pada
perioda pendek, redaman 5 persen

Sv

=

kecepatan relatif maksimum

T

=

period

X

=

ground motion parameter (PGA atau Sa)

x

=

ground motion parameter (PGA atau Sa) sesuai limit state

� 84%

=

percentile 84% dari nilai x

=

percentile 16% dari nilai x

xi

=

ground motion parameter (PGA atau Sa) ke-i sesuai limit state

�16%

commit to user

xvi